Under review as a conference paper at ICLR 2025

A EXPERIMENTS SETUP (EXTENSION)

The efficiency of our method is evaluated on the basis of the reconstructed baseline result. The
data transformation strategy we use in the data loading process should match the pre-trained model
to produce the same result. In our experiments, we find that including random crops in data
transformation can cause problems when applying adversarial attacks. Since random crop cuts a
random region of the image, it causes the image we want to attack to differ from the original image.
This can cause unsuccessful attacks and unstable performance of our method. It is worth mentioning
that we need to shuffle the dataset T” before conducting domain adaptation training. This ensures a
mixture of training samples, including those from the original dataset for which the trained network
gets the correct answers and the incorrect samples successfully perturbed.

In detail, we shuffle datasets before applying random crops and save the coordinates of the random
crop regions in a file with the order of images in the training dataset if a random crop is included in the
transformation process. For the correct dataset (a subset of the train dataset with correct predictions),
we reload the random crop file and apply the recorded random crops in the domain adaptation training
step. The correct dataset indices are saved following the order of the train dataset when we generate
the model baseline so we can use these indexes to obtain random crop regions for the correct dataset.
For the incorrect dataset (a subset of the train dataset predicted as incorrect) that needs to be attacked,
we use the same strategy to obtain random crop indexes and apply them to images before applying
attacks. Then we check the correction rate by comparing the labels before and after the attack to
ensure that the labels are different. We also test the prediction of our baseline model on the correct
dataset and altered dataset (incorrect dataset processed with attack). The accuracy for the correct
dataset should be 100% and the accuracy for the altered dataset should be near 100% while using the
DDN attack.

In the domain adaptation training step, we load the file only based on the current batch size. To be
more precise, in the domain adaptation training, for each step, when the index is in the correct index
list, the source image, target image, and source label are just the data from the train dataset. When the
index is in the incorrect index list, the source image and source label processed with attacks should
be taken from the altered dataset, and the target images are taken from the train dataset.

Memory overflow is another problem we face in the domain adaptation step. The loading of the entire
file that stores all the attacked images can take a significant amount of memory, especially when
the dataset is extremely large, such as ImageNet-1K. Therefore, we individually save these images
into a .npz file, containing one attacked image and its correct label. Then, we design a customized
dataloader that loads the correct images and the altered images as our source dataloader.

B CONSUMPTION OF COMPUTING RESOURCES

The adversarial correction process does take some time, but it’s not as long as the training time.
The computer resources needed to reproduce our experiment results are summarized in the Tab. [5.
For large datasets, if we assume the performance decreases on larger datasets, we will have more
corrections to do. However, the increase in time is expected to be near linear or slightly more than
linear, not quadratic.

C PERFORMANCE OF BASELINE WITH FURTHER FINE-TUNING

We investigate the baseline performance with extended fine-tuning. Figure [3 shows our baseline
training, validation, and test accuracy over 300 epochs for ResNet-34 on the CIFAR-100 dataset. We
find that the performance plateaued at around epoch 60, and fine-tuning beyond 100 epochs did not
yield further performance improvements.
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Table 5: Compute resources utilized for each dataset with a batch size of 16. Note that the resources
and time may vary slightly depending on the selected model.

CPU GPU
Dataset Experiment Computing Time
Number  Memory (GB)  Cores  Number  Memory (GB) Type
Train Baseline 1 3 32 1 2 V100 2.0 min/epoch
CIFAR-10 Adversarial Correction 1 3 32 1 2 V100 04 min/balch
Deep CORAL (None attack) 1 15 32 1 2 V100 1.2 min/epoch
Deep CORAL (Attack) 1 20 32 1 2 V100 1.2 min/epoch
Train Baseline 1 3 32 1 2 V100 2.5 min/epoch
CIFAR-100 Adversarial Correction 1 3 32 1 2 V100 0.5 m?n/batch
Deep CORAL (w/o attack) 1 15 32 1 2 V100 1.5 min/epoch
Deep CORAL (w/ attack) 1 20 32 1 2 V100 1.5 min/epoch
Train Baseline 1 5 32 1 2 V100 12 min/epoch
CINIC-10 Adversarial Correction 1 30 32 1 2 V100 0.5 fnin/batch
Deep CORAL (w/o attack) 1 38 32 1 2 V100 6 min/epoch
Deep CORAL (w/ attack) 1 40 32 1 2 V100 15 min/epoch
Adversarial Correction 1 40 32 1 12 V100 1 min/batch
ImageNet-1K ~ Deep CORAL (w/o attack) 1 45 32 1 12 V100 300 min/epoch
Deep CORAL (w/ attack) 1 50 32 1 12 V100 300 min/epoch
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Figure 3: This graph shows our baseline training, validation, and test accuracy over 300 epochs for
the ResNet-34 model on the CIFAR-100 dataset. The accuracy results are averaged over three random
seeds.

D PERFORMANCE OF ADVERSARIAL CORRECTION (EXTENSION)

D.1 ADVERSARIAL CORRECTION OF RESNETS

The comprehensive performance results of our pipeline on FP32 models are presented in Tab. [6,
an extended version of Tab. [I. Additionally, the complete performance results of our pipeline on
quantized Int8 models can be found in Tab.[7, which is an extended version of Tab.[3. The attacks
all seem to have similar performance improvements, except for some directed attacks where we
use different directions to reduce the effectiveness of incorrect classifications versus correct ones.
Specifically, we can move away along the gradient of the highest probability class of incorrect
samples to weaken the accuracy of the incorrect input (i.e., BIH attack) or move toward the true labels
(i.e., VBI attack). Moving toward the true labels yields higher attack correction rates but similar
performance compared to moving away along the gradient of the highest probability class. Table 6
also shows that increasing the number of attack iterations to increase the attack success rate for the
VBI attack does not correlate closely with the correction rate. However, gradient-based attacks, such
as DDN and VBI, have better overall performance than non-gradient-based attacks, such as salt and

pepper.
The adversarial correction does indeed reduce the training loss. In Fig.[#b]and Fig.[d|we can see that
both targeted (VBI) and untargeted (LL) adversarial attacks can successfully reduce the logit level of
the initially maximum probability incorrect label as compared with the logit level of the true label,
resulting in correction.
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Table 6: Accuracy (%) of FP32 baseline models (BL), which is fine-tuned on the CIFAR train domains,
and accuracy of baselines after applying our approach (denoted as BL-IST) by using different attacks
to generate adversarial domains. The data is reported as an average of three seeds.

CIFAR-10 CIFAR-100
Model Approach  Attack - - :
Corr. rate T Train Valid Test AAcc  Corr. rate T Train Valid Test A Acc

BL - - - 9961 £056 93.73+043 9329+037 - - - 9900+ 1.19 7684+0.12 77.04£008 -

BL-IST None - 99.96 £ 0.04  99.69 +£0.36 9591 £0.20 9557 +0.13 +2.28 - 98.86 +0.94 98.84 £ 098 80.14 + 047 80.27 £0.74 +3.23

BLAST  LL 55/176 10000 99.80=0.28 9617008 9593+0.15 +2.64 70451 10000 99204092 80.99£021 8093+046 +3.90
ResNet-18 BLIST  BIH 99/176 10000 99.86+0.19 96.16+028 9587+024 +2.58 51451 10000 9936072 8075+054 80994045 +3.96
(11.19M) BLAST VBl 121/176 10000 9959+046 96.09+022 9597012 +2.68  226/451 10000 99.47+0.59 80.81 £0.18 8092+056 +3.89

BLAST  VBI 175/176 10000 99.97+0.04 96.19+0.15 9577006 +248  446/451 10000 99.804+0.20 80.37+0.98 80.54+0.80 +3.50

BLAST DDN  176/176 100.00 10000 96214028 9584007 +255 451451 99.98+001 99.98+0.01 80.79+045 80.82+035 +3.79

BLAIST  SP 45/176 10000 9979029 96.17+0.12 9580 +008 +2.51 43451 10000 9916+ 1.00 80.63+£0.54 8089061 +3.86

BL - - - 9943067 9471005 9422+006 - - - 9436 £224 78.12+079 7841 £0.10

BLAST  None - 9992003 99.81+0.10 9678008 9640 =005 +2.18 - 9538+ 156 9526+ 164 82994048 82.98 +0.07

BLAIST  LL 25/80 9998002 99.89+007 9653+0.16 96.31+0.12 +209 37072538 10000 9605+ 1.39 83.13+£0.08 82.69+0.12
ResNet-34 BLIST  BIH 46/80  99.99 £ 001 9994+006 96.53+0.23 96.36+0.07 +2.14 6552538 10000 97314119 83.04+ 119 8331 +0.06
(21.30M) BLAST VBl  53/80 99.99 9997 £001 96.62+007 9626+0.12 +204 1207/2538 99.99 97.40£092 8339+044 83.11+023

BL-IST VBI 80/80 100.00 100.00 96.71 £ 022 96.26 +0.12  +2.04  2490/2538 100.00 99.21 +£0.12 83.34+ 036 8326 +0.45

BLAST  DDN 80/80 100.00 10000 96714022 96.71+0.05 +249 25382538 99.98+001 99.97+0.01 83.55+0.53 83.64+0.06

BLAST  SP 23/80 9998001 9990+009 9652012 9622+0.05 +200 118/2538 10000 95744 148 83.33+0.37 83.25+029

BL - - - 9981 £0.14 9536+036 9432+059 - - - 9881 £0.73 80.01+0.65 79.74+0.19

BLAST  None - 9992003 99.78+0.04 96.65=0.16 96.61+0.12 +2.29 - 99.84£001 9834+038 8370+0.14 83.89+0.22

BLAIST  LL 46/131 9996001 9984001 96.57=0.19 9631011 +1.99  60/775  99.99+0.01 98.58+0.36 8329+043 83.11+048
ResNet-50 BLAST  BIH 69/141  99.95+003 9985002 9641 =0.11 96.11+£0.16 +1.79  261/775 99.98+0.02 98.69 026 82.86+050 83.03+ 043
(23.57M) BLAST  VBleq 79231 9999001 99.89+002 9661010 96.18=026 +186  304/775 99.99 99.02+£021 83.59+046 83.00+0.17

BLIST  VBI 130/131 99.99+0.01 99.96 =001 9656 +0.12 9650018 +2.18  741/775  99.98+£0.02 9957 +0.14 82964023 82.87 +0.07

BL-IST DDN 1317131 9997 £0.04 99.97£0.04 96.61 £0.27 96.35 +0.12 +2:03 775/775 9998 £0.01 9998 £0.01 83.29+0.42 83.03 +0.07
BL-IST SP 17131 99.97 £0.01 9982 £0.01 96.61 £0.22 96.30+0.15 +1.98 451775 99.99 £ 0.01  98.58 £0.35 83.00£0.19 83.25+0.32

BL - - - 99.96 + 0.06  97.66 +0.13  97.15 + 0.14 - - - 99.88 + 0.08 86.63 +0.73  86.88 & 0.46

BL-IST None - 99.97 £0.01 99.95+0.01 9821 +£0.08 97.76 +£0.14  +0.61 - 99.72£0.11 99.62+0.14 87.73+£0.59 87.36 +0.57

BL-IST LL 39 100.00 99.98 98.14 £0.09 97.82+0.08 +0.67 17/54 99.95 £ 0.05 99.874+0.01 88.054+0.22 87524045
EfficientNetV2-M ~ BL-IST BIH 6/9 100.00 99.99 £0.01 98.20+£0.09 97.82+0.09 +0.68 23/54 99.97£0.05 9991 +£0.09 87.96+0.32 88.00 +0.10
(52.99M) BL-IST VBlier) 9 99.99 £0.01  99.99 £0.01 98.18 £0.11 97.82+0.12  +0.67 29/54 99.94 99.87 £0.05 88.00£0.03 87.77 £ 0.06

BL-IST VBI 8/9 99.99 £0.01  99.99 £0.01 98.13+£0.12 97.80 £0.04 +0.65 46/54 99.95+0.01 99.88+£0.04 88.09+0.18 87.76+0.16 +0.88

BL-IST DDN 99 100.00 100.00 98.18 £0.09 97.86 +£0.06 +0.71 54/54 99.92+£0.04 9992+£0.04 8798+0.18 87.81+0.10 +0.93

BL-IST SP 419 99.99 99.98 98.13£0.05 97.70 £0.12  +0.55 18/54 99.95+0.03 99.87£0.07 87.85+0.04 87.89+0.19 +1.01

Table 7: Accuracy (%) of quantized (Int8) ResNets of various sizes obtained after applying PTSQ on
its baseline, and the accuracy of Int§8 ResNets using our approach.

CIFAR-10 CIFAR-100
Model Approach Attack - -

Corr. rate T Train Valid Test AAcc Corr. rate T Train Valid Test A Acc

BL - - - 9961 £056 9373+043 9329037 - - - 9900+ 1.19 7684+0.12 77.04=008 -

TSQ - - - 9808071 93.01+056 9242017 - - - 96.74+£3.02 7545+ 129 7606094 -

PTSQ-IST (bef. qt)  None - 99.96£0.04 9943+002 9588+026 9559+007 - - 99.80£0.12 97.13+£057 8034+059 80.18+039 -
ResNet.1s PTSQIST @aft. vy None - 99.93+£001 9923+005 9530+039 95.18+009 +2.76 - 9952+£0.14 9667056 79.15+053 79.15+026 +3.09

* PTSQ-IST (bef. qt) BIH  158/736 100.00 99.53 96.07+£0.06 9585+0.19 - 3001966  100.00  97.55+050 80.61+0.16 80.82+030 -
PTSQ-IST (aft. q)  BIH - 99.99£0.01 9946004 9553+029 9548+0.18 +3.07 - 99.98£0.02 9736+055 7925+030 79.53+058 +347

PTSQ-IST (bet. qt)  SP 128/736 10000 9954+003 9617+0.13 9572£022 -  189/1966  100.00  97.17+0.62 80.40+045 81.07+023 -
PTSQ-IST (aft. qt) ~ SP - 100.00 9948 £0.02 9546+0.20 9529+006 +293 - 99.98+0.01 97.31+£0.66 79.27+£0.73 79.79 £ 049 +3.73

BL - - - 99.43 £0.67 9471 +£0.05 94.22 + 0.06 - - - 9436 +224 78.12+0.79 7841 +0.10 -

- - - 98.16£035 93.63+0.10 9336=009 - - - 9032+230 7620+039 77.13£045 -

PTSQ-IST (bef. qt)  None - 99.97£0.02 9944 +£0.15 9657 +0.15 9628+0.13 - - 99.09+£0.10 93.03+£029 83.08+023 8294+029 -
ResNet3d  PTSQUIST aft. gy None - 99.92£0.04 9931+0.17 9619+0.10 96.08+020 +2.72 - 9944 £0.55 9259+033 8189+063 81.94+045 +4.81

9% PTSQ-IST (bef. q) BIH  250/771 10000  9945+0.1 9661+0.19 9633=015 -  689/4607 99.96=0.04 9397031 8320+024 8299+0.15 -
PTSQ-IST (aft. qt)  BIH - 99.97£0.02 9939+0.12 9629+ 0.08 9605+ 007 +2.69 - 99.99£0.01 9377+033 8219+0.14 8218+020 +5.05

PTSQ-IST (bef. qt)  SP 272771 99.96+0.04 99.51£0.04 96.58+£0.14 9612023 - 4794607  100.00  9380+052 8313+054 8290=019 -
PTSQ-IST (aft. qt)  SP - 99.95+£0.05 9945+005 9625+006 9583+0.19 +247 - 10000 9355+053 81994024 8212020 +4.99
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Figure 4: The incorrect class (max) and true class logits change for uncorrected (a,c) and corrected
(b,d) samples (spl) of CIFAR-100 after applying the corrective LL (a,b) and VBI (c,d) attacks on the
ResNet-34. The vertical dashed lines indicate the mean values of incorrect class (max logit) and true
class logits change.

D.2 ADVERSARIAL CORRECTION OF TINY VISION TRANSFORMER

Tiny vision transformer (TinyViT) baseline models on ImageNet-1K [Krizhevsky
(2012). We also selected Tiny ViT to evaluate our pipeline performance. We follow the same

experiment settings as stated in to generate the TinyVit-21M baseline. TinyVit-21M
is pre-trained on ImageNet-22K with the fast distillation framework using CLIP-ViT-L/14
let al.| (2021); [Dosovitskiy et al. (2021) as the teacher, then finetuned on ImageNet-1K which has a
total of 1,281,167 labeled train images, a validation set containing 50,000 images, and 1,000 object
classes. We report validation accuracy instead of test accuracy, as the test dataset is unlabeled and
reserved for Challenges.
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We reproduce the Tiny ViT-21M |Wu et al.|(2022) using the same experiment setting, achieving 84.55%
accuracy on the ImageNet-1K [Krizhevsky et al.| (2012) validation set and 83.2% accuracy when
training with only 1,183,431 correctly classified samples. In the DDN attack case, we achieved 82.86%
validation accuracy with only one epoch of training, which is 0.43% higher than the non-attack case.

D.3 ADVERSARIAL CORRECTION WITH LONGER DOMAIN ADAPTATION PROCESS

Figureﬂdemonstrates the performance of our pipeline on the training, validation, and test datasets of
CIFAR-100 using ResNet-34. By applying Deep CORAL, we add an extra loss term (i.e., CORAL
loss), which helps reduce overfitting by acting as a regularizing term. This approach is less likely to
overfit compared to training the baseline model.
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Figure 5: This graph shows our pipeline training, validation, and test accuracy with the DDN attack
using (a) the ResNet-34 model on the CIFAR-100 dataset and (b) the TinyVit-21M model on the
ImageNet-1K. The accuracy results are averaged over three random seeds.

D.4 GRAD-CAM VISUALIZATION OF ADVERSARIAL CORRECTION

To help visualize the impact of the adversarial correction technique on misclassified images, we
employ Gradient-weighted Class Activation Mapping (Grad-CAM) [Selvaraju et al. (2017) to provide
visual explanations. Grad-CAM utilizes gradient-based localization to identify important regions in
an image that contribute to the prediction of the model concept. In our study, Fig. [6a]is an example
initially misclassified as “automobile” by ResNet-34. However, applying the DDN attack, the image
can be correctly identified as a “horse”. To better understand the differences between the Grad-CAM
of the original (Fig.[6¢c) and its corrected image (Fig. [6d), we present a visualization in Fig. [6b] This
visualization clearly illustrates that incorrect detection was primarily influenced by the contextual
information surrounding the object rather than the object itself, demonstrating that by modifying the
contextual information surrounding the image using adversarial attack, correct classification becomes
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Figure 6: Evaluation of ResNet-34 on CIFAR-10 dataset. (a) misclassified images, (b) the difference
between the Grad-CAM images for the original and adversarially corrected inputs using DDN attack.
This illustrates the shift in focus of the network for the two images, (c) the Grad-CAM image for the
original incorrect image, (d) the Grad-CAM image for the adversarially corrected image.
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D.5 VISUALIZATION OF ADVERSARIAL ATTACKS

In recent years, there has been an increasing amount of research aimed at developing techniques to
deceive neural networks. These techniques, known as adversarial attacks, involve making malicious
yet subtle changes in the input to fool the network |Goodfellow et al.|(2015a); |Madry et al. (2018);
Rony et al. (2019); |Carlin1 & Wagner (2017); Moosavi-Dezfooli et al.| (2016). Adversarial attacks
make malicious yet subtle changes in the input to fool the network, as shown in Fig.[8] These changes
are often imperceptible to the human eye, making it difficult to distinguish between the original
image and the adversarially altered one. Our adversarial correction approach, on the other hand, takes
training set images which the network classifies incorrectly, and alters (attacks) these images so that
the network gives the right answer. Similarly, the differences between the misclassified image and
the corrected image are not visually noticeable (see Fig. [T0).
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Figure 8: Subplots (a)-(d) show misclassified images of a speaker from the Amazon domain by
ResNet-50 under C&W, DF, and PGD adversarial attacks. Subplots (e)-(h) show the corresponding
perturbations generated under attacks, magnified by a factor of 500.
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(a) Original: Automobile (b) DDN: Trunk (c) S&P: Trunk

(d) No correction (e) DDN correction (f) S&P correction

Figure 10: Subplots (a)-(c) show misclassified images of a trunk from the CIFAR-10 dataset by
ResNet-34 and its corrected images under DDN and Salt and Pepper noise attacks. Subplots (d)-(f)
show the corresponding perturbations generated under adversarial correction, magnified by a factor
of 1000.



Under review as a conference paper at ICLR 2025

D.6 ADVERSARIAL CORRECTION VS. ADVERSARIAL PERTURBATION

In the Feng and Tu theory|Feng & Tu (2022), all that is needed in the first step of the IST is to perturb
the input so as to reduce the loss. It is not necessary to actually change the input so as to have the
network give the correct answer; all that is required is that the loss be reduced.

In the experiments shown in Tab. [I, we defined T, as the set of successfully corrected samples
in step 3 of our adversarial correction approach. If we now consider 7, to include all perturbed
samples, whether the outputs are corrected or not, 7" will have the same size as the original training
dataset. We refer to the network adapted using this variation as BL-IST-A. In our original approach,
the accuracy of the original network on 7" reaches 100% when we consider only the successfully
perturbed samples and the original correctly detected samples. Inspired by Shen et al.|(2023), we
can think of 7" as an easy dataset, given its 100% accuracy, while considering T" as a hard dataset.
In Tab.[8, we observe a drop in performance improvement in BL-IST-A as compared to our first
approach. This could be attributed to the adversarial perturbations increasing the loss rather than
decreasing it, as compared with the baseline, for the uncorrected inputs. We conclude that we should
only retain the corrected input samples.

Table 8: Accuracy (%) of ResNet FP32 baselines after applying our approach using the LL attack to
generate adversarial domains for CIFAR datasets. Note that BL-IST-A is a refined approach in which
T, in Step 3 incorporates all perturbed samples of T,,.

CIFAR-10 CIFAR-100
Model Approach
#T' Test A Acc #T' Test A Acc
BL 93.32 77.09

ResNet-18 BL-IST 44972 95.77 +2.45 44,879  80.48 +3.39
BL-IST-A 45,000  95.51 +2.19 45,000  79.56 +2.47

BL - 94.24 - - 78.53 -
ResNet-34 BL-IST 44,993  96.36 +2.12 42,903  82.76 +4.23
BL-IST-A 45,000  96.18 +1.94 45,000  80.81 +2.28

D.7 ADVERSARIAL CORRECTION VS. ADVERSARIAL TRAINING

While there are similarities in our approach and adversarial training, there are significant differences.
Adversarial training takes training set images which the network classifies correctly and alters (attacks)
these images so that the network gives the wrong answer. These images, with the correct label, are
used to augment the training set. Our approach, on the other hand, takes training set images which
the network classifies incorrectly, and alters (attacks) these images so that the network gives the
right answer. Instead of augmenting the training set with these examples, we replace the initially
wrong images with the adversarially corrected images. The advantage of our approach is that it
improves accuracy as compared to standard adversarial training, since we are providing guidance for
the network on how to do better on images it had trouble with. However, both approaches, as shown
in the paper, provide robustness to adversarial attacks.

D.8 ADVERSARIAL CORRECTION VS. CURRICULUM LEARNING

We compare our approach with three baselines: a vanilla baseline, and two curriculum learning (CL)
baselines. In one CL baseline, we perform standard fine-tuning on easy data, then continue training
on hard data. In the second CL baseline, we fine-tune on easy data and then train on the full training
dataset.

Table [9 presents the performance of AdCorDA and the three baselines (fine-tuning and two CL
approaches) on CIFAR datasets using ResNet-18. Our method, with any attack, outperforms all
baselines, achieving 0.62% and 2.05% higher test accuracy than the better-performing CL baseline
on CIFAR-10 and CIFAR-100, respectively.

It is worth noting that AdCorDA is more efficient and cost-effective in terms of both speed and the
amount of labeled training data required. Specifically, the CL methods use double the labeled data
compared to our approach, while Deep CORAL is an unsupervised method that does not rely on
target domain labels during domain adaptation. Additionally, our domain adaptation process takes
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only a few epochs, whereas the second stage of CL - continuing training - requires significantly more
epochs.

Table 9: Compare accuracy (%) of ResNet-18 on CIFAR test datasets using of our AdCorDA approach
with standard fine-tuning baseline and different types of curriculum learning.

Approach Attack CIFAR-10 CIFAR-100
BL - 93.29 77.04
CL (easy — hard) - 95.05 75.25
CL (easy — train) - 95.31 78.94
BL-IST None 95.57 80.27
BL-IST LL 95.93 80.93
BL-IST BIH 95.87 80.99
BL-IST VBI 95.77 80.54
BL-IST DDN 95.84 80.82
BL-IST SP 95.80 80.89

D.9 ADVERSARIAL CORRECTION AGAINT NOISY LABELED DATASETS

We investigate the performance of our AdCorDA approach under 20% symmetrical noisy labeled
setting on CIFAR datasets. We first established new CIFAR baselines using standard fine-tuning,
then applied our AdCorDA approach. Table[I0 compares the performance of our approach using
ResNet-34 on CIFAR datasets with and without noisy labels. The results demonstrate that our
approach remains highly effective under noisy label settings, outperforming the noisy CIFAR-10
baseline by 4.77% in the none case and the noisy CIFAR-100 baseline by 8.77% in the DDN attack
case.

Table 10: Accuracy (%) of baseline and our AdCorDA approach on CIFAR datasets using ResNet-34
with and without 20% noisy labels.

Dataset Approach  Attack  Corr. Rate Train Test

BL - - 76.26 91.07
CIFAR-10-noisy BL-IST None - 78.98 95.84 (+4.77)
BL-IST DDN 10685/10685  78.22 93.40 (+2.33)

BL - - 72.92 72.71
CIFAR-100-noisy ~ BL-IST None - 75.07 81.31 (+8.54)
BL-IST DDN 12188/12188  77.40 81.54 (+8.77)

BL - - 99.43 94.22
CIFAR-10 BL-IST None - 99.81 96.40 (+2.18)

BL-IST DDN 80/80 100.00  96.71 (+2.49)

BL - - 94.36 78.41
CIFAR-100 BL-IST None 95.26 82.98 (+4.57)

BL-IST DDN 2538/2538 99.97 83.64 (+5.23)
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