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ABSTRACT

This paper explores decentralized nonsmooth convex optimization with affine con-
straints. We extend existing research by incorporating a nonsmooth stochastic or-
acle, solved by the well know gradient sliding method. Our result show sliding
algorithm achieves sub-optimal solution for these optimization problems under
certain conditions, addressing limitations of prior methods. This work enhances
the theoretical understanding of distributed optimization and offers practical solu-
tions for applications in sensor networks and machine learning.

1 INTRODUCTION

The study of solving the convex optimization problems in a distributed setting has a long history in
the optimization community (Tsitsiklis, 1984; Bertsekas & Tsitsiklis, 2015). Building on the seminal
work (Tsitsiklis, 1984), in recent years, there has been a flurry of research around the problem of
solving convex optimization problem in the framework of multiagent systems (Nedic & Ozdaglar,
2009; Yuan & Ho, 2014). In particular, the global objective function of the problem is a sum of
functions that are distributed over a network, which consists of multiple interacting nodes. Such
problem arises in a variety of real applications ranging from sensor networks to machine learning
(Duchi et al., 2011; Johansson et al., 2008).

Decentralized convex optimization without affine constraints has been extensively studied. It is
well-established that the performance of optimization algorithms applied to strongly-convex smooth
objectives is bounded below by a multiple of the graph condition number and the objective condition
number, up to a logarithmic factor (Scaman et al., 2017).Moreover constrained distributed optimiza-
tion has attracted significant attention from researchers. An early application of first-order methods
to constrained decentralized optimization is illustrated by the projected subgradient algorithm, as
discussed in (Nedic et al., 2010), which also analyzed time-varying networks. A comprehensive
review of the main problem classes in distributed constrained optimization, along with algorithms
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suitable for various levels of decentralization, is presented in (Necoara et al., 2011). We will breifly
them below:

Necoara & Nedelcu (2014) propose distributed dual gradient algorithms for linearly constrained
separable convex problems, it means each agent in the network has their own variable. Moreover,
they supposed affine constraints are network compatable (constraint matrix can have a non-zero
element on position (i, j) only if there is an edge in communication graph between agents i and j.
In our study, we don’t have such conditions, the variable is shared among agents , which is clearly a
special case of (Necoara & Nedelcu, 2014) , and we have various network structure.

In Necoara et al. (2011) the authors present several formulations of distributed optimization prob-
lems, covering scenarios with various types of interconnections between constraints and objectives,
including cases where the overall objective (cost) does not equal to the sum of individual cost func-
tions for each agent. However, their algorithms for problems with coupled affine constraints need
to solve a ”master problem” at a centralized node during each iteration, thereby compromising the
decentralization ability.

Rogozin et al. (2022) solve a decentralized convex optimization with affine constraints, and get linear
convergence rate. We take this as the base of our problem, and extend it to nonsmooth stochastic
oracle.

1.1 NOTATIONS AND DEFINITIONS

We use ⟨x, y⟩ def
=
∑n

i=1 xiyi to denote standard inner product of x, y ∈ Rn where xi corresponds to
the i-th component of x in the standard basis in Rn. The dual norm ∥ ·∥∗ for the norm ∥ ·∥ is defined
in the following way: ∥y∥∗

def
= max {⟨x, y⟩ | ∥x∥ ≤ 1}. To denote maximal and minimal positive

eigenvalues of positive semidefinite matrix A ∈ Rn×n we use λmax(A) and λ+
min(A) respectively

and we use χ(A)
def
= λmax(A)/λ+

min(A) to denote condition number of A. Operator E[·] denotes
full mathematical expectation. To define the Kronecker product of two matrices. A ∈ Rm×m and
B ∈ Rn×n we use A⊗B ∈ Rnm×nm. The identity matrix of the size n×n is denoted in our paper
by In. The diameter of set X is denoted by DX = max{∥x − y∥| ∀x, y ∈ X}. We use col(·) to
represent the column vector.

1.2 PROBLEM FORMULATION

min
x∈X⊂Rd

1

m

m∑
i=1

fi(x) s.t. Bx = 0. (1)

Assumption 1 Assume that we have access to the stochastic oracle of fi. For a given point x, it
output f

′

i (x, ξ) such that

E[f
′

i (x, ξ)] = f ′
i(x) ∈ ∂fi(x),

E[∥f
′

i (x, ξ)− f ′
i(x)∥2] ≤ σ2.

Assumption 2 fi is a convex and nonsmooth function satisfying

fi(x) ≤ fi(y) + ⟨f ′
i(x), x− y⟩+M∥x− y∥2,∀x, y ∈ X . (2)

We assume that the problem is distributed over a connected network consisting of m agents. Each
agent locally store fi. Agents are connected through a communication network. Agents are only
allowed to exchange information with their neighborhoods. Further, we rely on the notion of gossip
matrix. W is a gossip matrix of an undirected graph G = (V, E), ∥V∥ = m, if it satisfies following
properties:

Assumption 3 propertoes of W :

1. W is a symmetric positive semi-definite matrix.

2. (Network compatibility) For all i, j = 1, . . . ,m it holds [W ]ij = 0 if (i, j) /∈ E and i ̸= j.

2



Published as a conference paper at ICOMP 2024

3. (Kernel property) For any v = [v1, . . . , vm]⊤ ∈ Rm, Wv = 0 if and only if v1 = . . . = vm.

An classical example of a matrix that satisfies Assumption 3 is the graph Laplacian matrix W ∈
Rm×m:

[W ]ij =


−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise.
(3)

where deg(i) is the degree of the i-th node, i.e., the number of neighbors of the i-th agent. Since we
consider only connected networks, the matrix W has a unique eigenvector 1m

def
= (1, . . . , 1)⊤ ∈ Rm

corresponding to the eigenvalue 0. It implies that for all vectors a = (a1, . . . , am)⊤ ∈ Rm the
following equivalence holds:

a1 = . . . = am ⇐⇒ Wa = 0. (4)

Now let us think about ai as a number that the i-th node stores. Then, we can express in short
matrix form. To generalize it for the case when aj are vectors from Rd, we should consider the

matrix W
def
= W ⊗ Id, where ⊗ represents the Kronecker product. Indeed, if we consider vectors

x1, . . . , xm ∈ Rd and x = (x⊤
1 , . . . , x

⊤
m)⊤ ∈ Rmd, then

x1 = . . . = xm ⇐⇒ Wx = 0. (5)

2 RESULTS AND ALGORITHM

We use the gradient sliding algorithm from (Lan, 2016), which is designed to solve composite convex
optimization problems of the form:

min
x∈Q

{ϕ(x) = g(x) + f(x)}, (6)

where f(x) is a nonsmooth convex function and g(x) is a smooth convex function. Initially, we
demonstrate the transformation of problem (7) to fit the gradient sliding algorithm, ensuring that it
can achieve an ε-suboptimal solution. Subsequently, we reformulate problem (1) to problem (7).

2.1 CONVEX OPTIMIZATION WITH TWO AFFINE CONSTRAINTS

First we introduce a minimization problem with two affine constraints :

min
x∈Q

F(x) (7)

s.t. Bx = 0,Cx = 0, (8)

where F (x) = 1
m

∑m
i=1 fi(xi) and x = col(x1, . . . , xm), and also introduce B = B ⊗ Im,C =

C ⊗ Id, B ∈ Rp×d, C ∈ Rm×m.

By choosing a positive scalar γ, we can use the trick in Rogozin et al. (2022) to build A⊤ =
[B⊤ γC] and the dual problem of problem (7) is:

min
y

Φ(y), where (9)

Φ(y) = max
x∈Q

⟨y,Ax⟩ − F(x) = ⟨A⊤y, x(A⊤y)⟩ − F (x(AT y)), (10)

where x(y) = argminx∈Q{⟨y,x⟩ − F(x)}. We use y⋆ to denote the solution of (9) with the
smallest l2-norm Ry = ∥y⋆∥2. And Ry can be bounded as follows:

R2
y ≤ ∥∇F(x⋆)∥2

λ+
min(A

⊤A)
. (11)

Then we can introduce

F̃(x) = F(x) +
R2

y

ε
∥Ax∥2, (12)

where ε > 0 is the desired accuracy of the solution in terms of F(x) that we want to achieve.
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Gorbunov et al. (2019) proved that if we have x̂ such that F̃(x̂)−minx∈Q F̃(x) ≤ ε, then we have

F(x̂)−min
x∈Q

F(x) ≤ ε, ∥Ax̂∥2 ≤ 2ε

Ry
. (13)

Then this result can be generalized to the stochastic case: if we have x̂ such that E[F̃(x̂)] −
minx∈Q F̃(x) ≤ ε, then we have

E[F(x̂)]−min
x∈Q

F(x) ≤ ε,
√
E∥Ax̂∥22 ≤ 2ε

Ry
. (14)

Next, we consider solving this problem with the gradient sliding algorithm 1:

min
x∈Q

F̃(x) = f(x) + g(x), (15)

where f(x) =
1

m

m∑
i=1

fi(xi), g(x) =
R2

y

ε
∥Ax∥2. (16)

Algorithm 1 Sliding Algorithm
1: Input: Initial point x0 ∈ X and iteration limit N .
2: Let βk ∈ R+, γk ∈ R+, and Tk ∈ N, k = 1, 2, . . ., be given and set x0 = x0.
3: for k = 1, 2, . . . , N do
4: Set xk = (1 − γk)xk−1 + γkxk−1, and let hk(·) ≡ lg(xk, ·), where lg(x, y) = g(x) +

⟨∇g(x), y − x⟩.
5: Set (xk, x̃k) = PS(hk, xk−1, βk, Tk).
6: Set xk = (1− γk)xk−1 + γkx̃k.
7: end for
8: Output: xN .

9: procedure (x+, x̃+) = PS(h, x, β, T )
10: Let the parameters pt ∈ R+ and θt ∈ [0, 1], t = 1, . . ., be given. Set u0 = ũ0 = x.
11: for t = 1, 2, . . . , T do
12: Set ut = argmin

u∈X

{
h(u) + lf (ut−1, u) +

β
2 ∥u− x∥22 +

βpt

2 ∥u− ut−1∥22
}

.

13: Set ũt = (1− θt)ũt−1 + θtut.
14: where lf (x, y) = f(x) + ⟨f ′(x, ξ), y − x⟩.
15: end for
16: Set x+ = uT and x̃+ = ũT .
17: end procedure

We reuse the parameters in Lan (2016), then we can have this theorem:

Theorem 1 Assume that {pt} and {θt} in the PS procedure of algorithm 1 are set to

pt =
t

2
and θt =

2(t+ 1)

t(t+ 3)
, ∀t ≥ 1.

If N is fixed positive number, and {βk}, {γk}, and {Tk} are set to

βk =
2L

k
, γk =

2

k + 1
, and Tk =

⌈
(M̂2 + σ2)Nk2

D̃L2

⌉
.

Then it can achieve (14) with probability at least 1− β, β ∈ (0, 1) requiring

O

√λmax(A⊤A)R2
yD

2
Q

ε2

 calculations of A⊤Ax, (17)

and

Õ

(
(M2 + σ2)D2

Q
ε2

)
calculations of F′(x, ξ), (18)
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when f is a µ-strongly convex function, then use restart technique with algorithm 1, it can achieve
(14) with probability at least 1− β, β ∈ (0, 1) requiring

Õ

√λmax(A⊤A)R2
y

µε

 calculations of A⊤Ax, (19)

and

Õ

(
M2 + σ2

µε

)
calculations of F′(x, ξ), (20)

where F′(x, ξ) = col(f
′

1(x, ξ) . . . f
′

m(x, ξ)), D̃ = 3
4DQ and L is the smoothness constant of g,

∥F′(x, ξ)∥2 ≤ M̂ .

In this section, we first reformulate a convex optimization problem with two affine constraints into a
minimization problem by introducing penalty terms. These penalty terms arise from the combination
of the affine constraints and the variable x. We then apply the gradient sliding algorithm to this
problem, yielding the convergence rate discussed above.

2.2 DECENTRALIZED GRADIENT SLIDING

We can rewrite problem (1) into this form:

min
x1=···=xm

x1,x2,··· ,xm∈X
f(x) =

1

m

m∑
i=1

fi(xi) (21)

s.t. Bx = 0, (22)

where x = col(x1, . . . , xm). As we mentioned before, each agent i store individual objective func-
tion fi in this network, and when x1 = x2 = . . . = xm, Wx will be equal to 0 in our setting.
Therefore, we introduce Wx in (24) as a penalty term to ensure that each xi converges to the opti-
mal solution, then we can reformulate problem (21) into this form:

min
Wx=0,
Bx=0,

x∈Xm⊂Rmd

f(x) =
1

m

m∑
i=1

fi(xi) (23)

Then we can directly apply result in section 2.1,

min
x∈Xm

F̃(x) = F(x) +
R2

y

ε
∥Ax∥2, (24)

where F (x) = 1
m

∑m
i=1 fi(xi), and A⊤ = [B⊤ γW].

From assumption 2, we can know that ∥f ′
i(xi)∥2 ≤ M , for all xi ∈ X , all fi are convex functions,

then set x⊤
0 = (x⊤

0 , . . . , x
⊤
0 )

⊤ and x⊤
∗ = (x⊤

∗ , . . . , x
⊤
∗ )

⊤ is the optimality point for (24), from
Gorbunov et al. (2019) we can get

D2
Xm = mD2

X , ∥∇f(x)∥2 ≤ M√
m
, R2

y
def
= ∥y∗∥22 ≤ M2

mλmin(A⊤A)
. (25)

We now need to apply the results obtained in Section 2.1 to the problem (24). To produce a point
x̂ that satisfies (14), where x̂ = x̂, A⊤ := [B⊤ γW], Q := Xm, and Ry := Ry, Algorithm 1
applied to the penalized problem (24) , achieving (14) with probability at least 1− β, β ∈ (0, 1), it
requires communication complexity and computation complexity same as in Theorem 1.

By accurately choosing factor γ, we can control the condition number χ(A⊤A). The minimal value

of χ(A⊤A) is attained at γ2 =
λ+
min(B

⊤B)

(λ+
min(W ))2

and equals χ(A⊤A) = χ(B⊤B) +χ2(W ) in (Rogozin

et al., 2022). Then achieving (14) with probability at least 1− β, β ∈ (0, 1), algorithm 1 requires

Õ

(
(M2 + σ2)D2

X
ε2

)
calculations of f ′(x, ξ) per node. (26)
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and

O

(√
χ2(W )MD2

X
ε2

)
communications, (27)

and

O

(√
χ(B⊤B)MD2

X
ε2

)
multiplications by B⊤B per node. (28)

When fi is a µ-strongly convex function, then it can achieve 14 with probability at least 1 − β,
β ∈ (0, 1) requiring

Õ

(
M2 + σ2

µε

)
calculations of f ′(x, ξ) per node, (29)

and

Õ

(√
χ2(W )M

µε

)
communications, (30)

and

Õ

√χ(B⊤B)M

µε

 multiplications by B⊤B per node. (31)

In this section, we reformulate problem (1) into a convex optimization problem with two affine
constraints. Next, we apply the method from Section 2.1, which allows us to obtain the convergence
rate for problem (1).

3 CONCLUSION

In this paper, we have addressed the problem of decentralized convex optimization with affine con-
straints. We introduce a novel approach that extends the gradient sliding method to incorporate a
nonsmooth stochastic oracle, resulting in a decentralized algorithm that achieves linear convergence
for such optimization problems. This work overcomes the limitations of previous methods by pro-
viding a practical solution that advances the theoretical understanding of distributed optimization.
However, our approach relies on the gradient sliding algorithm, which requires parameter estima-
tion before implementation, slightly weakening its theoretical performance. In our experiments, we
showed that the effect of choice for different parameters R and T , as in Figure 1.

Future work will focus on extending the algorithm to handle biased stochastic oracle and non-convex
objectives, as well as exploring adaptive strategies to dynamically adjust the parameters of the algo-
rithm based on the network topology and the structure of the optimization problem.

4 NUMERICAL EXPERIMENTS

We conducted numerical experiments on the following optimization problem:

min
x

f(x) :=
1

n

n∑
i=1

fi(x) subject to Bx = 0,

where

fi(x) =

√
1

m
∥Cix− di∥2,

with Ci ∈ Rm×d, di ∈ Rm×1, and x ∈ Rd.

The algorithm was tested on four nodes within a single machine. For simplicity, local variables were
stored in a single long vector. The dimension of each local variable was set to 5, and the number of
samples was 1,000. The algorithm was run with a batch size of 100 over 2,000 iterations. Instead of
estimating the parameters, we experimented with various values of the inner loop T and the penalty
term coefficient R =

Ry

ϵ . We found that T = 3 provided good performance, leading us to compare
different values of R. Additionally, four distinct network topologies (complete graph, path graph,
cycle graph, and star graph) were used in this experiment. The script and data that support the
findings of this study are available from the corresponding author upon reasonable request.
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Figure 1: Loss ratio for different choices of T on a complete graph. The choice of T affects the
convergence rate, but the parameter R has a more significant impact. A smaller R leads to faster
convergence, though it results in less consensus among the local variables xi.

0 1000 2000
Step

10 2

10 1

100

Lo
ss

 R
at

io

Shape = path

0 1000 2000
Step

Shape = cycle

0 1000 2000
Step

Shape = star

R
0.001
0.01
0.1

Figure 2: Loss ratio for different choice of network structure.
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