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ABSTRACT

Elo rating, widely used for skill assessment across diverse domains ranging from
competitive games to large language models, is often understood as an incremental
update algorithm for estimating a stationary Bradley-Terry (BT) model. However,
our empirical analysis of practical matching datasets reveals two surprising findings:
(1) Most games deviate significantly from the assumptions of the BT model and
stationarity, raising questions on the reliability of Elo. (2) Despite these deviations,
Elo frequently outperforms more complex rating systems, such as mElo and pair-
wise models, which are specifically designed to account for non-BT components
in the data, particularly in terms of win rate prediction. This paper explains this
unexpected phenomenon through three key perspectives: (a) We reinterpret Elo
as an instance of online gradient descent, which provides no-regret guarantees
even in misspecified and non-stationary settings. (b) Through extensive synthetic
experiments on data generated from transitive but non-BT models, such as strongly
or weakly stochastic transitive models, we show that the “sparsity” of practical
matching data is a critical factor behind Elo’s superior performance in prediction
compared to more complex rating systems. (c) We observe a strong correlation
between Elo’s predictive accuracy and its ranking performance, further supporting
its effectiveness in ranking.

1 INTRODUCTION

The Elo rating system, introduced by Arpad Elo (Elo, 1961), is a widely-used method for rating player
strength in two-player, zero-sum games. Initially developed for chess, Elo has since been adopted
across a broad range of games, including Go, sports, video games, and recently, in evaluating large
language models (LLMs) and AI agents. Elo rating is usually interpreted as an incremental update
algorithm for estimating an underlying stationary Bradley-Terry (BT) model. BT model assumes
each player i has a scalar strength rating θ[i] (which does not change), and for a single game between
player i and j, the probability that player i wins is σ(θ[i] − θ[j]), where σ is the logistic function.
Based on this model, after each game, Elo rating system will adjust each player’s rating according to
the actual game result.

Despite the widespread use of Elo, its foundation on games following stationary BT models appears
restrictive. In this paper, we first examine whether the BT assumption holds in real-world datasets.
Using a likelihood ratio test, we show that game outcomes in many datasets deviate significantly
from the BT model, indicating substantial model misspecification. Furthermore, we observe that
player skills and matchmaking distributions are often non-stationary. This raises serious concerns
over Elo’s reliability on practical uses. Surprisingly, we also observe that, despite these deviations,
Elo still frequently outperform more complex models, such as mElo and pairwise methods—designed
to capture non-BT components—in predicting outcomes of the real-world games. These findings call
for a deeper understanding of Elo beyond its conventional interpretation as a BT model parameter
estimator. In this paper, we explore this phenomenon through three key perspectives.

First, we interpret the Elo rating system through the lens of regret minimization. Specifically, Elo can
be seen as an instance of online gradient descent—an online convex optimization (OCO) algorithm
with sublinear regret guarantees, even in adversarial settings. This covers both non-stationary
environments and data that deviate from the BT model. Consequently, Elo performs well as long as
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the best BT model in hindsight provides a reasonable fit to the data and sufficient data is available to
keep regret small.

Second, we conduct synthetic experiments to systematically evaluate different algorithms in controlled
settings. We test on transitive but non-BT games, including those following strongly and weakly
stochastic transitive models, and introduce non-stationary factors such as Elo-based matchmaking and
dynamic player strengths to better reflect real-world scenarios. Our findings reveal that data “sparsity”
plays a crucial role in prediction performance, driven by a trade-off between model misspecification
error and regret. In sparse datasets—where the number of games per player is low—regret becomes
the dominant factor in performance, favoring simpler models like Elo, which incur lower regret
despite higher misspecification error. In contrast, more complex models such as mElo and pairwise
methods achieve lower misspecification error but suffer from a significantly higher regret. We
confirm that many real-world games operate in this “sparse” regime, explaining Elo’s strong empirical
performance. However, in “dense” regimes, where players engage in more games, Elo is outperformed
by more complex models when applied to non-BT data.

Finally, we also investigate the ranking performance of Elo. For pairwise ranking, we find a strong
correlation between prediction accuracy and ranking accuracy. However, we caution that Elo should
not be blindly trusted, as it can fail to produce consistent total orderings under arbitrary matchmaking,
even in transitive datasets.

In summary, our contributions include: (1) Demonstrate that real-world game data often violates
the BT model via likelihood ratio tests. (2) Show that Elo achieves strong predictive performance
even in non-BT datasets. (3) Interpret Elo through a regret-minimization framework, proving its
effectiveness in nonstationary setting under model misspecification. (4) Highlight the role of data
sparsity in algorithms’ prediction performance, with extensive synthetic and real-world experiments.
(5) Explore the correlation between prediction accuracy and ranking, theoretically study Elo’s ranking
performance under different matchmaking setups.

1.1 RELATED WORK

Methods for rating game players A large number of rating methods used in practice can be
viewed as variants of Elo, most notably Glicko (Glickman, 1995), Glicko2 (Glickman, 2012) and
TrueSkill (Herbrich et al., 2006). A common characteristic shared by these methods is that they
assume a scalar rating for players with parametric probabilistic model (Bradley-Terry in Glicko and
Thurstone in TrueSkill) and make incremental gradient-like updates for each game or a small batch
of games. mElo (Balduzzi et al., 2018) and Disk Decomposition (Bertrand et al., 2023) generalize
Elo score by rating every player with a multi-dimensional vector instead of a scalar. Their approach
can be understood as low-rank approximation of the logits of the winning probabilities. In our work
we regard them as Elo2k, and examine their performance is a central part of our work.

Bayeselo (Coulom, 2005) and WHR (Coulom, 2008) are two popular Bayesian methods that are also
based on the BT model. They differ from Elo-like incremental updates by requiring more compute to
produce a maximum a posteriori estimator every step.

Analysis of Elo score Despite its popularity and wide applicability, the analysis of Elo score
is “curiously absent” (Aldous, 2017). Elo discussed practical concerns and small-scale statistical
validations of the method in Elo (1978). Most related to this work, however, is the proposal of the
linear approximation of the update formula. Aldous (2017) proved the existence and uniqueness
of a stationary distribution under the Elo update rules without assuming realizability. However, the
nature of this stationary distribution is not explored. de Pinho Zanco et al. (2024) analyzed the
convergence of Elo score assuming round-robin match making, realizability of the Bradley-Terry
model and linearization of σ. For more empirical and simulation results, see Király & Qian (2017)
and references within.

Misspecification of the Bradley-Terry Model The Bradley-Terry (BT) model and related para-
metric preference models have been criticized for being inaccurate models of human prefer-
ences (Ballinger & Wilcox, 1997). For example, Oliveira et al. (2018) show that the BT model does
not fit match data from∼200 computer chess programs.Bertrand et al. (2023) further demonstrate that
extending BT to a k-dimensional model improves prediction on synthetic datasets (Czarnecki et al.,
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2020),suggesting misspecification. However, their synthetic datasets are payoff matrices (between
each pair of players), which differ significantly from real game datasets which are typically sparse
and binary.

A line of work focus on testing the independence of irrelevant alternatives (IIA) assumption (Hausman
& McFadden, 1984; Seshadri & Ugander, 2019; Cheng & Long, 2007), which implies the BT model
in pairwise comparisons. However, rejecting IIA may not suffice to reject BT, since it is a weaker
condition. More recently, Makur & Singh (2023) developed a minimax test for BT, but it assumes
each pair is compared multiple times, making it impractical for sparse datasets like Chess or Go,
where many player pairs never compete. In contrast, our proposed test applies even in such sparse
regimes.

Finally, the BT model assumes transitivity, yet non-transitive or cyclic behavior is well-documented
in games (Samothrakis et al., 2012; Chen & Joachims, 2016; Omidshafiei et al., 2019; Czarnecki
et al., 2020). While detecting such violations would refute BT, statistical testing is difficult when
most player pairs have no match data.

Learning to rank There has been a long line of work studying various flavors of learning-to-rank
(for instance, see Liu et al. (2009); Negahban et al. (2012); Braverman & Mossel (2009); Shah &
Wainwright (2018) and references within), where the focus is to construct a global ranking based on
a dataset partial observations. While highly relevant to task of rating game players, we note that these
methods generally receive less attention in game-related applications. These methods are typically
not able to predict win-loss probability of a particular matchup either. For these reasons, we focus on
understanding Elo and the rating systems within the family of Elo in the scope of this work. We left
the connection and comparison to other learning-to-rank methods as important future directions.

2 PRELIMINARY

We consider the scenario where N players play against each other in a sequential manner. Specifically,
for every t ∈ [T ], players it ∈ [N ] and jt ∈ [N ] are chosen by the matchmaking scheme to play
against each other at time t. The outcome ot ∈ [0, 1] denotes the utility of player it, which can be
chosen as 1, 1/2 and 0 to denote a victory, a draw and a loss respectively; Player jt receives utility
1 − ot. There are two main tasks in this setting. The first task is prediction, i.e., predicting the
outcomes of the game. At time t, the learner is tasked to gives a prediction pt for the player it’s
win rate against jt, after observing the previous games {(ik, jk, ok)}t−1

k=1 and the two players at the
current round (it, jt). It is natural to evaluate the prediction accuracy of the algorithms by binary
cross entropy loss

ℓt := −(ot ln pt + (1− ot) ln(1− pt)). (1)
The accumulated loss until time t is Lt :=

∑t
i=1 ℓi. The second task is ranking, i.e., give a total

order or pairwise order for all players according to their relative strength. A total order ranking is
well-defined only if the underlying game has a transitive structure. For simplicity of discussion, this
paper will mostly focus on prediction, and leave the discussion of ranking to Section 4.3.

2.1 ALGORITHMS

Here, we introduce several important and representative online rating algorithms.

Elo rating: Elo maintains a scalar rating (which is also refered as score) for each player. Concretely,
let θt ∈ RN denote the ratings of all players at time t, then Elo scores can be computed using updates:

pt ← σ (θt[it]− θt[jt]) ,

θt+1[it] ← θt[it] + ηt (ot − pt) ,

θt+1[jt] ← θt[jt]− ηt (ot − pt) .

(2)

Here σ = 1/(1 + e−x) is the logistic function. Elo is often understood under the assumption that the
outcome of the game is sampled from the Bradley-Terry (BT) model:

P[ot = 1|it, jt] = σ(θ⋆[it]− θ⋆[jt]). (Bradley-Terry)
where θ⋆[i] represents the true score of player i. In this case, Elo update is simply an incremental
update algorithm for estimating the parameters θ⋆ of the BT model.
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Dataset N 2T/N Test Statistic p-value Accuracy of Rating Algorithms
Elo Glicko TrueSkill Elo2k Pairwise

Renju 5k 49.8 150.0 < 10−10 0.6039 0.6100 0.5995 0.6109 0.6688
Chess 185k 125.4 2020.1 < 10−10 0.6391 0.6349 0.6308 0.6387 -
Tennis 7k 52.5 37.3 < 10−4 0.6242 0.6232 0.6209 0.6365 0.6820
Scrabble 15k 200.7 142.2 < 10−10 0.6730 0.6766 0.6756 0.6787 0.6894
StarCraft 22k 38.7 775.8 < 10−10 0.5713 0.5689 0.5828 0.5832 0.6753
Go 426k 60.4 193411.2 < 10−10 0.6443 0.6375 0.6321 0.6372 -
LLM Arena 129 23156.9 73.1 1× 10−3 0.6607 0.6602 0.6611 0.6611 0.6619
Hearthstone 27 4626.1 49.0 < 10−4 0.6898 0.6893 0.6894 0.6847 0.6853

Table 1: Summary of real-world dataset experiments. “Test Statistic" and “p-value" indicates the test
statistic and the corresponding p-value; “Accuracy of Rating Algorithms" indicates the cross entropy
loss at time T of each algorithm.

Glicko, TrueSkill — “Elo-like" rating: The second class of rating systems we examine consists of
Glicko (Glickman, 1995) and TrueSkill (Dangauthier et al., 2007). Similar to Elo, they assume total
ordering among players, and mainly use a scalar rating to represent the relative strength of each player.
Different from Elo, Glicko additionally introduces a “rating deviation” parameter for each player
which measures the uncertainty in the rating. Trueskill is similar to Glicko, but instead assuming
the outcomes are sampled from a different probabilistic model, which changes the σ function in
BT models from logistic function to the cumulative distribution function of Gaussian, up to proper
renormalization.

Elo2k, Pairwise — more complexity rating systems: These systems are much more flexible
than Elo, Glicko, TrueSkill—they no longer assume the total order among players, and are able to
model cyclic structure among players (i.e., player A beats player B, player B beats player C, and
player C beats player A). In particular, Elo2k generalizes Elo by assign each player with a vector
rating of dimension k, instead of a scalar rating. It is also known as mElo (Balduzzi et al., 2018) or
Disk Decomposition (Bertrand et al., 2023). This algorithm has Nk parameters. Pairwise simply
computes the pairwise win rate for each pair of players up to time t − 1, and use this win rate as
the prediction for round t. This algorithm has N(N − 1)/2 parameters, and is the most expressive
rating system. For detailed prediction rule and update rule of the aforementioned algorithms, see
Appendix D. In this paper, we consider Elo, Glicko, Trueskill to be similar algorithms as they achieve
qualitative similar results across almost all experiments we ran, despite the actual numbers being
slightly different. We mainly compare Elo against more complex algorithms such as Elo2k and
Pairwise. This is because the focus of this paper is on model misspecification. As we observe in a
majority of our experiments, more complex algorithms have a clear advantage in reducing the model
misspecification errors.

2.2 DATASETS

We utilize human gameplay data from online platforms for Chess, Scrabble, StarCraft, Hearthstone,
and Go, as well as professional match records for ATP tennis (Sackmann, 2023) and Renju. Addi-
tionally, we incorporate human preference data from Chatbot Arena (Zheng et al., 2023), which can
be alternatively viewed a game where LLM agents compete, with outcomes determined by human
judgment.

3 EXPERIMENTS ON REAL-WORLD MATCHING DATA

In this section, we conduct experiments on real-world datasets. Surprisingly, we find that most games
deviate significantly from the assumptions of the BT model and stationarity, raising questions on the
reliability of Elo. Despite these deviations, Elo frequently outperforms more complex rating systems,
such as mElo and pairwise models, which are designed to account for non-BT components in the
data, particularly in terms of win rate prediction.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 REAL-WORLD GAMES ARE NEITHER BT NOR STATIONARY

In the Elo rating update rule (2), σ(θ[i] − θ[j]) represents the predicted win probability of player
i against player j . This prediction relies on the assumption that the underlying data follows the
Bradley-Terry (BT) model. However, whether real-world data truly follows a stationary BT model
remains unverified. In this section, we conduct a likelihood ratio test on real-world datasets to
examine the hypothesis that real-world game outcomes are generated by the BT model. Our results
indicate that, across all examined datasets, the hypothesis is rejected, suggesting that real-world data
does not follow the BT model. Furthermore, we provide evidence that both matchmaking and player
skill exhibit non-stationarity in real-world games. These findings suggest that model misspecification
widely exists when applying Elo to real-world data.

Rejecting BT on real-world dataset Note that the Bradley-Terry model can be equivalently written
as a logistic regression model, where the parameter θ is N -dimensional, and every game has a feature
vector xt := e[it] − e[jt] ∈ RN . We randomly split [T ] into Ttrain and Ttest = [T ] \ Ttrain. Then
the logistic regression loss on the test set is defined as

Ltest(θ) =−
∑
t∈[T ]

[
ot ln(σ(θ

⊤xt)) + (1− ot) ln(1− σ(θ⊤xt))
]
.

Next, we augment the logistic model by adding two additional parameters α ∈ R2, and a two
dimensional feature gt ∈ R2 for every game. In practice, gt is constructed using the training set
Ttrain (see Appendix B for details, where two different augmentation strategies are provided). Define
the negative log likelihood of the augmented model as

L̃test([θ;α]) =−
∑

t∈Ttest

[
ot ln(σ(θ

⊤xt + α⊤gt)) + (1− ot) ln(1− σ(θ⊤xt + α⊤gt))
]
.

If dataset is indeed realizable by a BT model with true scores θ⋆, the augmented model is also
realizable with [θ⋆; 0] as long as gt and ot are independent, because E[ot|it, jt, gt] = σ(θ⋆[it] −
θ⋆[jt]). Therefore, we can test the BT model by testing the null hypothesis H0 : α = 0. We employ
the standard likelihood ratio test, which uses the log-likelihood ratio statistic:

Λ := 2
[
minθ∈RN Ltest(θ)−minθ∈RN ,α∈R2 L̃test([θ;α])

]
.

By Wilks’ Theorem (Wilks, 1938; Sur et al., 2019), under the null hypothesis that the real-world
dataset is generated by Bradley-Terry model, Λ is asymptotically distributed as a chi-square distribu-
tion with two degrees of freedom. This allows us to compute the p-value, which is the probability that
the test statistic occurs under the null hypothesis due to pure chance. We compute the log-likelihood
ratio statistic Λ for eight real-world datasets and report the corresponding p-values (see Table 1). It
can be seen that we can reject the null hypothesis, namely realizability of the Bradley-Terry model,
with extremely high confidence, for all eight datasets.

Matchmaking and player skills are non-stationary Additional observations that we draw from
real-world datasets are the existence of non-stationary matchmaking and player’s skills. We post-
pone details to Appendix C. These phenomena suggest that the real world games are non-BT and
non-stationary. Consequently, viewing Elo rating as fitting a underlying BT-model might not be
appropriate.

3.2 ELO ACHIEVES GOOD PERFORMANCE UNDER MODEL MISSPECIFICATION

Section 3.1 establishes that real-world games do not follow a stationary BT model, highlighting
model misspecification in the applicaton of the Elo rating system. This raises important concerns
regarding Elo’s reliability in practical settings. In particular, it prompts the question of whether
more sophisticated rating algorithms, such as Elo2k or Pairwise, which may better capture the
underlying game distributions, could yield improved predictive performance. However, we examine
the prediction accuracy for the next game outcome of various online algorithms in real-world datasets,
and surprisingly find that despite the model misspecification, “Elo-like" algorithms still achieve
strong predictive performance, outperforming complex algorithms even in some non-BT datasets. For
each dataset, we compute the cumulative loss 1

T LT for Elo, Elo2k (with k = 4), Glicko, TrueSkill,

5
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and Pairwise.1 The results, summarized in Table 1, show that in several real-world datasets, including
Renju, Chess, Tennis, Scrabble, StarCraft and Go, Elo and “Elo-like" rating outperform
more complexity rating systems such as Elo2k and Pairwise.

4 UNDERSTAND ELO UNDER MISSPECIFICATION

The findings in Section 3.2 that the “Elo-like" algorithms outperform more complexity rating systems
in some non-BT datasets, underscore the importance of adopting a new perspective on Elo (and other
online algorithms), moving beyond the traditional view that Elo is merely a parameter estimation tool
for the BT model.

In this section, we will explain this unexpected phenomenon through three key perspectives. First, we
view game rating through the lens of regret minimization in online optimization. Specifically, Elo can
be reinterpreted as an instance of online gradient descent under convex loss, which provides no-regret
guarantees even in misspecified and non-stationary settings. Second, further synthetic experiments
on non-BT and non-stationary datasets show that the “sparsity" of dataset is a critical factor in the
performance of algorithms, driven by a trade-off between model misspecification error and regret.
Finally regarding the ranking performance, we show that the pairwise ranking performance is strongly
correlated with prediction performance, though Elo should not be blindly trusted since it can fail to
produce consistent total orderings even in transitive datasets.

4.1 NEW LENS VIA REGRET MINIMIZATION

In this section, we will view game rating through the lens of regret minimization in online optimization.
We will adapt the framework of Online Convex Optimization (OCO) to the online algorithms. To
facilitate our presentation, we briefly introduce OCO, following Hazan et al. (2016)’s definition.

Online Convex Optimization At iteration t, the online player chooses xt ∈ K according to the
information in steps 1, 2, · · · , t− 1 . After the player has committed to this choice, a cost function
ft ∈ F : K → R is revealed. Here, F is the bounded family of cost functions available to the
adversary. The cost incurred by the online player is ft(xt), the value of the cost function for the
choice xt. Let T denote the total number of game iterations. The regret is defined as

RegretT :=
∑T

t=1 ft(xt)−minx∈K
∑T

t=1 ft(x),

that is, the cumulative loss minus the optimal loss in hindsight.

It turns out that online rating algorithms can be evaluated under this framework. At each time t, let ft
be the binary cross entropy loss function induced by the players it and jt and the outcome ot, and xt

be the parameters updated by algorithms:

ft(xt) := −(ot ln pt + (1− ot) ln(1− pt)).

Here pt is actually related to the parameter xt. Under this formulation, we have

LT = Model misspecification error + RegretT . (3)

From this equation, we can see that the cumulative loss consists of two components, the model
misspecification error (optimal loss in hindsight) and the regret. The trade-off between these two
terms will be illustrated in extensive experiments.

Elo as online gradient descent For Elo update, xt := θt ∈ RN , is the parameter of the underlying
BT model (the Elo score). pt := σ(θ[it] − θ[jt]) is the prediction. The gradient of ft is given by
∇θft(θ) = −(ot − pt)(eit − ejt). We can see that the Elo score update is actually online gradient
descent with learning rate ηt at each step t. Notice that ft is a convex function (one can refer to
Appendix D for detail). Therefore we can apply the regret bound for online gradient descent under
convex loss (Hazan et al., 2016, Theorem 3.1):

1The experimental details can be found in Appendix E.
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Theorem 1. For convex cost functions {ft}Tt=1 and convex set K, online gradient descent with step
sizes {ηt = D

G
√
t
} guarantee the following for all T > 1:

RegretT =
∑T

t=1 ft(xt)−minx∈K
∑T

t=1 ft(x) ≤
3
2GD

√
T ,

where D is the upper bound on the diameter of K, and G is an upper bound on the norm of the
subgradients of ft over K.

In the context of Elo update, since θ ∈ RN , and in experiments we observe that ∥θ∥∞ ≤ 5, which
means we can choose D = 10

√
N . For G, recall ∇θft(θ) = −(ot − pt)(eit − eit), we have

G ≤
√
2. Therefore we conclude that online Elo score update will have the following regret bound:

1
T RegretT ≤ C

√
N
T for some absolute constant C, with learning rate ηt =

√
N
t . Notice that this

regret bound even holds under misspecified and non-stationary settings, which explains Elo’s good
performance in non-BT datasets, as long as the best BT model in hindsight provides a reasonable fit
to the data.

We can also formulate the Elo2k update under online optimization framework as the following:

ft(θ) := −(ot ln pt + (1− ot) ln(1− pt)),

where θ = (U, V ), where U = (u1, · · · , uN ), V = (v1, · · · , vN ), ui, vi ∈ Rk. The prediction
pt = σ(uT

it
vjt − uT

jt
vit). Then the Elo2k online update will be online gradient descent. However, the

loss function is non-convex, therefore a general guarantee of OGD under Elo2k model is lacking.

4.2 SYNTHETIC EXPERIMENTS: SPARSITY IS CRITICAL

To further justify our interpretation of why Elo performs well even in non-BT datasets, in this section,
we will conduct extensive synthetic experiments, as well as experiments on augmented real-world
data. These experiments further show that the “sparsity" of the dataset plays a crucial role in the
performance of algorithms.

Synthetic experiments on non-BT datasets We begin with the scenario where the players’ skills
are stationary in the sense that E[ot|it = i, jt = j] = Pij for some matrix P ∈ RN×N . We consider
the following two notions of the transitivity:

Definition 1 (SST). P is strongly stochastic transitive (SST) with respect to ordering π if π(i) > π(j)
implies Pik ≥ Pjk for all k ∈ [N ].

Definition 2 (WST). P is weakly stochastic transitive (WST) with respect to ordering π if π(i) > π(j)
implies Pij ≥ 1

2 .

It is well-known that BT implies the SST condition, and SST further implies WST (see Appendix F.1
for details of the constructed P ). For each of these types of P , we generate P for N = 1000 and
N = 100. For each instance of P , we generate T = 105 games following uniform matchmaking
distribution, that is, for every t ∈ [T ], sample it ∼ Uni([N ]), then independently sample jt ∼
Uni([N ]). For each algorithm, we choose the best hyperparameter (for details of choosing the best
hyperparameter, see Appendix F.2), we plot the corresponding 1

tLt with respect to time step t/N
(Figure 1 for N = 1000 and Figure 3 for N = 100). The model misspecification error (optimal
loss in hindsight) at time T is also plotted for N = 100. We can see from Figure 1 and 3 that
the effectiveness of rating algorithms is shaped by the interaction between data sparsity and model
complexity. There is a trade-off between the regret and the model misspecification error: when the
samples are sparse, i.e., t is small, the dominating term in the cumulative loss will be the regret, Elo2k
or Pairwise suffers from a huge regret. Under this scenario, Elo and its variants performs well due to
its low regret, even though BT model is non-realizable. For dense regime, i.e., t is large, the regret
for both Elo and Elo2k will be closer to zero. Under this scenario, Elo2k or Pairwise may achieve
superior performance when they achieve a lower misspecification error due to their greater model
capacity.

Non-trivial matchmaking and varying player strengths We further justify our regret-
minimization framework through synthetic experiments under the scenario where the player strengths

7
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Figure 1: Elo outperforms Elo2k in sparse
datasets. We can see that Elo consistently outper-
forms Elo2k for 0 ≤ t ≤ T . One can also observe
that when t gets larger, Elo2k’s performance is
rapidly improving.

Figure 2: Elo is more robust to non-stationary
matchmaking and player strengths. Compared
with Figure 1, we can see that the performance of
Elo2k deteriorates more than Elo.

Figure 3: Elo2k has the potential to outperform
Elo in dense datasets. When t is large, the regret
are close to zero for all algorithms, and Elo2k
outperforms Elo when the gap between Elo and
Elo2k in hindsight baselines are large.

Figure 4: Pairwise ranking is consistent with
prediction Elo performs the best for small t,
Elo2k performs well for moderate t, Pairwise per-
forms the best for large t.

can vary and a non-trivial matchmaking exists. We plot the performance of each algorithm in non-
stationary datasets (N = 1000) in Figure 2 (see Appendix F.3 for experiment details). Comparing
Figure 1 with Figure 2, we can see that when non-trivial matchmaking exists and the player strength
are varying, Elo still performs reasonably well, while Elo2k exhibits a significant deterioration in
performance. This also justifies our finding: Elo as online gradient descent, is guaranteed to achieve
a low regret, even under non-trivial matchmaking and non-stationary player strengths.

Experiments on real-world data Similar behaviors also appears in real-world datasets. Other
than the real-world datasets examined in Section B, we also use Blotto and AlphaStar data

8
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from Czarnecki et al. (2020), where we generate game data from the original payoff matrix. To
create denser datasets, we augment datasets from Czarnecki et al. (2020) by simply creating identical
copys. For each real-world dataset, we plot the corresponding 1

tLt for each algorithm with respect to
time step t/N (Figure 7). We can also see that sparsity plays a crucial role in those real-world (or
augmented) datasets, as in the previous synthetic experiments. See Appendix E for details.

4.3 RANKING PERFORMANCE OF ELO

Besides prediction, ranking is another important aspect that users consider when utilizing rating
algorithms. There are two types of ranking: (1) for general P , we can consider the pairwise ranking,
i.e., for each pair (i, j) ∈ [N ]× [N ], there is a ranking between i, j that is induced by Pij . (2) for
transitive P , there exists a ground truth ranking π induced by the transitivity. In this subsection, we
will show that for pairwise ranking, the ranking performance is strongly correlated to prediction
performance. Elo rating, achieves good performance of pairwise ranking in sparse regimes. However
Elo should not be blindly trusted, since for the total ordering, Elo may not always give a consistent
ranking, even in transitive datasets.

Good prediction gives good pairwise ranking Regarding the pairwise ranking, it is natural to
conjecture that pairwise ranking performance is correlated with the prediction performance, and
our synthetic experiments justify this claim. We consider the same setup as the previous synthetic
experiments for prediction (Section 4.2), and we calculated the pairwise ranking consistency for each
algorithm at each time step: at time t, an algorithm can actually give an prediction P̂ij for every pair
(i, j) ∈ [N ]× [N ]. We calculate the following quantity: τ := 1

N(N−1)

∑
i̸=j(1[Pij > 0.5]1[P̂ij <

0.5] + 1[Pij < 0.5]1[P̂ij > 0.5]). Lower the value, more consistent the pairwise ranking. We
plot τ against t/N for Elo, Elo2k and Pairwise in Figure 4. e can see that the ranking performance
is strongly correlated with the prediction performance. To be specific, similar to the prediction
accuracy, in most sparse regimes, Elo performs well in pairwise ranking. However in denser regimes,
algorithms based on more complex models, such as Elo2k, may show advantage on pairwise ranking.

Elo might not give consistent total ordering even for transitive models For transitive models,
we can consider the total ordering induced by the transitivity. Elo rating, is still able to give a total
ordering based on the score of each player. We will show that even though Elo can give a consistent
total ordering under uniform matchmaking, it can not be blindly trusted as it may fail under arbitrary
matchmaking.

From theoretical perspective, we consider the regime where T goes to infinity. In this regime, by the
no regret nature of OGD, one can see that the online Elo update will finally converge to the offline Elo
solution argminθ∈K

1
T

∑T
t=1 ft(θ). Also we can see that when T →∞, 1

T

∑T
t=1 ft(θ) converge to

its population counterpart. Therefore we will consider θmle, the population MLE for BT model. We
have the following result:

Theorem 2. Under uniform matchmaking, θmle gives identical ranking as P , where

P [i] :=
∑T

t=1(1[it=i]ot+1[jt=i](1−ot))∑T
t=1(1[it=i]+1[jt=i])

is the average win rate for player i.

the formal statement and proof is deferred to Appendix G.1. Notice that under SST models, the
ground truth ranking is identical to the ranking given by average win rate. Therefore this theorem
shows that under SST model, Elo recovers the true ranking when T goes to infinity, under uniform
matchmaking.

However, when the underlying model is WST, the ranking induced by average win rate may not
be correct, therefore Elo is not guaranteed to be consistent. Moreover, when the matchmaking is
arbitrary, Elo score can produce inconsistent rankings for SST instances even when η → 0 and
T → ∞. We also show through a synthetic experiment that even in the case where only ranking
among players that have confidently separated Elo scores are considered, Elo still may not give
consistent ranking. For these results, see Example 1 in Appendix G for detail. This suggest that
although Elo can give good ranking results in many regimes, it can not be blindly trusted.
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A DATASET DESCRIPTION

Renju We use the RenjuNet dataset 2, where N = 5013 and T = 124948.

LLM Arena We use the Chatbot Arena 3 dataset, where N = 129 LLMs are evaluated through
T = 1493621 battles.

Chess We use online standard chess matches on the Lichess open database 4 in the year of 2014,
which covers N = 184920 players and T = 11595431 games.

Mixedchess We use online matches on the Lichess database 5, for the following variants of chess:
Antichess, Atomic, Chess960, Crazyhouse, Horde, King of the Hill, Racing Kings and Three-check.
We collect all the matches from 2014 to 2024, and combine them together to form a large dataset
with N = 2467134 and T = 115525041. We apply filtering 6 with threshold = 10000, and create
mixedchess-dense, where N = 2862 ,T = 11791126.

Tennis We make use of an online repository created by Jack Sackmann 7. We used all T = 190230
games between 7245 players.

StarCraft We downloaded match records from human players from Aligulac 8. N = 22056 and
T = 427042.

Scrabble We used the raw data provided in Roeder (2017), which are scraped from http://
cross-s(2)tables.com. N = 15374 and T = 1542642.

Go We use the Online Go Server (OGS) database 9, which contains T = 12876823 games between
426105 players. We also filter the dataset with threshold 5000, to get go-dense with N = 480 and
T = 516343.

Hearthstone We use the Deck Archetype Matchup data scraped from https://metastats.
net/hearthstone/archetype/matchup/. N = 27 and T = 62453.

Blotto We use the 5,4-Blotto and 10,5-Blotto data from Czarnecki et al. (2020). The original data
is a payoff matrix between different strategies, whose entries are between [−1, 1]. For strategies
i and j, let the payoff for i against j be rij , we let pij := 0.5(rij + 1). For 5,4-Blotto
and 10,5-Blotto, we create games (it, jt, ot) := (i, j, pij) for each (i, j) where i ̸= j. For
5,4-Blotto-sparse, we create 0−1 game results by drawing oij ∼ Ber(pij) and create games
(it, jt, ot) := (i, j, oij). For 5,4-Blotto-dense, we create 0 − 1 game results by drawing 10
independent oij ∼ Ber(pij) and create 10 games (it, jt, ot) := (i, j, oij) for each pair of (i, j).
10,5-Blotto-sparse and 10,5-Blotto-dense are similarly created. N = 56, T = 3080
for 5,4-Blotto and 5,4-Blotto-sparse. N = 56, T = 30800 for 5,4-Blotto-dense.
N = 1001, T = 1001000 for 10,5-Blotto and 10,5-Blotto-sparse. N = 1001, T =
10010000for 10,5-Blotto-dense.

AlphaStar We use the AlphaStar data from Czarnecki et al. (2020). The creation procedure for
AlphaStar, AlphaStar-sparse, AlphaStar-dense are the same as in Blotto. For all the
three dataset, N = 888. T = 787656 for the first two datasets, and T = 7876560 for the last one.

2https://www.renju.net/game/
3https://chat.lmsys.org/
4https://database.lichess.org/
5https://database.lichess.org/
6To create denser dataset, we conduct filtering on mixedchess and go. Our filtering method is: for a given

threshold, we delete all the players that plays less than this threshold. Then we only consider the remaining
players and the games played between them.

7https://github.com/JeffSackmann/tennis_atp
8http://aligulac.com/about/db/
9https://github.com/online-s(2)go/goratings
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B DETAILS OF THE LIKELIHOOD RATIO TEST

We explain in this section the details of our likelihood ratio tests.

High-dimensional scenario For high-dimensional logistic regression, Sur et al. (2019) showed
that Λ is asymptotically distributed as a scaled chi-square distribution if T/N = O(1). We applied
the correction suggested by Sur et al. (2019) by computing the p-value conservatively with 1.25χ2

2.
This factor is computed when the number of samples is 5 times the model dimension, although the
number of samples is at least 19 times the model dimension in our datasets.

Symmetrization Before performing the tests, we reversed the order of the two players (and
flipped the game outcome) for every game with probability 0.5 to eliminate first-move advantage (or
disadvantage), which is well-documented (Elo, 1978) and not the focus of this work. In other words,
we actually test the following weaker version of Bradley-Terry model:

1

2
(E [ot|it, jt] + E [1− ot|jt, it]) = σ (θ⋆[it]− θ⋆[jt]) .

B.1 FEATURE AUGMENTATION

Here we use two feature augmentation strategies. For both strategies, we split every dataset (indexed
by [T ]) randomly into equally sized Ttrain and Ttest. The augmented feature is constructed using
Ttrain, and the test is performed on Ttest. The test results are presented in Table 2.

Feature based on Elo score The first strategy is based on Elo score. To be specific, we fit a
regularized logistic regression model via

θtrain ← argmin
θ

∑
t∈Ttrain

ℓt(θ) +
λ

2
∥θ∥2,

where we chose λ = 10.0. Then the augmented features for match t is given by

gt := [θtrain[it], θtrain[jt]],

for every t in the test set. Under the Bradley-Terry model, the original logistic regression Ltest(θ)
already has sufficient information to predict ot, so adding the score computed on an independent
training set cannot help prediction (up to random noise).

Feature based on Elo2k The second strategy is based on fitting Elo2k model (Bertrand et al., 2023)
on dense datasets. We considered the loss

L̂ (u, v) :=
∑

t∈Ttrain

[−ot ln(σ(p̂))− (1− ot) ln(1− σ(p̂))] ,

where p̂ := u[it]v[jt]− u[jt]v[it]. The loss is optimized with gradient descent with early stopping.
We then define

gt := [u[it]v[jt], u[jt]v[it]]

as the augmented feature for game t. This method does not apply to sparse datasets as it requires a
dense dataset for the learning of u and v.

B.2 IMPLEMENTATION

All logistic regressions are implemented with JAX and optimized via L-BFGS.

B.3 AN ADDITIONAL MARTINGALE TEST

Although the previous test used randomly sampled Ttrain, it still needs to assume that the features
{xt}t∈Ttrain are independent with {yt}t∈Ttest . However, there is a concern that this may not be true

13
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Dataset Test Statistic
(Feature based on Elo) p-value Test Statistic

(Feature based on Elo2k) p-value

Renju 150.0 < 10−10 - -
Chess 2020.1 < 10−10 - -
Tennis 37.3 < 10−4 - -
Scrabble 142.2 < 10−10 - -
StarCraft 775.8 < 10−10 - -
Go 193411.2 < 10−10 - -
LLM Arena 81.627 0.443 73.1 1× 10−3

Hearthstone 1.447 0.485 49.0 < 10−4

Table 2: Summary of two Likelihood ratio tests based on different features

Dataset LR Test Statistic (η = 0.01) p-value LR Test Statistic (η = 0.08) p-value
Renju 3.66 0.23 226.92 < 10−10

Chess 6622.52 < 10−10 27908.30 < 10−10

Tennis 524.77 < 10−10 3571.70 < 10−10

Scrabble 174.52 < 10−10 3058.76 < 10−10

StarCraft 5.19 0.12 261.08 < 10−10

Go 52931.15 < 10−10 117318.3 < 10−10

LLM Arena 872.28 < 10−10 819.05 < 10−10

Hearthstone 69433.52 < 10−10 82005.34 < 10−10

Table 3: Summary of martingale-based Likelihood ratio test

if adaptive matchmaking is used – in that case, information about the test set labels {yt}t∈Ttest
may

be leaked through features of future games. 10

To address this concern, we consider yet another method to construct gt: by using the online Elo
rating up until this point. This enables us to relax the assumption of independence to the assumption
that the noise sequence

E[ot|it, jt]− σ(θ⋆[it]− θ⋆[jt])

is a martingale. This would enable us to model adaptive matchmaking.

Specifically, define
gt = [θt[it], θt[jt]],

where θ is computed using the past t − 1 matches with learning rate η. We can then proceed to
compute the likelihood ratio statistic Λ as in the previous tests. The distribution of Λ would still be
asymptotically χ2

2 for martingale noise (see e.g. Kedem & Fokianos (2005, Theorem 1.5.1)) The test
results are presented in Table 3.

B.4 ANALYSIS OF ALL THE THREE TEST RESULTS

Result for different augmented features The test results of two different strategies of augmenting
features are presented in Table 2. We can see that in sparse datasets (i.e., datasets excepts LLM
Arena and Hearthstone), the test that uses features based on Elo, rejects the null hypothesis
with high confidence. While for dense datasets such as LLM Arena and Hearthstone, test that
uses features based on Elo2k (which is more suitable for denser datasets), reject the hypothesis with
high confidence.

Martingale based test reject the null with high confidence We report the test results of martingale
based test in Table 3. We find that by using two learning rates (η = 0.01 and 0.08), we can reject the
null hypothesis that BT is realizable with extremely high confidence without assuming independence.

In summarize, we designed three different testing strategies to reflect different aspects of real
world datasets violating the BT model assumption. The results indicate that in real world, the data

10Regarding AlphaStar, 5,4-Blotto and 10,5-Blotto, recall that we construct the dataset according
to a payoff matrix, therefore no adaptive matchmaking is used. We do not need to further test these datasets.
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distribution is likely non-BT. In the main text, we report the testing results of non-martingale based
test in Table 1, where for LLM Arena and Hearthstone we report the results with Elo2k based
features, for other six datasets we report the results with Elo based features

C NON-STATIONARY MATCHMAKING AND PLAYER SKILLS IN REAL DATASETS

Another observation that we draw from real-world datasets is the existence of non-trivial matchmaking.
We computed the correlation coefficient between {θtrain[it]}t∈Ttest

and {θtrain[jt]}t∈Ttest
, and found

significant positive correlation for most datasets (see Table 4). In other words, in many real datasets,
stronger (higher-rated) players are matched with stronger opponents. We visualize the matchmaking
in chess in Fig. 5. Indeed, the Elo score of the two players are highly correlated, and most games
are played between two players within 20% in terms of the percentile difference based on their Elo
scores. Since the Elo score may vary from time to time, the matchmaking distribution should not be
considered as stationary.

Dataset Matchmaking Test p-value
Renju 0.36 < 10−10

Chess 0.40 < 10−10

Tennis 0.19 < 10−10

Scrabble 0.57 < 10−10

StarCraft 0.46 < 10−10

Go 0.29 < 10−10

LLM Arena 0.37 < 10−10

Hearthstone -0.07 < 10−10

Table 4: Summary of real world datasets matchmaking hypothesis testing results.

Figure 5: Matchmaking in chess dataset. L: scatter plot of Elo score of the two players for each
game, down-sampled for clarity; R: histogram for the percentile ranking difference of two players.

Bootstrap Experiments Another evidence of matchmaking comes from the nonstationarity of
gradients. If the distribution of {(it, jt, ot)} is exchangeable, we can permute the order of the games
randomly and the resulting Elo score θbootstrap should be identically distributed. We can therefore
detect nonstationarity by comparing θelo with the distribution of θbootstrap.

We compute the Elo score on 100 independent permutations in the each dataset. The average of these
samples is called the bootstrap average, and denoted by θ̄bootstrap.
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The results for chess is presented in Fig. 6. It can be seen that θelo, the Elo score computed with
the original order of gradients, is a significant outlier and is not identically distributed with θbootstrap

with high probability (p = 0.01 via the permutation test).

Figure 6: Elo score vs. bootstrap Elo scores in chess. Left: cosine similarity to the mean of
θbootstrap; Right: visualization of θelo vs. θbootstrap via SVD for η = 0.02.

Varying player strengths Other than matchmaking, we also want to point out that the player’s
strength may not be stationary. It is common that for a pair of players, for example, in tennis, their
head-to-head game results can change dramatically over time.

These phenomenons suggest that, in real world games, both matchmaking and players’ behaviour are
not stationary and non-BT. Therefore, viewing Elo rating as fitting a underlying BT-model might not
be appropriate.

D ONLINE RATING ALGORITHMS

In this paper, we will investigate the performance of the following algorithms: Elo, Glicko, Elo2k
and Pairwise.

Elo Elo rating gies the prediction pt := σ (θt[it]− θt[jt]). Initially θ0[i] = 0 for every i ∈ [N ].
The update rule is: {

θt+1[it] ← θt[it] + ηt (ot − pt) ,

θt+1[jt] ← θt[jt]− ηt (ot − pt) .
(4)

Here σ = 1/(1 + e−x) is the logistic function. θt ∈ RN is the rating, or score, for the N players at
time t. Customarily, the reported rating is multiplied by a constant C = 400

ln 10 . The learning rate ηt
is often chosen to be a fixed value η between 10/C ≈ 0.06 and 40/C ≈ 0.23. In our experiments,

we choose ηt according to the following decaying learning rate scheme: ηt =
√

aN
t+b , where a, b are

chosen to ensure the learning rate will not be too large at the beginning, and still large enough for
achieving a good prediction accuracy when t is large. For details see F.2.

Elo update can be understand as online gradient descent, as we described in Section 4.1. Also, we
can show that ft is convex:

∇θft(θ) = −∇θ(ot ln pt + (1− ot) ln(1− pt))

= −(ot
1

pt
∇θpt + (1− ot)

1

1− pt
(−∇θpt))

= − ot − pt
pt(1− pt)

∇θpt

= −(ot − pt)(eit − ejt).
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∇2
θft(θ) = ∇θ(∇θft(θ))

= −∇θ((ot − pt))(eit − ejt)

= −(eit − ejt)(∇θ(ot − pt))
T

= pt(1− pt)(eit − ejt)(eit − ejt)
T

⪰ 0.

Details can be seen in Section 4.1.

Glicko Glicko (Glickman, 1995) assumes each player has a rating θ and a “ratings deviation” v.
The initial θ of each player is set to be 1500, and we set initial v to be 35, 100 or 350. The prediction
pt := σ( ln 10

400 g(
√

vt[it]2 + vt[jt]2)(θt[it]− θt[jt])), where σ is the logistic function. The update rule
of the parameters is

θt+1[it] ← θt[it] +
ln 10
400 ( 1

vt[it]2
+ 1

d(it,jt))2
)−1g(vt[jt])(ot − p̃(it, jt)),

θt+1[jt] ← θt[jt] +
ln 10
400 ( 1

vt[jt]2
+ 1

d(jt,it))2
)−1g(vt[it])(1− ot − p̃(jt, it)),

vt+1[it] ←
√

( 1
vt[it]2

+ 1
d(it,jt)2

)−1,

vt+1[jt] ←
√

( 1
vt[jt]2

+ 1
d(jt,it)2

)−1,

(5)

where g(x) := (1 +
3( ln 10

400 )2x2

π2 )−
1
2 , p̃(it, jt) := v( ln 10

400 g(vt[it])(θt[it] − θt[jt])), and d(it, jt)
2 :=

(( ln 10
400 )2g(vt[jt]

2)p̃(it, jt)(1− p̃(it, jt)))
−1.

TrueSkill TrueSkill (Dangauthier et al., 2007) assumes each player has an average skill θ and a
degree of uncertainty v, similar to Glicko. The difference is that TrueSkill use a Gaussian function
for prediction, rather than logistic: the prediction pt :=

1
c
√
2
Φ(
√
2(θt[it]− θt[jt])), where Φ is the

CDF for standard normal distribution, and ct =
√
2β2 + vt[it]2 + vt[jt]2 is the overall variance. In

our experiments, we set β to be 0.2, 0.8 or 1.0, and the initial v2 for every player is set to be 4β2 by
default.

The update rule for the parameters is

θt+1[it] ← θt[it] + (2ot − 1) vt[it]
2

c2t
v( (θt[it]−θt[jt])(2ot−1)

ct
),

θt+1[jt] ← θt[jt]− (2ot − 1) vt[jt]
2

c2t
v( (θt[it]−θt[jt])(2ot−1)

ct
),

vt+1[it] ← vt[it]
√

1− vt[it]2

c2t
w( (θt[it]−θt[jt])(2ot−1)

ct
),

vt+1[jt] ← vt[jt]
√
1− vt[jt]2

c2t
w( (θt[it]−θt[jt])(2ot−1)

ct
)

(6)

where v(x) := ϕ(x)
Φ(x) (ϕ is the pdf of standard Gaussian), w(x) := v(x)(v(x) + x).

Elo2k If we generalize Elo score by rating every player with a vector instead of scalar (see
Balduzzi et al. (2018) and Bertrand et al. (2023)), we get Elo2k. The parameter for the algorithm
is θ = (U, V ), where U = (U [1], · · · , U [N ]), V = (V [1], · · · , V [N ]), U [i], V [i] ∈ Rk. The
prediction pt := σ(U [it]

TV [jt]− U [jt]
TV [it]). In this paper, we initially choose each element of U

(or V ) from Uniform([0, 0.1]). The update rule is given by taking the gradient of U, V , i.e.,
Ut+1[it] ← Ut[it] + ηt (ot − pt)Vt[jt],

Ut+1[jt] ← Ut[jt]− ηt (ot − pt)Vt[it],

Vt+1[it] ← Vt[it]− ηt (ot − pt)Ut[jt],

Vt+1[jt] ← Vt[jt] + ηt (ot − pt)Ut[it]

(7)

In our experiments, we choose ηt according to the following decaying learning rate scheme: ηt =√
aN
t+b .
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Pairwise A very natural algorithm is that we compute the pairwise win rate Pt[i, j] for each pair
of players (i, j), and the prediction pt = Pt[it, jt]. This algorithm has N(N − 1)/2 parameters. To
ensure the prediction will not be affected dramatically by a single game result, we will regularize it
as the following. The update rule is given by{

Pt[it, jt] ← 5+#{games that it wins jt until time t}
10+#{games that it plays with jt until time t} ,

Pt[jt, it] ← 5+#{games that jt wins it until time t}
10+#{games that jt plays with it until time t}

(8)

E DETAILS OF REAL-WORLD DATA EXPERIMENTS

For each dataset, we evaluate the performance of Elo, Elo2k (with k = 4), Glicko, TrueSkill, and
Pairwise, plotting the cumulative loss 1

tLt over "normalized" time t/N . For each algorithm, we
choose the best hyperparameter (see Appendix F.2). We also plot the in hindsight baselines at time T
(minx∈K

1
T

∑T
t=1 ft(x)) of BT model and Elo2k model. The results are presented in Figure 7. We can

observe that for several real-world datasets, including chess, go, renju, tennis, scrabble
and StarCraft, Elo and its variants (TrueSkill and Glicko) outperform algorithms based on more
complex models such as Elo2k and Pairwise. Namely, Elo consistently exhibits a lower cumulative
loss compared to Elo2k for every 0 < t < T . For other datasets like Hearthstone, AlphaStar,
10,5-Blotto, go-dense, and mixedchess-dense, Elo2k achieves lower prediction errors
than Elo at the final time t = T .

We can further investigate the results through the lens of regret minimization. We can see that the
cumulative loss for each algorithm decreases over time, indicating the regret minimization effect of
those algorithms. However the behavior for each algorithm at each sparsity level t/N are not the
same. These phenomenons are closely related to the sparsity level of dataset: when data is sparse,
typically when t/N < 1000, the regret for Elo2k and Pairwise is so large, that even though the in
hindsight baseline is much better, the cumulative loss 1

tLt for Elo2k will be large due to the large
regret. Meanwhile, Elo achieves good performance due to its small regret. This may due to the fact
that Elo, as online gradient descent for convex loss, has provable regret guarantees (Theorem 1) that
ensures its performance. On the contrary, Elo2k suffer from its non-convex nature, and Pairwise has
a much larger regret due to its parameter size of N2 that is much larger then N , the Elo parameter
size. When dataset is dense enough, for example, AlphaStar-dense, when T/N > 1000, we can see
that the regret at time T for both Elo2k and Elo are very small. In this regime, model capacity come
into play. The baseline for Elo2k model is much smaller than the Elo counter part, therefore Elo2k
shows better prediction accuracy than Elo. Among these dense datasets, LLM is special, since the
Elo2k baseline and the Elo baseline are so close, that even the dataset is dense, Elo2k does not show
any benefit.

We can futher see the influence of sparsity level, when we examine the dataset from Czarnecki et al.
(2020): for AlphaStar, 5,4-Blotto and 10,5-Blotto, we create sparse version and dense version, where
the underlying model is exactly the same, but "dense" version has 10 times sample size than "sparse"
version. Through the comparison of these datasets, we can see that even under the same probabilistic
model (which is non-BT), the behaviors of algorithms are still mainly affected by the sparsity level.

F DETAILS OF SYNTHETIC EXPERIMENTS

F.1 CONSTRUCTING P FOR TRANSITIVE MODELS

We consider several ways of generating a SST/WST matrix P w.r.t. the ordering π(i) = N − i. In the
following constructions, we will firsts specify Pij for i < j, then make the matrix skew-symmetric
by setting Pij = 1− Pji for i > j, and Pii = 0.5.

SST-byrow We first generate a i.i.d. random sequence of length N − 1, each element is sampled
from Uni([0, 1]). Then we sort this sequence in a descending order r1 ≥ r2 ≥ · · · ≥ rN−1. We let
Pij = 0.5 + 0.5× ri for i < j.

SST-bydiagonal We first get the descending sequence r1 ≥ r2 ≥ · · · ≥ rN−1 in the same way as
SST-byrow. We let Pij = 0.5 + 0.5× rN−j+i for i < j.
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Figure 7: In real datasets, sparsity strongly influences prediction. Elo, TrueSkill, Glicko achieves
the best prediction in sparse datasets, while Elo2k and Pairwise outperforms Elo and its variants in
dense datasets.

SST-byentry Following the "noisy sorting" model, we set Pij = 0.6 for i < j.

WST-byrow We first generate a i.i.d. random sequence of length N − 1, each element is sampled
from Uni([0, 1]). Then we sort this sequence in an ascending order r1 ≤ r2 ≤ · · · ≤ rN−1. We let
Pij = 0.5 + 0.5× ri for i < j.

WST-bydiagonal We first get the ascending sequence r1 ≤ r2 ≤ · · · ≤ rN−1 in the same way as
WST-byrow. We let Pij = 0.5 + 0.5× rN−j+i for i < j.

WST-byentry We set Pij = 0.5 + 0.5× Uij for i < j, where Uij ∼ Uni[0, 1].

F.2 CHOOSING THE BEST HYPERPARAMETER

For each algorithm (Elo, Elo2k, Glicko and TrueSkill), there are different hyperparameters that need
to be chosen. We choose the parameters according to the follow criterion:
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Let CEi :=
1
tLti be the CrossEntropy Loss at time ti, where {ti}ni=1 be the time steps we collect

the loss. Define the threshold M = ln(2) (A purely random prediction will have a loss of M ). The
loss function L(v) is given by: can be expressed as:

L =

30∑
i=1

(
CEi + 5(CEi −M)I(CEi > M)

)
.

We select the hyperparameter that minimizes the loss L . This loss function ensures that the chosen
parameter achieves a consistently low average cross-entropy (CE) loss throughout the process while
avoiding overfitting at some point (where CEi > M indicates overfitting).

F.3 CREATING NON-STATIONARY DATASETS

Specifically, for modeling the varying player strength, for each type of underlying distribution (e.g.,
SST, byrow), we generate two matrices P 0 and PT , and let P t = (1− t/T )×P 0 + (t/T )×PT

be the win rate matrix at each time t. That is, E[ot|it = i, jt = j] = P t
ij .

For modeling non-trivial matchmaking, we construct the game dataset as the following: at each time
point t, we sample it ∼ Uni([N ]), and then sample jt uniformly from the players that has ranking (by
the real-time Elo score) within distance K/2 from it’s ranking. To be more concrete, let the ranking
induced by Elo scores (θ[1], · · · , θ[N ]) be π = (π(1), · · · , π(N)), a permutation of (1, 2, · · · , N)
such that θ[π−1(N)] > θ[π−1(N −1)] > · · · > θ[π−1(1)]. Then jt is chosen uniformly from the set
{j ∈ [N ] : |π(j)− π(it)| ≤ K/2}. We choose K = N/5. After constructing such a game dataset,
we fix this dataset and plot the performance of each algorithm

G THEORY AND EXPERIMENTS FOR RANKING GIVEN BY ELO

G.1 PROOFS FOR THEOREM 2

The formal version of Theorem 2 is stated as:
Theorem G.1. Consider the population negative log-likelihood function of BT model Eq[L(θ)],
where q is the matchmaking distribution. Let

θ∗ := argmin
θ∈RN

EqL(θ)

be the population MLE. Then if q is a product distribution, i.e., qij , the probability player i plays with
j, satisfies qij = qiqj for any i, j ∈ [N ]. Then the ranking given by θ∗ is the same as the ranking
given by the average win rate. This result hold for uniform matchmaking as a special case.

Proof. With a slightly abuse of notation, we use θi to denote the i−th entry of θ. Then

Eq[L(θ)] = −
∑

i,j∈[N ]

qij(Pij ln(σ(θi − θj)) + Pji ln(1− σ(θi − θj))).

Set it’s gradient to zero, we have for each i ∈ [N ],

0 =
∂

∂θi
Eq[L(θ∗)] =

∂

∂θi
(−

∑
i,j∈[N ]

qij(Pij ln(σ(θ
∗
i − θ∗j )) + Pji ln(1− σ(θ∗i − θ∗j ))))

= −
∑
j∈[N ]

qij(Pij − σ(θ∗i − θ∗j )).

For the last equation we use the property that σ′(t) = 1− σ(t) and Pji = 1− Pij . Since qij = qiqj ,
we can devide qi from both side and derive∑

j∈[N ]

qjPij =
∑
j∈[N ]

qjσ(θ
∗
i − θ∗j ).

Notice that LHS = EqP [i] is the average win rate of player i under matchmaking q. If we define

f(x) :=
∑
j∈[N ]

qjσ(x− θ∗j ),

then EqP [i] = LHS = RHS = f(θ∗i ). Notice that f is a monotone increasing function, therefore the
ranking given by EqP is the same as the ranking given by θ∗.
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G.2 EXAMPLE WHERE ELO CONTRADICTS SST UNDER MATCHMAKING

Example 1. Consider the following P matrix among 5 players that satisfies SST with π(i) = 6− i.

P =


0.5 0.99 0.99 0.99 0.99
0.01 0.5 0.6 0.7 0.99
0.01 0.4 0.5 0.6 0.99
0.01 0.3 0.4 0.5 0.51
0.01 0.01 0.01 0.49 0.5

 .

Suppose that the matchmaking distribution is given by

Q =


0.125

0.125 0.125
0.125

0.125 0.125
0.125 0.125

 ,

where the remaining entries are 0.

In this case, given infinite data,

θmle = [5.48, 0.89, 4.60, 0.04, 0],

which induces an inconsistent ranking 1 ≻ 3 ≻ 2 ≻ 4 ≻ 5.

We also consider the regime where T does not go to infinity. We conduct the following synthetic
experiment: we generate random samples for T = 10000, following the P and Q in Example 1.
Then we construct confidence interval for each player’s Elo score by bootstrapping (following the
procedure in chatbot arena): we sample T = 10000 times with replacement from the original created
random samples. We create 100 such bootstrap samples. For each of these samples, we can compute
an Elo score (we regularize the scores so that player 5 always has score 0). Then for each player’s Elo
score in 100 different samples, we can compute the 0.05 quantile and 0.95 quantile for these scores,
therefore give a confidence interval for each player’s score. The resulting confidence interval for each
player is: [4.86, 5.33], [0.72, 1.17], [4.18, 4.68], [−0.07, 0.31], [0.00, 0.00]. From these confidence
intervals, we can confidently say the Elo scores give the ranking 1 ≻ 3 ≻ 2 ≻ 4, which is inconsistent
for players {1, 2, 3, 4}.
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