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For example, Graph Neural Networks (GNNs) can be effectively used
for various molecular property prediction tasks in chemistry and material
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(B) Latent Space Clustering . e By understanding the internal behavior of high-performing models we can
4 s learn about the structure-property relationships of the underlying tasks.
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8 ; ogg 0%80 @ Causal Hypothesis: e We can gain understanding of a model’s inner workings
S R The carbon ring motif (C1=CC=CC=CL) through various Explainable Al (xAl) methods.
xXB © &0 is likely associated with a -1.1 contribution ARXIV.ORG
to water solubility due to it's non-polar
nature.
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Extract Scientific Insights from High-Performing Al Models

c. Analyzing Concept Clusters d. LLM-based Causal Hypothesis

a. Explainable MEGAN Model b. Clustering Latent Explanations

e Train Multi-Explanation Graph e Contrastive learning objective: e Each explanation embedding is e Convert representative proto-

Attention Network (MEGAN)
for molecular property predic-

tion.

e Model creates Local Explana-
tion Masks directly alongside
main target prediction.

latent space similarity = struc-
tural similarity of subgraph mo-
tifs.

e Latent space clusters = ele-
ments with similar local expla-
nation.

e HDBSCAN clustering to find
dense clusters of elements in la-
tent space.

associated with an average con-
tribution towards the final pre-
diction outcome.

Associating Structure (cluster
motif) with Property (average
contribution).

Genetic Algorithm finds a small
yet representative Prototype
Graph for each cluster.

type graph for each cluster into
string SMILES representation.

Prompt language model (e.g.
GPT-4) with prototype SMILES
and average contribution.

Language model creates a hy-
pothesis about a possible causal
reason behind the observed
structure-property relationship.

Global Concept Explanations for Graph Neural Networks...

AqSolDB - LogS Water Solbuility Prediction

Mutag - Mutagenicity Classification

Non-Mutagenic

max nodes = 3 max nodes = 4

max nodes = 24 max nodes = 3

Mutagenic

max nodes = 4 max nodes = 24
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Molecules containing the "C-O" substructure have a tendency to be soluble in water. The polar nature of the
@ carbon-oxygen bond and the ability to form hydrogen bonds with water molecules are hypothesized to be the
driving forces behind the high influence on water solubility.

.Rediscover Known Structure Property Relationships From Chemistry Literature
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(v)) consistent with hypotheses previously published by Kazius et al. [4].
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