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1 Proof of Theorem 1

Consider X ∈ {1, . . . , S} and Y ∈ {1, . . . , L} where S,L > 2. Let Σ be the set of all permutations
of size L and Π be the set of all permutations of size S. Let

Θ = {(ω,β,γ, σ) | pX→Y (X,Y |ω,β,γ, σ) ≡ pY→X(X,Y |ρ,α,η, π) for some (ρ,α,η, π)}

be the set of model parameters such that pX→Y (X,Y |ω,β,γ, σ) is not identifiable. Note that
Θ ⊂ R2S+L−3 × Σ. Let λ(·) be the 2S + L− 3 dimensional Lebesgue measure and let µ(·) be the
counting measure. Define m(·) be the product measure of λ(·) and µ(·), i.e., for any A ⊂ R2S+L−3

and B ⊂ Σ, m(A,B) = λ(A)× µ(B). We will show that m(Θ) = 0.

For any σ̃ ∈ Σ, let

Θσ̃ = {(ω,β,γ, σ̃) | pX→Y (X,Y |ω,β,γ, σ̃) ≡ pY→X(X,Y |ρ,α,η, π) for some (ρ,α,η, π)} .

Because Θ = ∪σ̃∈ΣΘσ̃ , we have

m(Θ) ≤
∑
σ̃∈Σ

m(Θσ̃)

For any σ̃ ∈ Σ and π̃ ∈ Π, let

Θσ̃,π̃ = {(ω,β,γ, σ̃) | pX→Y (X,Y |ω,β,γ, σ̃) ≡ pY→X(X,Y |ρ,α,η, π̃) for some (ρ,α,η)} .

Since Θσ̃ = ∪π̃∈ΠΘσ̃,π̃ , we have

m(Θσ̃) ≤
∑
π̃∈Π

m(Θσ̃,π̃)

Hence,

m(Θ) ≤
∑
σ̃∈Σ

∑
π̃∈Π

m(Θσ̃,π̃)

Because Σ and Π are finite sets, to show m(Θ) = 0, we only need to show m(Θσ̃,π̃) = 0 for any
σ̃ ∈ Σ and π̃ ∈ Π.

We begin by equating, pX→Y (X,Y |ω,β,γ, σ̃) and pY→X(X,Y |ρ,α,η, π̃),

PX→Y (X = s, Y = ℓ|ω,β,γ, σ̃) = PY→X(X = s, Y = ℓ|ρ,α,η, π̃). (1)
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for all X ∈ {1, . . . , S} and Y ∈ {1, . . . , L}. The set of solutions to these equations is exactly Θσ̃,π̃ .
The left-hand side of (1) is given by

PX→Y (X = s, Y = ℓ|ω,β,γ, σ̃)

= PX→Y (Y = ℓ|X = s,β,γ, σ̃)PX→Y (X = s|ω)

= [PX→Y (Y ≤ ℓ|X = s,β,γ, σ̃)− PX→Y (Y ≤ ℓ− 1|X = s,β,γ, σ̃)]PX→Y (X = s|ω)

= [F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs,

where βs = XTβ for X = s. Similarly, the right-hand side of (1) is given by

PY→X(X = s, Y = ℓ|ρ,α,η, π̃)

= PY→X(X = s|Y = ℓ,α,η, π̃)PY→X(Y = ℓ|ρ)
= [PY→X(X ≤ s|Y = ℓ,α,η, π̃)− PY→X(X ≤ s− 1|Y = ℓ,α,η, π̃)]PY→X(Y = ℓ|ρ)
= [F (ηπ̃(s) − αℓ)− F (ηπ̃(s)−1 − αℓ)]ρℓ,

where αℓ = Y Tα for Y = ℓ. Therefore, (1) leads to

[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs = [F (ηπ̃(s) − αℓ)− F (ηπ̃(s)−1 − αℓ)]ρℓ (2)

Summing up both sides of (2) over s from 1 to S, we have

S∑
s=1

[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

=

S∑
s=1

[F (ηπ̃(s) − αℓ)− F (ηπ̃(s)−1 − αℓ)]ρℓ

=

S∑
s=1

[F (ηs − αℓ)− F (ηs−1 − αℓ)]ρℓ

= [F (ηS − αℓ)− F (η0 − αℓ)]ρℓ
= ρℓ. (3)

The second equality is due to a simple reordering of the summands. The third equality is due to the
cancellation from telescoping series in s. The last equality is because ηS = ∞ and η0 = −∞ and
hence F (ηS − αℓ) = 1 and F (η0 − αℓ) = 0. Plug (3) into (2),

[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

= [F (ηπ̃(s) − αℓ)− F (ηπ̃(s)−1 − αℓ)]

S∑
s=1

[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

and hence

[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs∑S
s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

= F (ηπ̃(s) − αℓ)− F (ηπ̃(s)−1 − αℓ) (4)

Now, consider s = π̃−1(1) in (4) and note η0 = −∞ and η1 = 0,

[F (γσ̃(ℓ) − βπ̃−1(1))− F (γσ̃(ℓ)−1 − βπ̃−1(1))]ωπ̃−1(1)∑S
s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

= F (η1 − αℓ)− F (η0 − αℓ)

= F (−αℓ).

Therefore,

αℓ = −F−1

{
[F (γσ̃(ℓ) − βπ̃−1(1))− F (γσ̃(ℓ)−1 − βπ̃−1(1))]ωπ̃−1(1)∑S

s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

}
(5)
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Sequentially plug (5) into (4) for j∗ = 2, . . . , S − 1 s∗ = π̃−1(2), . . . , π̃−1(S − 1) (note that one
can at least plug in once for s∗ = π̃−1(2) because S > 2),

ηj∗ = F−1

{∑j∗

j=1[F (γσ̃(ℓ) − βπ̃−1(j))− F (γσ̃(ℓ)−1 − βπ̃−1(j))]ωπ̃−1(j)∑S
s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

}

− F−1

{
[F (γσ̃(ℓ) − βπ̃−1(1))− F (γσ̃(ℓ)−1 − βπ̃−1(1))]ωπ̃−1(1)∑S

s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

}
, (6)

Because the left-hand side of (6) is independent of ℓ whereas the right-hand side of (6) depends on ℓ,
we have,

F−1

{∑j∗

j=1[F (γσ̃(ℓ) − βπ̃−1(j))− F (γσ̃(ℓ)−1 − βπ̃−1(j))]ωπ̃−1(j)∑S
s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

}

− F−1

{
[F (γσ̃(ℓ) − βπ̃−1(1))− F (γσ̃(ℓ)−1 − βπ̃−1(1))]ωπ̃−1(1)∑S

s=1[F (γσ̃(ℓ) − βs)− F (γσ̃(ℓ)−1 − βs)]ωs

}

=F−1

{∑j∗

j=1[F (γσ̃(ℓ∗) − βπ̃−1(j))− F (γσ̃(ℓ∗)−1 − βπ̃−1(j))]ωπ̃−1(j)∑S
s=1[F (γσ̃(ℓ∗) − βs)− F (γσ̃(ℓ∗)−1 − βs)]ωs

}

− F−1

{
[F (γσ̃(ℓ∗) − βπ̃−1(1))− F (γσ̃(ℓ∗)−1 − βπ̃−1(1))]ωπ̃−1(1)∑S

s=1[F (γσ̃(ℓ∗) − βs)− F (γσ̃(ℓ∗)−1 − βs)]ωs

}
(7)

for any ℓ, ℓ∗ ∈ {1, . . . , L} and ℓ ̸= ℓ∗ (note that one can always find ℓ ̸= ℓ∗ because L > 2). Since the
link function F is assumed to be a real analytic function (recall a real function is said to be analytic if
it is infinitely differentiable and matches its Taylor series in a neighborhood of every point), and F ′(x)
is assumed to be nowhere zero, F−1(x) is analytic. Since the left-hand side of (7) is a composition of
F , F−1, sums, products, and reciprocals of γσ̃(ℓ), γσ̃(ℓ∗), γσ̃(ℓ)−1, γσ̃(ℓ∗)−1, β1, . . . , βS , ω1, . . . , ωS ,
it is an analytic function [Krantz and Parks, 2002] and therefore its zero set must have Lebesgue
measure zero [Mityagin, 2015]. In other words, we have proven m(Θσ̃,π̃) = 0, which completes the
proof.

2 Proof of Theorem 2

Let (x1, y1), . . . , (xn, yn) be n observations from PX→Y (X,Y ). Consider the average difference
between the log-likelihood of M0 : X → Y and that of M1 : Y → X ,

1

n

[
n∑

i=1

logPX→Y (X = xi, Y = yi)−
n∑

i=1

logPY→X(X = xi, Y = yi)

]

=
1

n

n∑
i=1

log
PX→Y (X = xi, Y = yi)

PY→X(X = xi, Y = yi)

→E(X,Y )∼PX→Y (X,Y ) log
PX→Y (X,Y )

PY→X(X,Y )
as n → ∞ (Law of large numbers)

=KL(PX→Y (X,Y )||PY→X(X,Y )) > 0

The last inequality is because KL divergence is nonnegative and it is strictly positive here because
PX→Y (X,Y ) ̸= PY→X(X,Y ) from Theorem 1.

3 Additional Simulation Results

3.1 Ablation Study

We performed an ablation study under Simulation Scenario 1 with n = 1, 000 to demonstrate the
importance of learning the category ordering. Specifically, we fixed the permutation at different label
orderings. The results are presented in Table 1 where Kendall’s Tau quantifies the correlation between
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the fixed label permutation and the true label permutation. As expected, the causal identification
accuracy increases as the Kendall’s Tau approaches 1. The performance of the COLP method with
unknown permutation is close to that under the fixed ordering with Kendall’s Tau=0.8. This ablation
study stresses the importance of having label permutation as a parameter because otherwise the
inference can be very wrong if the permutation is fixed to a bad ordering.

Kendall’s Tau 0 0.2 0.4 0.6 0.8 1
Accuracy 0.17 0.33 0.61 0.82 0.96 1

Table 1: Ablation study.

3.2 Varying Number of Categories

We investigated how estimation of causal direction and label permutation vary as the number of
categories increases under Simulation Scenario 1 with n = 1, 000. We considered 10 different
numbers of categories from 3 to 12. The results are reported in Table 2 where the second row is the
accuracy of causal identification and the third row is the Kendall’s Tau measuring the correlation
between the estimated and true label permutations. For both metrics, a value close to 1 indicates good
performance. We find that the performance of COLP is relatively stable with respect to the number of
categories, especially for causal identification.

Number of Categories 3 4 5 6 7 8 9 10 11 12
Accuracy 0.86 0.89 0.91 0.91 0.88 0.91 0.9 0.9 0.9 0.88

Kendall’s Tau 0.94 0.92 0.93 0.92 0.88 0.9 0.88 0.87 0.87 0.84
Table 2: Varying number of categories.
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