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Abstract001

We present a novel three-stage framework lever-002
aging Large Language Models (LLMs) within003
a risk-aware multi-agent system for automate004
strategy finding in quantitative finance. Our ap-005
proach addresses the brittleness of traditional006
deep learning models in financial applications007
by: employing prompt-engineered LLMs to008
generate executable alpha factor candidates009
across diverse financial data, implementing010
multimodal agent-based evaluation that filters011
factors based on market status, predictive qual-012
ity while maintaining category balance, and013
deploying dynamic weight optimization that014
adapts to market conditions. Experimental re-015
sults demonstrate the robust performance of the016
strategy in Chinese & US market regimes com-017
pared to established benchmarks. Our work018
extends LLMs capabilities to quantitative trad-019
ing, providing a scalable architecture for finan-020
cial signal extraction and portfolio construc-021
tion. The overall framework significantly out-022
performs all benchmarks with 53.17% cumula-023
tive return on SSE50 1 (Jan 2023 to Jan 2024),024
demonstrating superior risk-adjusted perfor-025
mance and downside protection on the market.026

1 Introduction027

Recent advances in LLMs and multi-agent systems028

are converging to transform quantitative finance.029

This synergistic relationship leverages LLMs’ text030

comprehension and generation capabilities along-031

side multi-agent frameworks that simulate mar-032

ket dynamics, creating sophisticated approaches033

to portfolio management (Lee et al., 2020).034

LLMs have evolved from supporting analytical035

tools to active participants in financial decision-036

making. For example, BloombergGPT demon-037

strates superior performance in parsing market038

1The SSE 50 Index tracks the performance of the 50 most
influential large-cap blue-chip stocks on the Shanghai Stock
Exchange.

sentiment and answering domain-specific ques- 039

tions (Wu et al., 2023). Research shows that LLMs 040

effectively generate trading actions by contextu- 041

alizing price trends with news and earnings re- 042

ports (Ding et al., 2023). Concurrently, multi-agent 043

systems offer powerful approaches to portfolio op- 044

timization through decentralized interaction. The 045

Multi-Agent Portfolio System demonstrates the 046

portfolio managed by agents have achieved well- 047

diversified returns with improved risk-adjusted per- 048

formance (Lee et al., 2025). These frameworks 049

capture complex market dynamics such as infor- 050

mation sharing and strategic arbitrage that single- 051

agent models cannot address (Spooner and Savani, 052

2020). The integration of these technologies cre- 053

ates sophisticated financial environments where 054

LLM-enhanced agents demonstrate adaptive be- 055

havior. StockAgent exemplifies this approach with 056

LLM-powered agents mimic diverse investor per- 057

sonas responding to market events (Zhang et al., 058

2024a). Hierarchical structures such as FinCon 059

organize agents in manager-analyst relationships, 060

facilitating collaboration through natural language 061

communication (Yu et al., 2024). This convergence 062

heralds a future of intelligent, distributed finan- 063

cial decision making that combines data-driven 064

learning with human-like reasoning capabilities 065

for more robust investment strategies (Yu et al., 066

2023b). 067

Alpha mining is the process of discovering trad- 068

ing signals that generate excess returns in financial 069

markets, we identify three critical challenges in 070

alpha mining: Rigidity of traditional methods that 071

lack adaptability to dynamic markets (Tang et al., 072

2025); Data diversity and integration challenges de- 073

spite machine learning advances (Cui et al., 2021; 074

Yu et al., 2023a); and Adaptation to market variabil- 075

ity despite progress in prediction (Xu and Cohen, 076

2018) and strategy formulation (Chen et al., 2019). 077

Our LLM-driven framework addresses these lim- 078

itations through three components: Flexible Alpha 079
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Mining employs LLMs to extract, categorize, and080

filter alpha factors from financial literature, organiz-081

ing them as momentum, fundamental, or liquidity082

factors with established independence (Xu and Co-083

hen, 2018). Multi-agent Multimodal Market Evalu-084

ation conducts rigorous backtesting across diverse085

market conditions, with specialized agents evalu-086

ating factor effectiveness from multiple perspec-087

tives. Dynamic Strategy Optimization implements088

a weight gating layer that assigns optimal alpha089

factor weights based on current market conditions,090

ensuring adaptive strategy development.091

Our methodology synthesizes cutting-edge ma-092

chine learning techniques with established financial093

domain knowledge to create a robust interdisci-094

plinary framework for alpha identification and opti-095

mization across diverse asset classes. This research096

is grounded in empirical quantitative investment097

practices, bridging theoretical advancements with098

practical applications in portfolio management.099

Our main contributions are three-fold: ❶ A100

novel framework for identifying formulaic alpha101

factors using LLMs, leveraging their exploratory102

capabilities to establish an Alpha factory from mul-103

timodal information with incremental update func-104

tionality; ❷ Introduction of a multi-agent approach105

to portfolio management for evaluating relation-106

ships between market conditions and alpha factors,107

enabling specialized evaluation under different sce-108

narios; ❸ Integration of advanced techniques from109

machine learning and finance, representing a signif-110

icant advancement in developing robust, adaptive111

investment strategies without human intervention.112

The proposed framework demonstrates versatil-113

ity across various asset classes, enhancing its utility114

and practical effectiveness. To support future re-115

search and ensure reproducibility, we make source116

code publicly available at https://anonymous.117

4open.science/r/Automate-Strategy-Findi118

ng-with-LLM-in-Quant-investment-63C5.119

2 Problem Formulation120

This section establishes the theoretical foundation121

for our research on alpha factor strategies in quanti-122

tative finance. We formulate a framework address-123

ing three interconnected challenges: mathemati-124

cally formalizing these alphas, developing dynamic125

methodologies to generate seed alphas, and defin-126

ing and optimizing alpha factor strategies. Our127

approach integrates LLMs and multi-agent systems128

to overcome limitations in traditional quantitative129

trading methods. 130

We employ consistent notation throughout: 131

n stocks observed over trading periods t ∈ 132

1, 2, . . . , T , each characterized by m financial fea- 133

tures. Alpha factors are denoted as α(t)
ij for stock i 134

in category j at time t, with corresponding weights 135

wi. Market conditions at time t are represented 136

byM(t), and alpha factor predictive power is mea- 137

sured using the Information Coefficient (IC) 1. 138

IC = σ(u, v) (1) 139

A higher IC indicates stronger predictive rela- 140

tionships between alpha values and future returns. 141

where σ(u, v) is correlation coefficient between 142

predicted alphas u and actual future returns v. 143

2.1 Alpha Factor Representation 144

The first challenge involves effectively represent- 145

ing alpha factors using mathematical expressions 146

that capture meaningful financial signals (Lo, 147

2007). Given raw financial features Xi(t) = 148

{Xi1(t), X
(t)
i2 , . . . , X

(t)
im} for each stock i at time t 149

(such as price, volume, and volatility), we define 150

alpha factors through two classes of operators: 151

Cross-Section Operators fcs: These operators 152

process data from a single time period, capturing 153

instantaneous relationships between financial vari- 154

ables: 155

α(t)
cs = fcs(Xi(t)) (2) 156

Time-Series Operators fts: These operators 157

analyze data spanning multiple periods, identifying 158

trends and temporal patterns: 159

α
(t)
ts = fts(Xi(t),X

(t−1)
i , . . . ,X

(t−n)
i ) (3) 160

The seed alpha for stock i in category j at time t 161

is formulated as: 162

α
(t)
ij = wcs·fcs(Xi(t))+wts·fts(Xi(t), . . . ,X

(t−n)
i )

(4) 163

where wcs and wts are weights assigned to the 164

cross-section and time-series components respec- 165

tively. This representation allows for the flexible 166

combination of different financial signals, enabling 167

the creation of complex and nuanced alpha factors. 168

2.2 Alpha Mining and Selection 169

The second challenge addresses the limitations of 170

traditional alpha mining methods, which often fail 171

to adapt to changing market conditions. We formu- 172

late a dynamic selection approach that identifies the 173

2

https://anonymous.4open.science/r/Automate-Strategy-Finding-with-LLM-in-Quant-investment-63C5
https://anonymous.4open.science/r/Automate-Strategy-Finding-with-LLM-in-Quant-investment-63C5
https://anonymous.4open.science/r/Automate-Strategy-Finding-with-LLM-in-Quant-investment-63C5
https://anonymous.4open.science/r/Automate-Strategy-Finding-with-LLM-in-Quant-investment-63C5
https://anonymous.4open.science/r/Automate-Strategy-Finding-with-LLM-in-Quant-investment-63C5


most relevant alphas for current market conditions174

using two complementary evaluation mechanisms:175

Confidence Score Evaluation: Assesses the176

statistical reliability of each alpha factor:177

θij = E
[
IC(α

(t)
ij |M

(t))
]

(5)178

where θij represents the confidence score for alpha179

αij , and E[·] denotes the expected value. Higher180

confidence scores indicate more consistent perfor-181

mance across various market environments.182

Risk Preference Evaluation: Examines the risk183

characteristics of each alpha factor:184

ρij = frisk(α
(t)
ij ,M

(t)) (6)185

where ρij represents the risk score and frisk is a186

function that evaluates how well the alpha performs187

under different risk scenarios.188

The optimal set of seed alphas is selected by189

considering both confidence and risk evaluations:190

αij = argmax
αij

[wc · θij + wr · ρij ] (7)191

where wc and wr are weights assigned to confi-192

dence and risk scores respectively, reflecting their193

relative importance in the selection process.194

2.3 Strategy Optimization195

The third challenge involves combining the se-196

lected alphas into an effective investment strategy.197

The final alpha strategy is defined as a weighted198

combination of the optimal alphas from each cate-199

gory:200

α(t) =

k∑
j=1

wj · αij (8)201

where wj represents the weight assigned to cate-202

gory j, and k is the total number of alpha categories.203

These weights are dynamically adjusted based on204

current market status to maximize strategy perfor-205

mance while managing overall portfolio risk. This206

optimization completes our framework, transform-207

ing raw financial data into a robust trading strategy208

that can adapt to changing market environments.209

3 Methodology210

3.1 Framework Overview211

Our framework comprises three interconnected212

components (Figure 1): the SAF, multi-agent213

decision-making, and weight optimization. The214

initial phase employs LLMs to analyze and cate- 215

gorize multimodal financial research documents, 216

constructing a comprehensive SAF. The LLM’s 217

capability to process diverse datasets enables the 218

creation of a robust set of seed alphas categorized 219

into independent groups, aligning with established 220

finance alpha mining principles (OpenAI, 2023). 221

The second phase implements a multimodal multi- 222

agent evaluation process that incorporates varied 223

risk perspectives, enhancing strategy adaptability 224

across different market conditions. This phase pro- 225

duces an optimized alpha set tailored to current 226

market states and risk preferences. The final phase 227

employs deep learning methods to optimize the 228

weights of selected alphas, constructing a cohesive 229

overall strategy. 230

The framework’s dynamic architecture enables 231

continuous refinement through incremental updates 232

to the SAF as new research emerges and market 233

conditions evolve. This adaptability ensures the 234

strategy maintains relevance and robustness over 235

time. The methodology’s versatility permits appli- 236

cation to any structured market globally, effectively 237

replicating and enhancing professional investment 238

research approaches. 239

3.2 LLM-Based Seed Alpha Generation 240

The first stage implements an LLM-based filter- 241

ing and categorization process for alpha-related re- 242

search. We utilize GPT-4o model to perform these 243

tasks on a diverse corpus of financial research. Our 244

initial dataset comprises 11 documents spanning 245

both theoretical and applied aspects of alpha min- 246

ing research (see Appendix A.2). Through this pro- 247

cess, the system generates 9 distinct categories con- 248

taining 100 seed alphas. The approach enhances 249

the model’s ability to extract intricate details and 250

relationships within financial research, resulting in 251

a more robust and diverse SAF. 252

The output is a structured set of seed alphas cat- 253

egorized into distinct financial domains such as 254

Momentum, Mean Reversion, and Fundamental 255

analysis et al. Each category includes specific al- 256

pha designations and corresponding executable for- 257

mulations derived from the LLM’s analysis (see 258

Appendix A.3). This structured output forms the 259

foundation for subsequent processing stages. 260

3.3 Multimodal Multi-Agent Evaluation 261

The second stage implements a comprehensive 262

evaluation and selection of alpha factors through 263

a multimodal and multi-agent system. Our system 264
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Figure 1: Overview of the strategy generate process in three components, a Seed Alpha Factory built using LLMs,
a multi-agent decision-making system, and a weight optimization approach for overall strategy (CS stands for
confidence score; RP stands for risk preference)

incorporates five types of multimodal data (detailed265

in Appendix A.4) encompassing textual, numerical,266

visual, audio, and video inputs. The multi-agent ar-267

chitecture comprises two agents Confidence Score268

Agent (CSA) and Risk Preference Agent (RPA). Se-269

lected alpha factors undergo rigorous backtesting270

using historical market data, with key evaluation271

metrics including the IC (Goodwin, 1998) 1 and272

Sharpe Ratio (Sharpe, 1994) 9:273

Sharpe Ratio =
E[R(α(t))−Rf ]√

Var[R(α(t))]
(9)274

where R(α(t)) represents the return of the strategy275

and Rf represents the risk-free rate. We devel-276

oped a Category-Based Alpha Selection algorithm277

(detailed in Appendix A.5) to automate the selec-278

tion. This algorithm systematically identifies and279

selects alphas from different categories based on280

their confidence scores, ensuring rigorous selection281

of factors that meet confidence thresholds across282

all categories while maintaining category diversity.283

3.4 Weight Optimization284

The final stage employs a 3-layer MLP to optimize285

the weights of selected seed alphas by mapping286

historical alpha calculations to future yields (Chen287

and et al., 2020). The architecture consists of an288

input layer processing daily alpha values, a hidden289

layer with ten ReLU-activated nodes, and a single-290

node output layer for yield prediction.291

During training, the network employs backprop-292

agation and gradient descent to minimize the loss293

function, quantifying the discrepancy between pre-294

dicted and actual yields. We utilize a separate val-295

idation set to ensure model generalizability and296

prevent overfitting. The DNN processes input297

data through the hidden layer, transforming it with298

learned weights and biases, and generates the final 299

output through the output layer’s weights, biases, 300

and activation function. 301

This methodology establishes a robust frame- 302

work for predicting future yields based on historical 303

alpha values, demonstrating the efficacy of deep 304

learning techniques in optimizing alpha weights 305

and enhancing investment strategy performance. 306

Algorithm 2 provides a formal specification of our 307

complete framework, illustrating the logical flow 308

from multimodal data processing through multi- 309

agent evaluation to final weight optimization. 310

4 Experiment 311

Our research aims to develop a comprehensive 312

LLM-driven alpha mining framework that oper- 313

ates without human intervention. This framework 314

is uniquely capable of processing multimodal infor- 315

mation and adapting to varying market conditions. 316

To validate the effectiveness of our framework, we 317

have conducted a series of experiments. 318

4.1 Datasets 319

Our study focuses on financial data from the Chi- 320

nese market and US market, specifically target- 321

ing the SSE 50 Index. Table 11 shows the experi- 322

ment dataset, which encompasses six primary fea- 323

tures as original inputs for our Alpha factors: open, 324

high, low, close, volume (OHLCV), and volume- 325

weighted average price (VWAP). To ensure rigor- 326

ous evaluation and robust model performance. Our 327

experiments integrate financial reports and factor 328

performances of the 50 constituent companies of 329

the SSE 50 Index, providing a comprehensive view 330

of the market (Li and Mei, 2020). The evaluation 331

considers various datasets, including financial re- 332

ports from the specified periods and performance 333
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Table 1: Summary of the Experiment Dataset

Aspect Details
Primary Features Open, High, Low, Close, Volume, VWAP

Alpha Factors Custom factors based on price, volume, financial ratios,
moving averages, sentiment analysis

Financial Reports Quarterly and Annual reports from Index constituent companies
Time Periods Jan 2019-Jun 2024

Market Coverage SSE50, CSI300, SP500 Index
Evaluation Criteria Causal relationships, Alpha factor performance, model robustness

Case 1 Case 2
Context: Text + Table + Image 

Text: SSE50 company announcement(Jan 2023-Dec 2023) 

Table: SSE50 company finical statement(Jan 2023-Dec 2023) 

Image: SSE50 Kline chart & trading chart(Jan 2023-Dec 2023)

Context: Text + Table + Image 

Text: SSE50 company announcement(Jan 2022-Dec 2022) 

Table: SSE50 company finical statement(Jan 2022-Dec 2022) 

Image: SSE50 Kline chart & trading chart(Jan 2022-Dec 2022)

(CLOSE-DELAY(CLOSE.14))
(RSI.DELAY(RSI,14))

(CLOSE-DELAY(SMA(CLOSE,14),7))
(MA(CLOSE.20)-CLOSE)

(SMA(CLOSE,20)-CLOSE)
(MAX(HIGH, 20)-CLOSE)

(100-RSI)
(BOLL UP.BOLL DOWN)/SMA(CLOSE, 20)

STD(CLOSE,10)/STD(CLOSE, 50)
VOLUME/MARKET CAP

VOLUME*CLOSE
(EPS/DELAY(EPS,1)-1)

Selected Alpha

(ATR-DELAY(ATR,14))
(UPPER BAND-LOWER BAND)/SMA(CLOSE,20)

(VOLUME-DELAY(VOLUME,14))/ DELAY(VOLUME,14)
(GROSS PROFIT/REVENUE)

(OPERATING INCOME/REVENUE)
(MAX(HIGH,14)-CLOSE)/(MAX(HIGH,14)-MIN(LOW,14)))*-100

(MAX(HIGH,20)-CLOSE)

Selected Alpha
Our Framework

Figure 2: Sample Experiment on Different Market Sta-
tus Input and Alpha Selection, Selected Alpha Depends
on Different Context

metrics of different Alpha factors.334

4.2 Multimodal Knowledge Extraction and335

Adaptive Alpha Discovery336

We implement a prompt architecture (Figure 2)337

that incorporates multimodal market information338

into LLMs for comprehensive knowledge extrac-339

tion and seed alpha selection. This architecture in-340

tegrates textual financial sentiment data, numerical341

company financial statements, and visual trading342

charts to provide holistic market analysis. Our con-343

textual analysis mechanism dynamically adjusts pa-344

rameters based on prevailing market trends and sec-345

tor performance. Experimental validation demon-346

strates the framework’s adaptability across varying347

market conditions. In Case 1, analyzing SSE50348

data from Jan 2023 to Dec 2023, the model selected349

momentum and volume-based indicators such as350

price momentum, RSI, and MACD. Conversely, in351

Case 2, when processing the time window from Jan352

2022 to Dec 2022, the model prioritized volatility353

and economic factors, including ATR, Bollinger354

Bands, and gross profit indicators.355

These results confirm the framework’s capacity356

to dynamically adapt to changing market condi-357

tions through effective multimodal data integra-358

tion. This adaptability enables the identification359

of market-appropriate alphas, enhancing strategy360

robustness across diverse market environments.361

Table 2: IC Comparison of mean & selected

Momentum
Mean

Reversion
Volatility Fundamental Growth

Mean IC of SAF 0.0092 0.0135 0.0177 0.0118 0.0146
Mean IC of

Selected SAF
0.0208 0.0187 0.0258 0.0192 0.0217

4.3 Comparative Performance Against 362

Traditional Alpha Factories 363

When evaluating the performance of selected seed 364

alpha signals, the primary metric is the IC. We eval- 365

uated five most common alpha categories: Momen- 366

tum, Mean Reversion, Volatility, Fundamental and 367

Growth. The results in Table 2 demonstrate that 368

our LLM-driven framework consistently achieves 369

higher average IC values across all categories, par- 370

ticularly in Volatility and Fundamental, indicating 371

superior trading effectiveness compared to original. 372

4.4 Performance Evaluation of the Integrated 373

Alpha Framework in Benchmark 374

Comparison 375

Table 3: SSE50 2023 Test Combination of 12 Alphas

# Alpha Weight IC(SSE50)

1 (CLOSE - DELAY(CLOSE, 14)) -0.1459 0.0209
2 (RSI - DELAY(RSI, 14)) -1.0265 -0.0225
3 (CLOSE - DELAY(SMA(CLOSE, 14), 7)) -0.1978 0.0193
4 (MA(CLOSE, 20) - CLOSE) 0.0556 -0.0186
5 (SMA(CLOSE, 20) - CLOSE) -0.945 -0.0186
6 (MAX(HIGH, 20) - CLOSE) -0.4053 -0.0185
7 (100-RSI) -0.3199 0.0194
8 (BOLL_UP - BOLL_DOWN) / SMA(CLOSE, 20) 3.6186 0.0278
9 STD(CLOSE, 10) / STD(CLOSE, 50) -0.183 0.0236
10 VOLUME / MARKET_CAP -3.2145 -0.0194
11 VOLUME * CLOSE -0.0058 0.0187
12 (EPS / DELAY(EPS, 1) - 1) -1.8351 -0.0215

Weighted Combination -0.0587

Table 3 presents an example combination of 12 376

alphas generated by our framework, evaluated on 377

the SSE50 constituent stock set. The table details 378

the seed alphas selected by the LLM from each cat- 379

egory, along with their respective weights and IC 1 380

values. The weight combination IC 1 value is quite 381

high as -0.0587. Although some of the seed alphas 382

exhibit relatively low IC 1 values individually, their 383

removal results in a significant drop in the retrained 384

combination weight, indicating their critical role 385

in the overall performance. For example, if we re- 386

move alpha #6 the weight combination will drop to 387

-0.055; once we remove the alpha #11, the weight 388

combination will drop to merely 0.0491. This sug- 389

gests that the seed alpha set selected by the LLM 390

synergizes effectively, providing robust predictive 391

power (Zhang et al., 2020). To address the ques- 392
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Figure 3: Cumulative Return Backtest Result on SSE50. The line track the net worth of different methods

tion of whether our overall strategy, incorporating393

the LLM-driven framework and confidence scor-394

ing, can consistently beat the market, we conducted395

a backtest using a straightforward investment ap-396

proach during the period from Jan 2023 to Jan 2024397

(training: Jan 2021-Jun 2022; validation: Jul 2022-398

Dec 2022), on the SSE50 dataset we conduct the399

framework to construct the portfolio ( A.8). The400

net worth progression of the respective strategies401

over the testing period is shown in Figure 3, and402

the comparison matrix shows in Table 4. Despite403

not explicitly optimizing for absolute returns, our404

framework demonstrates impressive performance405

in the backtest, achieving the highest profit com-406

pared to other methods. Our cumulative return407

for 2023 backtest comes to 53.17% positive and408

meanwhile the index performance is -11.73%. We409

also do the compression with 4 advanced statistical410

methods and 2 LLM based methods. The frame-411

work strategy substantially outperforms all com-412

petitors with the highest return (53.17%), best risk-413

adjusted metrics (Sharpe: 0.287, Sortino 2: 0.208,414

Calmar 3: 1.052), and lowest volatility (0.762%).415

LLM based mathods FinCon and SEP show moder-416

ate success (22.47%, 17.89%), while conventional417

machine learning methodologies yield marginal re-418

turns (XGBoost 9.53%). Notably, all evaluated419

strategies surpass the SSE50 benchmark, which420

exhibits negative performance (-13.22%). This421

approach demonstrates the efficacy of our LLM-422

driven framework consistently outperforming mar-423

ket benchmarks through dynamic adaptation to424

changing conditions.425

2Sortino ratio computing excess return per unit of down-
side deviation, evaluating only negative return volatility.

3Calmar ratio divides annualized return by maximum draw-
down, measuring reward relative to risk.

Table 4: Performance Comparison of Trading Strategies

Strategy Final
Return (%)

Sharpe
Ratio

Volatility
(%)

Sortino
Ratio

Calmar
Ratio

Ours 53.173 0.287 0.762 0.208 1.052
XGBoost (Chen
and Guestrin, 2016)

9.532 0.038 1.019 0.067 0.103

LightGBM (Ke
et al., 2017)

7.125 0.030 0.993 0.053 0.066

MLP 3.110 0.013 0.960 0.023 0.043
PPO_filter (Schul-
man et al., 2017)

2.865 0.013 0.886 0.024 0.017

FinCon (Yu et al.,
2024)

22.474 0.077 1.196 0.126 0.232

SEP (Koa et al.,
2024)

17.891 0.060 1.217 0.103 0.157

SSE 50 -13.22 -0.063 0.859 -0.111 -0.043

4.5 Framework Robustness Across Time 426

Periods and Markets 427

We conducted rigorous cross-temporal and cross- 428

market validation using two comprehensive 429

datasets: CSI300 4 constituents (accessed via 430

Tushare API) and SP500 5 constituents (accessed 431

via CRSP platform) spanning January 2019 to 432

December 2023. Our dataset incorporated daily 433

OHLCV price metrics, quarterly financial state- 434

ments, and relevant macroeconomic indicators to 435

enable robust alpha factor construction. To ensure 436

methodological integrity, we systematically par- 437

titioned the dataset into training, validation, and 438

testing subsets with precise chronological segmen- 439

tation as detailed in Table 5. This experimental 440

design facilitates comprehensive evaluation of our 441

framework’s generalizability across different mar- 442

ket environments and temporal contexts. 443

We employed consistent temporal partitioning 444

across Chinese A-share and US markets to enable 445

4CSI300 Index tracking the 300 largest companies listed
on China’s Shanghai and Shenzhen exchanges.

5SP500 Index measuring the performance of 500 large U.S.
companies traded on American stock exchanges.
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Table 5: Training, Validation, and Test Periods for
CSI300 and SP500

Assets Training Period Validation Period Test Period

CSI300
Jan 2019-Jun 2020 Jun-Dec 2020 Jan-Jun 2021
Jan 2020-Jun 2021 Jun-Dec 2021 Jan-Jun 2022
Jan 2021-Jun 2022 Jun-Dec 2022 Jan-Jun 2023

SP500
Jan 2019-Jun 2020 Jun-Dec 2020 Jan-Jun 2021
Jan 2020-Jun 2021 Jun-Dec 2021 Jan-Jun 2022
Jan 2021-Jun 2022 Jun-Dec 2022 Jan-Jun 2023

Table 6: Backtest Performance Results Across Different
Time Windows

Time Window Annual Return (%) Cum. Return (%) Max DD (%)
Strategy Baseline Strategy Baseline Strategy Baseline

Our Strategy vs CSI300

Jan-Jun 2021 29.70 7.31 11.91 3.10 -19.40 -10.86
Jan-Jun 2022 12.78 -30.37 5.29 -14.37 -24.01 -28.59
Jan-Jun 2023 192.27 9.13 59.03 3.85 -17.03 -8.44

Our Strategy vs SP500

Jan-Jun 2021 93.61 29.67 35.19 12.59 -7.89 -4.23
Jan-Jun 2022 2.77 -44.22 1.25 -23.39 -20.55 -23.51
Jan-Jun 2023 118.24 35.22 42.78 14.76 -11.52 -7.75
Note:Max DD = Maximum Drawdown.

direct comparative analysis. Our findings demon-446

strate the framework’s robust performance across447

diverse market environments. From Table 6 shows448

in the Chinese A-Share market, the strategy gen-449

erated substantial alpha with CSI300 constituents,450

particularly in H1 2023 (192.27% annual return vs.451

benchmark 9.13%). Similarly, in the US market,452

the framework achieved strong returns with SP500453

constituents (93.61% in H1 2021, 118.24% in H1454

2023). Notably, during the H1 2022 market down-455

turn, the strategy maintained positive returns in456

both markets (12.78% in CSI300, 2.77% in SP500)457

while their respective benchmarks declined signifi-458

cantly (-30.37% and -44.22%).459

The empirical evidence substantiates both the460

temporal persistence and cross-market robustness461

of our findings, with notably beneficial counter-462

cyclical characteristics emerging during periods463

of market distress. The framework demonstrates464

consistent alpha generation across diverse market465

architectures, regulatory frameworks, and investor466

behavioral patterns, establishing its broad appli-467

cability. Specifically, the model maintains stable468

outperformance trajectories through bullish, bear-469

ish, and range-bound market conditions (detailed in470

Appendix A.9), thereby validating its structural in-471

tegrity and adaptability to varying macroeconomic472

environments.473

Table 7: Ablation Study Results: Impact of Agent Com-
ponents on Performance Metrics

Model Configuration IC
(In-Sample)

IC
(Out-of-Sample)

Sharpe
Ratio

Full Model 0.059 0.047 1.94
Without Confidence Score 0.054 0.032 1.51
Without Risk Preference 0.056 0.039 1.34

Table 8: Performance Across Market Regimes (Out-of-
Sample IC)

Model Configuration Bull
Market

Bear
Market

Sideways
Market

Full Model 0.051 0.042 0.045
Without Confidence Score 0.046 0.021 0.029
Without Risk Preference 0.049 0.028 0.037

4.6 Ablation Study 474

Our ablation study systematically evaluates the con- 475

tribution of CSA and RPA within a multi-agent 476

framework. We evaluate three configurations of 477

each, using the SSE50 index data (2010-2022) and 478

measure performance by IC 1 and Sharpe Ratio 9. 479

Table 7 demonstrates that the complete model 480

achieved superior performance, with an out-of- 481

sample IC of 0.047 and Sharpe Ratio of 1.73. Re- 482

moving the CSA caused substantial degradation, 483

reducing out-of-sample IC by 31.9% and Sharpe 484

Ratio by 22.5%. RPA removal also decreased per- 485

formance metrics, with particularly significant im- 486

pact on the Sharpe Ratio. These results indicate that 487

while both components contribute meaningfully, 488

the CSA plays a more critical role in maintaining 489

predictive stability. To assess performance consis- 490

tency across market conditions, we analyzed out-of- 491

sample IC values during different market regimes 492

(Table 8). The complete model maintained consis- 493

tent performance across bull, bear, and sideways 494

markets. In contrast, the model without CSA per- 495

formed particularly poorly during bear markets(IC: 496

0.021 vs. 0.042). The model without RPA showed 497

moderate degradation during non-bull markets, less 498

severe than observed without CSA. 499

This analysis confirms that both components en- 500

hance performance stability, with the CSA provid- 501

ing especially critical functionality during adverse 502

market conditions. 503

4.7 Sensitive Study 504

We analyzed the framework’s sensitivity to agent 505

weights and neural network hyperparameters. The 506

CSA & RPA weight ratio of 0.6/0.4 provided su- 507

perior performance across market regimes, partic- 508

ularly during bear markets (Sharpe: 10.37), indi- 509
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Table 9: Sensitivity to Agent Weight Configurations

Confidence Risk Sharpe Ratio
Weight Weight Bull Market Bear Market Overall

1.0 0.0 4.32 6.60 8.10
0.8 0.2 -3.41 -7.23 -2.68
0.6 0.4 8.70 10.37 11.39
0.5 0.5 -0.49 -1.62 -5.10
0.4 0.6 -4.27 -4.41 -8.04
0.2 0.8 5.68 8.51 9.00
0.0 1.0 -0.61 1.78 -4.35

Table 10: Sensitivity to Neural Network Hyperparame-
ters

Hidden Learning Batch Regularization Sharpe
Nodes Rate Size Parameter Ratio

5 0.001 32 0.001 9.69
10 0.001 32 0.001 13.33
20 0.001 32 0.001 6.93
10 0.0005 32 0.001 7.03
10 0.002 32 0.001 5.13
10 0.001 16 0.001 6.26
10 0.001 64 0.001 4.25
10 0.001 32 0.0005 -1.88
10 0.001 32 0.002 -6.91

cating enhanced robustness to regime shifts (Table510

9). Optimal neural network configuration (10 hid-511

den nodes, learning rate: 0.001, batch size: 32,512

regularization: 0.001) achieved a Sharpe ratio of513

13.33, with performance particularly sensitive to514

regularization strength (Table 10).515

The analysis revealed regime-dependent behav-516

ior across market conditions, and critical sensitivity517

to regularization strength. The optimal configura-518

tion achieved a robust overall Sharpe ratio of 11.39.519

5 Related Work520

Formulaic alphas in quantitative investment repre-521

sent systematic, rule-based strategies that generate522

excess returns by exploiting specific market pat-523

terns and inefficiencies (Kakushadze, 2016). These524

strategies employ various methodologies, includ-525

ing genetic programming that involves structural526

and numerical mutations to generate novel alphas527

(Cong et al., 2021), enhanced time-series opera-528

tors with mutual information as fitness measures529

(Lin et al., 2019), and algorithmic graphs for more530

complex predictions (Cui et al., 2021). Machine531

learning approaches utilize neural network archi-532

tectures such as LSTM (Hochreiter and Schmidhu-533

ber, 1997) and Transformer models (Vaswani et al.,534

2017), while decision tree models like XGBoost535

(Chen and Guestrin, 2016) and LightGBM (Ke536

et al., 2017) offer interpretability advantages. Re-537

cent research focuses on integrating non-standard 538

data sources, as demonstrated by REST (Xu et al., 539

2021b) and HIST (Xu et al., 2021a). 540

The development of general-domain LLMs has 541

catalyzed interest in Finance LLMs (Fin-LLMs), 542

although this specialized domain remains nascent 543

(Novy-Marx, 2015; Yang et al., 2023; Zhao et al., 544

2023). Open-source LLMs such as LLaMA (Tou- 545

vron et al., 2023), BLOOM (W. and et al., 2023), 546

and Flan-T5 (W. and et al., 2022) provide flexibil- 547

ity but may underperform proprietary alternatives. 548

Fine-tuned financial LLMs demonstrate enhanced 549

domain-specific comprehension, yet their genera- 550

tive performance indicates the need for improved 551

domain-specific datasets (Lewis and et al., 2020; 552

Koa et al., 2024). 553

Multimodal LLMs have shown significant po- 554

tential in investment contexts by processing diverse 555

data types (L et al., 2023), developing strategies 556

that mitigate market volatility (K et al., 2024), and 557

analyzing textual data to gauge investor sentiment 558

(Zhao et al., 2024). Multi-agent LLM systems en- 559

hance market analysis capabilities by leveraging 560

vast datasets to interpret financial reports and mar- 561

ket sentiment (Zhang et al., 2024b), simulating var- 562

ious market scenarios (Talebirad and Nadiri, 2023), 563

and facilitating parallel testing of diverse strate- 564

gies (Wang et al., 2024). Implementation raises 565

important considerations regarding transparency, 566

accountability, and bias mitigation (Yu and et al., 567

2024; Mundhenk et al., 2021). 568

6 Conclusion 569

In this paper, we proposed a novel quantitative 570

investment framework integrating LLMs and multi- 571

Agent architectures to address instability in tradi- 572

tional approaches. Our system generates diversified 573

alpha factors from multimodal financial data, con- 574

structs risk-calibrated trading agents, and employs 575

a deep learning mechanism for dynamic agent 576

weighting based on market conditions. 577

Experimental results confirm the framework’s 578

effectiveness across Chinese and US markets, 579

our framework demonstrates significant outperfor- 580

mance versus SOTA alpha generation methods and 581

benchmark indices across key financial metrics. 582

This work successfully extends LLM capabilities 583

to quantitative trading, creating a scalable, adap- 584

tive architecture for financial signal extraction that 585

functions effectively without human intervention 586

across diverse market regimes. 587
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7 Limitations588

Our framework presents several significant limi-589

tations. First, system efficacy is contingent upon590

input document quality, potentially perpetuating in-591

herent biases (Deb et al., 2017; Ashok et al., 2018).592

Second, LLM-generated alphas occasionally lack593

the financial intuition characteristic of human ana-594

lysts, resulting in theoretically sound but practically595

infeasible factors (Tuarob et al., 2017). Third, our596

multi-agent evaluation methodology presupposes597

persistent historical relationships between market598

conditions and alpha performance—an assumption599

that may prove tenuous during market regime shifts.600

Finally, our validation efforts have primarily tar-601

geted equity markets, with cross-asset applicability602

requiring additional empirical investigation. Future603

research directions should address these constraints604

through exploring Mixture of Experts (MoE) archi-605

tectures to improve learning efficiency (Masoudnia606

and Ebrahimpour, 2014), adaptive agent architec-607

tures, transfer learning methodologies (Wang et al.,608

2023), and computationally efficient implementa-609

tions.610
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A Appendix 827

A.1 Sample of Seed Alpha 828

The seed alpha representation depicted in Figure 829

4 illustrates a fundamental construct in quantita- 830

tive finance for generating trading signals. This 831

figure presents a comprehensive visualization of 832

the Detrended Price Oscillator (DPO) formula, 833

which compares the current closing price with a 834

delayed simple moving average (SMA) of clos- 835

ing prices. Panel A shows the mathematical for- 836

mulation of the seed alpha, expressed as CLOSE 837

- DELAY(SMA(CLOSE, 14), 7), which captures 838

price momentum by measuring deviations from 839

historical trends. Panel B transforms this formula 840

into an equivalent expression tree, demonstrating 841

the hierarchical relationship between operators and 842

operands, which facilitates algorithmic implemen- 843

tation and analysis. Panel C provides a practical 844

illustration through a tabulated step-by-step com- 845

putation of this alpha formula on a sample time 846

series, showing how the signal evolves over multi- 847

ple trading days. This representation exemplifies 848

how complex financial indicators can be system- 849

atically decomposed, formalized, and applied to 850

market data for quantitative trading strategies.

Figure 4: Seed Alpha Representation: (A) An example
of the seed alpha formula. (B) Its equivalent expression
tree. (C) Step-by-step computation of this seed alpha on
an example time series.
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A.2 Seed Alphas document lists for GPTs852

The presented table offers a comprehensive853

overview of cutting-edge research pertinent to854

the development of a SAF in quantitative finance.855

These documents collectively represent the conflu-856

ence of traditional financial methodologies with857

advanced computational techniques. Of particular858

significance is Kakushadze’s "101 Formulaic Al-859

phas," which provides a foundational repository of860

trading signals that can be categorized according861

to traditional financial factors. Lopez de Prado’s862

work on "Causal Factor Investing" introduces scien-863

tific rigor to factor classification, ensuring indepen-864

dence between alpha categories. The integration865

of artificial intelligence is evident in multiple stud-866

ies, including "Alpha-GPT" and "FinGPT," which867

leverage LLMs for alpha generation. Portfolio con-868

struction methodologies are addressed through re-869

inforcement learning approaches in "AlphaPortfo-870

lio" and "Dynamic Graph-based Deep Reinforce-871

ment Learning." Performance enhancement strate-872

gies are explored in "Mastering Stock Markets with873

Efficient Mixture of Diversified Trading Experts,"874

while market dependency analysis is covered in875

"Model-Free Implied Dependence and the Cross-876

Section of Returns." This literature collection pro-877

vides quantitative researchers with the theoretical878

frameworks and methodological tools necessary879

to construct a Seed Alpha Factory that systemati- 880

cally generates, categorizes, and implements trad- 881

ing signals across independent financial categories, 882

balancing traditional financial theory with contem- 883

porary computational advancements. 884

Sample prompt "Summarize the document infor- 885

mation to help quantitative researchers build the 886

Seed Alpha Factory according to traditional finan- 887

cial categories, ensuring that each category of seed 888

alphas is independent." 889

Document name Author
Financial Time Series Prediction Using Mixture of Ex-
perts

M. Serdar Yumlu, Fikret S. Gurgen, and Nesrin Okay

Model-Free Implied Dependence and the Cross-Section
of Returns

Koen Inghelbrecht, Gertjan Verdickt, Daniël Linders,
and Yong Xie

Dynamic Graph-based Deep Reinforcement Learning
with Long and Short-term Relation Modeling for Portfo-
lio Optimization

Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi,
Sakyasingha Dasgupta

Can Large Language Models Beat Wall Street? Unveil-
ing the Potential of AI in Stock Selection

Georgios Fatouros, Konstantinos Metaxas, John
Soldatos, Dimosthenis Kyriazis

Mastering Stock Markets with Efficient Mixture of Di-
versified Trading Experts

Shuo Sun, Xinrun Wang, Wanqi Xue, Xiaoxuan Lou,
and Bo An

101 Formulaic Alphas Zura Kakushadze
A Multimodal Foundation Agent for Financial Trading:
Tool-Augmented, Diversified, and Generalist

Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo
Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing Zhao, Yilei
Zhao, Xinyu Cai, Longtao Zheng, Xinrun Wang, Bo An

Causal Factor Investing: Can Factor Investing Become
Scientific?

Marcos Lopez de Prado

Alpha-GPT: Human-AI Interactive Alpha Mining for
Quantitative Investment

Saizhuo Wang, Hang Yuan, Leon Zhou, Lionel M. Ni,
Heung-Yeung Shum, Jian Guo

AlphaPortfolio: Direct Construction Through Deep Re-
inforcement Learning and Interpretable AI

Lin William Cong, Ke Tang, Jingyuan Wang, Yang
Zhang

FinGPT: Open-Source Financial Large Language Mod-
els

Hongyang (Bruce) Yang, Xiao-Yang Liu, Christina Dan
Wang
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A.3 Generate Seed Alpha factory890

This taxonomy presents quantitative trading sig-891

nals organized into eight categories: Momentum,892

Mean Reversion, Volatility, Fundamental, Liquid-893

ity, Quality, Growth, Technical, and Macroeco-894

nomic indicators. Each category targets distinct895

market phenomena with specific mathematical im-896

plementations. Momentum factors identify persis-897

tent trends, Mean Reversion signals detect market898

overreactions, Volatility metrics quantify price dis-899

persion, and Fundamental factors evaluate com-900

pany valuations. The framework also includes Liq-901

uidity measures of trading activity, Quality indi-902

cators of operational efficiency, Growth metrics903

of financial expansion, Technical indicators de-904

rived from price-volume patterns, and Macroeco-905

nomic signals reflecting broader economic condi-906

tions. The mathematical formulations provided 907

enable researchers to implement diverse, uncorre- 908

lated alpha factors for robust quantitative trading 909

strategies. 910

Category Name Short Code
Momentum Price Momentum (CLOSE - DELAY(CLOSE, 14))

Volume Momentum (VOLUME - DELAY(VOLUME, 14))
RSI Momentum (RSI - DELAY(RSI, 14))
Rate of Change (ROC) ((CLOSE / DELAY(CLOSE, 14)) - 1)
MACD Momentum (MACD - DELAY(MACD, 14))
Momentum Oscillator ((CLOSE - DELAY(CLOSE, 14)) / DELAY(CLOSE, 14))
Chande Momentum Oscilla-
tor (CMO)

(SUM(IF(CLOSE - DELAY(CLOSE, 1) > 0, CLOSE -
DELAY(CLOSE, 1), 0), 14) - SUM(IF(CLOSE - DE-
LAY(CLOSE, 1) < 0, DELAY(CLOSE, 1) - CLOSE, 0),
14)) / (SUM(IF(CLOSE - DELAY(CLOSE, 1) > 0, CLOSE
- DELAY(CLOSE, 1), 0), 14) + SUM(IF(CLOSE - DE-
LAY(CLOSE, 1) < 0, DELAY(CLOSE, 1) - CLOSE, 0),
14)) * 100

Stochastic Momentum Index
(SMI)

((CLOSE - MIN(LOW, 14)) - (MAX(HIGH, 14) - CLOSE))
/ (MAX(HIGH, 14) - MIN(LOW, 14))

ATR Momentum (ATR - DELAY(ATR, 14))
Detrended Price Oscillator
(DPO)

(CLOSE - DELAY(SMA(CLOSE, 14), 7))

Average Directional Index
(ADX) Momentum

(ADX - DELAY(ADX, 14))

Mean Reversion Mean Reversion (MEAN(CLOSE, 20) - CLOSE)
Z-Score Mean Reversion (CLOSE - MEAN(CLOSE, 20)) / STD(CLOSE, 20)
Bollinger Bands (CLOSE - LOWER_BAND) / (UPPER_BAND -

LOWER_BAND)
Keltner Channel (CLOSE - LOWER_CHANNEL) / (UPPER_CHANNEL -

LOWER_CHANNEL)
Moving Average Reversion (SMA(CLOSE, 20) - CLOSE)
Exponential Moving Average
(EMA) Reversion

(EMA(CLOSE, 20) - CLOSE)

Distance from High (MAX(HIGH, 20) - CLOSE)
Distance from Low (CLOSE - MIN(LOW, 20))
Relative Strength Index (RSI)
Reversion

(100 - RSI)

Percent B ((CLOSE - LOWER_BAND) / (UPPER_BAND -
LOWER_BAND)) * 100
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Volatility Standard Deviation STD(CLOSE, 20)
Average True Range (ATR) ATR(14)
Bollinger Band Width (UPPER_BAND - LOWER_BAND) / SMA(CLOSE, 20)
Historical Volatility STD(RETURNS, 20) * SQRT(252)
Volatility Ratio STD(CLOSE, 10) / STD(CLOSE, 50)
Chaikin Volatility (EMA(HIGH - LOW, 10) / DELAY(EMA(HIGH - LOW,

10), 10)) - 1
Garman-Klass Volatility SQRT(0.5 * LOG(HIGH / LOW)2 - (2 * LOG(2) - 1) *

LOG(CLOSE / OPEN)2)
Parkinson Volatility SQRT((1 / (4 * N * LOG(2))) * SUM(LOG(HIGH / LOW)2,

20))
Yang-Zhang Volatility SQRT(VAR(LOG(CLOSE / OPEN)) + 0.5 *

VAR(LOG(HIGH / OPEN) - LOG(LOW / OPEN))
+ 0.25 * VAR(LOG(CLOSE / DELAY(OPEN, 1))))

Ulcer Index SQRT(MEAN(DRAWDOWN2, 14))
Fundamental Price-to-Earnings Ratio (P/E) (CLOSE / EPS)

Price-to-Book Ratio (P/B) (CLOSE / BOOK_VALUE)
Dividend Yield (DIVIDENDS / CLOSE)
Earnings Yield (EPS / CLOSE)
Sales-to-Price Ratio (SALES / CLOSE)
Cash Flow Yield (OPERATING_CASH_FLOW / CLOSE)

Liquidity Trading Volume VOLUME
Average Trading Volume MEAN(VOLUME, 20)
Volume Rate of Change
(VROC)

(VOLUME - DELAY(VOLUME, 14)) / DE-
LAY(VOLUME, 14)

On-Balance Volume (OBV) SUM(VOLUME * SIGN(CLOSE - DELAY(CLOSE, 1)))
Liquidity Ratio VOLUME / MARKET_CAP
Turnover Rate VOLUME / SHARES_OUTSTANDING
Amihud Illiquidity Ratio ABS(RETURN) / VOLUME
High-Low Spread (HIGH - LOW) / CLOSE
Dollar Volume VOLUME * CLOSE
Debt-to-Equity Ratio (TOTAL_DEBT / TOTAL_EQUITY)
Return on Equity (ROE) (NET_INCOME / EQUITY)
Return on Assets (ROA) (NET_INCOME / TOTAL_ASSETS)
Gross Profit Margin (GROSS_PROFIT / REVENUE)
Price-to-Sales Ratio (P/S) (CLOSE / SALES)
Price-to-Cash Flow Ratio
(P/CF)

(CLOSE / OPERATING_CASH_FLOW)

Book-to-Market Ratio (B/M) (BOOK_VALUE / CLOSE)
Enterprise Value to EBITDA
(EV/EBITDA)

(ENTERPRISE_VALUE / EBITDA)

Bid-Ask Spread (ASK_PRICE - BID_PRICE) / MID_PRICE
High-Low Spread (HIGH - LOW) / CLOSE
Dollar Volume VOLUME * CLOSE

Quality Gross Profit Margin (GROSS_PROFIT / REVENUE)
Operating Profit Margin (OPERATING_INCOME / REVENUE)
Net Profit Margin (NET_INCOME / REVENUE)
Earnings Stability STD(EPS, 5) / MEAN(EPS, 5)
Debt to Equity Ratio (TOTAL_DEBT / TOTAL_EQUITY)
Interest Coverage Ratio (EBIT / INTEREST_EXPENSE)
Cash Conversion Cycle (DIO + DSO - DPO)
Asset Turnover Ratio (REVENUE / TOTAL_ASSETS)

Growth Earnings Growth Rate (EPS / DELAY(EPS, 1) - 1)
Revenue Growth Rate (REVENUE / DELAY(REVENUE, 1) - 1)
EBITDA Growth Rate (EBITDA / DELAY(EBITDA, 1) - 1)

14



Cash Flow Growth Rate (CASH_FLOW / DELAY(CASH_FLOW, 1) - 1)
Dividends Growth Rate (DIVIDENDS / DELAY(DIVIDENDS, 1) - 1)
Book Value Growth Rate (BOOK_VALUE / DELAY(BOOK_VALUE, 1) - 1)
Sales Growth Rate (SALES / DELAY(SALES, 1) - 1)
Asset Growth Rate (ASSETS / DELAY(ASSETS, 1) - 1)
Equity Growth Rate (EQUITY / DELAY(EQUITY, 1) - 1)
Retained Earnings Growth
Rate

(RETAINED_EARNINGS / DE-
LAY(RETAINED_EARNINGS, 1) - 1)

Technical Moving Average (MA) SMA(CLOSE, 20)
Exponential Moving Average
(EMA)

EMA(CLOSE, 20)

Relative Strength Index (RSI) RSI(14)
Moving Average Conver-
gence Divergence (MACD)

(EMA(CLOSE, 12) - EMA(CLOSE, 26))

Bollinger Bands UPPER_BAND - LOWER_BAND
Stochastic Oscillator ((CLOSE - MIN(LOW, 14)) / (MAX(HIGH, 14) -

MIN(LOW, 14))) * 100
Average True Range (ATR) ATR(14)
Commodity Channel Index
(CCI)

(TYPICAL_PRICE - SMA(TYPICAL_PRICE, 20)) /
(0.015 * MEAN_DEV(TYPICAL_PRICE, 20))

Williams %R ((MAX(HIGH, 14) - CLOSE) / (MAX(HIGH, 14) -
MIN(LOW, 14))) * -100

Macro Economics GDP Growth Rate GDP - DELAY(GDP, n)
Inflation Rate CPI - DELAY(CPI, n)
Unemployment Rate UNEMPLOYMENT_RATE - DE-

LAY(UNEMPLOYMENT_RATE, n)
Interest Rate INTEREST_RATE - DELAY(INTEREST_RATE, n)
Industrial Production Index IPI - DELAY(IPI, n)
Retail Sales Growth RETAIL_SALES - DELAY(RETAIL_SALES, n)
Housing Starts Growth HOUSING_STARTS - DELAY(HOUSING_STARTS, n)
Consumer Confidence Index
(CCI)

CCI - DELAY(CCI, n)

Trade Balance EXPORTS - IMPORTS
Foreign Exchange Reserves FX_RESERVES - DELAY(FX_RESERVES, n)

A.4 Multimodal Data types911

Table 11 presents a taxonomy of multimodal data912

types essential for comprehensive quantitative fi-913

nance research. The classification encompasses914

five categories: textual data (financial reports, news915

articles, social media discourse), numerical data916

(historical price series, returns, volatility metrics),917

visual data (charts and technical analysis patterns),918

audio data (financial broadcasts and market com-919

mentary), and video data (specialized financial920

news channels). This multimodal framework en-921

ables researchers to develop more robust predictive922

models by integrating complementary information923

channels, potentially identifying market inefficien-924

cies that remain undetectable when analyzing iso-925

lated data types. By synthesizing diverse informa-926

tion formats, quantitative analysts can gain multidi-927

mensional insights into market dynamics, enhanc-928

ing both analytical depth and predictive capability929

in financial modeling applications.

Table 11: Multimodal data types

Data Type Description Examples
Textual Data Financial reports,

academic papers,
news articles, and
other textual docu-
ments.

Trading forums’ sentiment anal-
ysis and stock predictions, com-
pany disclosures, financial state-
ments, Sina Finance

Numerical Data Historical stock
market data, fi-
nancial metrics,
and performance
indicators.

Returns, log returns, annualized
returns, volatility

Visual Data Charts, graphs, and
other visual repre-
sentations of finan-
cial data.

Kline charts, trading charts

Audio Data Financial news
broadcasts.

Financial morning news radio,
stock review radio, market dis-
cussion radio

Video Data Financial news
channels.

CCTV Securities Information
Channel, CCTV News Broadcast
(news affecting China’s stock
market)

930
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A.5 Category-Based Alpha Selection931

Algorithm 1 delineates a systematic methodology932

for alpha selection in quantitative investment strate-933

gies, employing a category-based approach to en-934

sure diversification across multiple financial fac-935

tors. The procedure operates on a structured set of936

alpha categories C, each representing distinct mar-937

ket phenomena such as momentum, mean rever-938

sion, or volatility. For each category, the algorithm939

identifies superior alpha factors through the Se-940

lectBestAlphas function, which presumably evalu-941

ates historical performance metrics. The innovation942

lies in the subsequent dual-agent evaluation system:943

the RiskPreferenceAgent assesses each alpha’s risk944

characteristics, while the ConfidenceScoreAgent945

evaluates the statistical robustness of its historical946

performance. These complementary evaluations947

are synthesized using weight parameters wr and948

wc to compute a comprehensive Final Score. Only949

alphas exceeding a predefined confidence threshold950

X are incorporated into the final selection set A.951

This methodical approach ensures that the result-952

ing alpha portfolio exhibits both category diversi-953

fication and individual signal quality, potentially954

enhancing risk-adjusted returns while mitigating955

exposure to specific market regimes or factor dete-956

rioration.957

Algorithm 1 Category-Based Alpha Selection

Input: categories C = {C1, ..., Cm}, each Ci

containing a set of Alphas, confidence thresh-
old X

1: Initialize selected Alphas A = {}
2: for each category Ci ∈ C do
3: Ai = SelectBestAlphas(Ci)
4: for each α ∈ Ai do
5: Risk Score =

RiskPreferenceAgent(α)
6: Confidence Score =

ConfidenceScoreAgent(α)
7: Final Score = wr · Risk Score + wc ·

Confidence Score
8: if Final Score > X then
9: A = A ∪ {α}

10: end if
11: end for
12: end for
13: return A

A.6 Dynamic Alpha Strategy Construction 958

Algorithm 2 Overall Framework Algorithm

Input: Multimodal financial data D, market con-
ditionsM(t), stocks S, confidence threshold
τ

Output: Optimized alpha strategy α(t)

/* Phase 1: SAF /
1: Initialize empty Seed Alpha Factory F ← ∅
2: for each document d ∈ D do
3: filtered← LLM.Filter(d)
4: categories← LLM.Categorize(filtered)
5: for each category c ∈ categories do
6: seed← LLM.GenerateAlphas(c)
7: Fc← Fc ∪ seed_alphas
8: end for
9: end for

/* Phase 2: Multi-Agent Evaluation /
10: Initialize selected alphas A ← ∅
11: for each category c ∈ F do
12: for each alpha αij ∈ Fc do
13: θij ←

ConfidenceScoreAgent(αij ,M(t)) ▷
Statistical evaluation

14: ρij ←
RiskPreferenceAgent(αij ,M(t)) ▷ Risk
assessment

15: scoreij ← wc · θij + wr · ρij ▷
Combined score

16: if scoreij > τ then
17: Ac← Ac ∪ {αij}
18: end if
19: end for
20: if Ac ̸= ∅ then
21: α∗

c ←αij∈Ac scoreij ▷ Select best
alpha in category

22: A ← A∪ {α}
c

23: end if
24: end for

/* Phase 3: Weight Optimization /
25: Initialize MLP with architecture {|A|, 10, 1} ▷

Input, hidden, output layers
26: Xtrain← ComputeHistoricalAlphas(A,S, tstart,

tend)
27: ytrain← FutureReturns(S, tstart+1, tend+1)
28: w← TrainMLP(Xtrain,ytrain) ▷ Learn

optimal weights
29: for each stock Si ∈ S do
30: α

(t)
i ←

∑|A|
j=1wj · α(

ijt) ▷ Compute
composite alpha

31: end for
32: return α(t) = {α(t)

1 , α
(t)
2 , . . . , α

(t)
n } ▷ Final

alpha strategy
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A.7 Sample prompt for Seed Alpha selection959

1. The training set includes:960

• Financial Reports: 6 quarters (from Jan 2021961

to Jun 2022) for 50 companies listed in the962

SSE 50.963

• Factor Analysis Data: 37 factors (from Jan964

2021, to Jun 2022) divided into groups: Mo-965

mentum, Mean Reversion, Volatility, Funda-966

mental, Quality, Growth, Technical, Macro967

Economics. The metric used is the IC.968

2. Objective: Learn the relationship between969

the performance of financial reports for the first970

four quarters from 2022 to 2023 and the factor971

analysis data (IC) for each of the 37 factors in the972

last quarter of 2022.973

3. When provided with the test set (perfor-974

mance of the first 4 quarters of 2023):975

• Select the factors that will perform best in the976

last quarter of the SSE 50.977

• Provide a confidence score & the risk pref-978

erence for your selection for each selected979

Alpha factor.980

4. Selection Criteria:981

• If no relationship between financial reports982

and IC can be found, select the Alpha factor983

with the highest IC value in each group.984

• For verification of market information differ-985

ences, if no relationship between financial re-986

ports and IR can be found, select the Alpha987

factor with the highest IR value.988

A.8 Portfolio Construction Methods 989

Our investment methodology implements a daily 990

portfolio reconstruction using a top-k/drop-n selec- 991

tion framework. At each trading session, we rank 992

all securities by their alpha values—quantitative 993

indicators of expected excess returns—and select 994

the top k stocks for portfolio inclusion. This ap- 995

proach targets securities with the strongest signals, 996

potentially exploiting short-term market inefficien- 997

cies. We employ an equal-weighting scheme across 998

selected securities, distributing capital homoge- 999

neously among the top candidates, which offers 1000

diversification benefits and aligns with our view 1001

that alpha signals primarily provide directional in- 1002

dications rather than precise return forecasts. 1003

To optimize transaction costs and operational 1004

efficiency, we limit portfolio turnover to a max- 1005

imum of n securities per trading day. This con- 1006

straint balances maintaining alignment with cur- 1007

rent alpha signals while minimizing trading friction 1008

costs. For our experiment in Section 4.4, we set 1009

k = 13 and n = 5 based on extensive backtesting. 1010

This configuration establishes a portfolio concen- 1011

tration that balances diversification against signal 1012

dilution, while limiting daily turnover to approxi- 1013

mately 38%—a level that demonstrates favorable 1014

characteristics in our transaction cost modeling and 1015

represents an efficient trade-off between signal uti- 1016

lization and implementation costs. 1017
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A.9 Case Study Backtest Results1018

Figure 5: Jan-Jun 2021 Backtest on CSI300

Figure 6: Jan-Jun 2022 Backtest on CSI300
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Figure 7: Jan-Jun 2023 Backtest on CSI300

Figure 8: Jan-Jun 2021 Backtest on SP500

Figure 9: Jan-Jun 2022 Backtest on SP500
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Figure 10: Jan-Jun 2023 Backtest on SP500
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