Under review as a conference paper at ICLR 2024

A ALGORITHMIC DESCRIPTION OF CONCEPT MATCHING FRAMEWORK

Algorithm [2| describes the pseudo-code of the CM framework. CM executes as a multi-round, iter-
ative FL cycle (lines 3-9). At each round (line 3), each client operates in parallel (line 5), including
clients concept matching (line 13), local model updates with batches of data (line 14-16), and re-
turning the client model weights to the server (line 18). Then, server performs clustering (line 7),
aggregation (line 8), and server concept matching to update the global concept models with the
aggregated cluster models (line 9).

Algorithm 2 Concept Matching Framework Pseudo-code

1: procedure SERVEREXECUTE:

2: initialize W° = (wy, ws, ..., wr)° randomly, total number of rounds 7’
3 fort =1to7T do

4 /I Update Done at Clients and Returned to Server

5: for each client n do // In Parallel

6: 6,, = n.CLIENTUPDATE(W'~1)
7
8
9

Q! = Cluster ({04}_1)
O! = Aggregate(2?)
Wt = ServerConcept Match(©!, W=1)

10: procedure CLIENTUPDATE(W)
11: // Executed at Clients

12: require step size hyperparameter 7, local dataset of current round D
13: k* = ClientConcept M atch(W, D)

14: T, < D divided into minibatches

15: for each batch b € z,, do

16: 0, = wx — NV L(wgx, b)

17: // Results Returned to Server

18: return 6,,

B THEOREM PROOF

Assumption 1. Differentiability: The loss function L(w), used to optimize a neural network, is
differentiable with respect to the model parameters w.

Assumption 2. Lipschitz continuity: The gradient of the loss function V L(w) is Lipschitz continu-
ous with a positive constant L. By Lipschitz continuity definition, for any two points w' and w?, the
following inequality holds ||V L(w') — VL(w?)|| < L|w* — w?||, where ||.|| denotes the norm.

Lemma 1. Given a loss function L(w) under assumption |I| and [Z] w is updated with gradient
descent w1 = w! —nV L(w'), where t is the iteration number, 1) is the learning rate, and V L(w?)

is the gradient of the loss function with respect to w*, the following inequality holds |V L(w'™1)|| <
IVL(w")|.

Proof. To prove ||[VL(w'™)|| < |[VL(w')||, we can use the assumption[2] Let L be the Lipschitz
constant. Then, we have ||VL(w!™!) — VL(w?)|| < L|jw!*! — w?|.

Now, using the reverse triangle inequality, we can write ||V L(w!™1) || — || VL(w!)|| < [|[VL(w!™t)—
V L(w?)||. Substituting the previous inequality, we get ||V L(w'™!)|| — || VL(w?)|| < L|Jw!™ —w!|.

Using the gradient descent update w'™' = w! — pVL(w'), we can write |[VL(w!™)| —
[VL(w!)| < Ln||VL(w!)||. Rearranging the terms, we get ||V L(w!™1)|| < (1 — Ln)||[VL(w?)].

Since L and n are both positive, we have 1 — Ln < 1. Therefore, we can conclude that
[VL(w')|| < |[VL(w?)||. This completes the proof. O

Theorem 1. Given a loss function L(w) under assumptions |I|and 2| w is updated with gradient
descent w1 = w! —nV L(w'), where t is the iteration number, 1) is the learning rate, and V L(w?)
is the gradient of the loss function with respect to w', the following inequality holds || w'*1 —w?|| <
[w® — w1

13

Under review as a conference paper at ICLR 2024

Proof. From the inequality in lemma |1} ||[VL(w?)| < |[VL(w®~!)|, using the gradient descent
update w't = w! — nVL(w?), we write [|[w'™! —wt| < ||w! — w'~!||. This completes the proof.
O

C EVALUATION DETAILS

C.1 DATASET

We evaluate CM with a “super” dataset, similar to a recent FCL work (Yoon et al., |2021)), which
consists of six frequently used image datasets: SVHN, FaceScrub, MNIST, Fashion-MNIST, Not-
MNIST, and TrafficSigns. To simulate different concepts, the “super” dataset is splitted into five
concepts. As shown in Table[6] the data in the five concepts differ across a wide spectrum of classes
and number of samples. The original FaceScrub dataset has 100 classes. In order to stress test CM,
it is splitted into Concept 2 and 3 with 50 different classes each, as we aim to verify whether CM can
differentiate them successfully. Since MNIST datasets are easy to learn, we mix the three MNIST
datasets together to make it more difficult. The training, test, and validation split of the data follows
7:2:1.

Table 6: Dataset details for each concept

Concept 1 2 3 4 5
Dataset SVHN FaceScrub0 FaceScrubl MNIST, Fashion-MNIST, Not-MNIST TrafficSigns
No. Classes 10 50 50 30 43
No. Samples 88300 9898 9899 138197 45956
C.2 MODEL

To compare with the baseline fairly, we use the same CNN-based image classification model
as (Yoon et al.| [2021). We believe this model is ideal in size to learn from the dataset. This model
uses two convolutional layers and three dense layers to classify an image input (32*32%3) into one
of the 183 classes. The two convolutional layers have 20 and 50 channels, with 5 by 5 filters, stride
of 1, and ReLU activation. A 3 by 3 max pooling with stride of 2 follows them. Then, the flat-
tened tensor is fed into three dense layers of 800, 500 and 183 neurons respectively, with ReL.U and
Softmax activation.

As it is common practice in class-incremental CL, the model follows the single-head evaluation
setup (Shim et al., 2021} |Mai et al., 2021} [2022), where it has one output head to classify all labels.
This setup is ideal for clients with constrained resource capacity in FL, because the clients do not
have to spend computation resources on expanding or selecting the output head. Let us note that
using the total number of labels as the model output size does not mean we have to know the entire
label space or even the label space size, because we can use any output size not smaller than the
upper bound of the number of labels. It makes no difference in the training and testing accuracy
when experimenting with a given dataset, because the weights associated with unencountered output
neurons will not be updated in the backward pass.

C.3 EXPERIMENTAL SETTINGS

We implement CM with TensorFlow and scikit-learn. The experiments are conducted on a Ubuntu
Linux cluster (Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 512GB memory, 2 NVIDIA
P100-SXM2 GPUs with 16GB total memory). Non-overlapping chunks from the five concept
datasets are further distributed randomly to the clients. At every round, the local data across clients
are non-IID. Each client encounters one of the five local concept datasets randomly, and uses a cyclic
sliding window of 320 samples in the encountered concept dataset. Unless otherwise specified, CM
is tested with 20 clients (all clients participate in each training round), kmean clustering algorithm,
FedAvg aggregation algorithm, and Manhattan distance for the server CM algorithm. For the local
training, we use the Adam optimizer with learning rate of 0.001, weight initializer of HeUniform,
and batch size of 64. Each client maintains and uses a single Adam optimizer throughout the training
for all concepts. We train 15 epochs every round, and use early stopping with the patience value as 3.

14

Under review as a conference paper at ICLR 2024

We test CM with different hyper-parameters, and only present the results with the hyper-parameters
that lead to the best results. The system runs 100 rounds of training for each experiment.

To quantify the overall concept matching accuracy, we evaluate under the class-incremental scenario,
and assume the clients are not aware of the concepts and perform the client concept matching every
round. In task-incremental scenarios, the difference is that the clients do not have to perform concept
matching every round, because they know the task IDs and the concept drift due to the transition of
different tasks. For the same experimental setting, task-incremental training would achieve the same
model performance with lower computation overhead at the clients.

C.4 10T DEVICE SETUP

CM is evaluated on a Qualcomm QCS605 IoT device. This device is equipped with Snapdragon™
QCS605 64-bit ARM v8-compliant octa-core CPU up to 2.5 GHz, Adreno 615 GPU, 8G RAM,
and 16 GB eMMC 5.1 onboard storage. We choose it because its specifications are ideal for AloT
cameras and image-based applications. The device is connected to Internet through WiFi with a
bandwidth of 300 Mbps. We re-use CM simulation Python code on the device. Since the device
does not support native Linux and its the operating system is rooted Android 8.1, we need to run a
Linux distribution on the Linux kernel of Android for easy package management and better support.
We achieve this goal with two open source projects: termux-app and ubuntu-in-termux. Termux-
app is an Android application for terminal application and Linux environment. It provides some
basic Linux commands and packages, but is not on par with a mature Linux distribution, such as
Ubuntu. Ubuntu-in-termux bridges the gap. Through it, we are able to install well-maintained
Python environments and libraries to execute training on-device. The Python training process can
be observed directly under adb shell, which does not include the overhead of Termux-app or Ubuntu-
In-termux.

C.5 PARAMETERS FOR CLUSTERING ALGORITHMS

Kmean, agglomerative, and BIRCH require the number of clusters as a parameter. Unless otherwise
specified, we set this parameter to be 5. DBSCAN and OPTICS require some threshold values
tuned for the data as parameters instead of the number of clusters. We adhere to the convention
when selecting their parameters. For DBSCAN, there are two main parameters: min_samples and
€. min_samples is the fewest number of points required to form a cluster. We adjust it to be 3,
which is a lower value than the average number of clients per concept (20/5). € is the maximum
distance between two points while the two points can still belong to the same cluster. To choose € ,
we firstly calculate the average distance between each point (the model weights of a client) and its
3 (min_samples) nearest neighbors, and then we sort distance values in the ascending order and
plot them. We choose ¢ to be 20 as the point of maximum curvature in the plot. Similarly, we set
min_samples parameter to be 3 for OPTICS. The other parameters for these clustering algorithms
are the default values in scikit-learn.

C.6 ADDITIONAL RESULTS

Learning curves for scalability. Figure [3| shows the learning curves as the number of clients in-
creases. The results show that CM can always learn smoothly. Figure 4| demonstrates CM can also
learn smoothly with 20 clients as the model size increases or decreases 20%. To stress test CM, we
further investigate the model performance when training 80 clients with the network size increased
and decreased 20%. The learning curves in Figure [5| demonstrate CM’s smooth learning progress,
as it achieves 94.3% and 94.9% average accuracy, respectively.

Resilience to number of concepts different from the ground truth. CM requires an estimated
number of concepts configured in the bootstrapping phrase. In case the system administrator fails
to estimate the number of concept correctly, we experiment with the number of concepts from 3 to
7 under the same experimental settings (i.e., 5 concepts is the ground truth). As shown in Figure|[6]
when the configured number of concepts is higher (6 and 7) than the ground truth, 5 concept models
(out of 6 or 7) learn the corresponding concepts smoothly. The extra concept models in the system
do not effect the smooth learning progress, and the average model accuracy achieves 90.5% and
90.0% respectively. When the number of concepts is smaller (4 and 3) than the ground truth, the

15

Under review as a conference paper at ICLR 2024

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
0.95 1 1
0.9 0.8 0.9
0.85 0.6 X 0.8
0.8 80 clients 0.4 80 clients 04 80 clients 0.9 80 clients 0.7 80 clients
0.75 —40 clients || 0.2} —40 clients|| (.2 —40 clients || 0.88 —40 clients|| (0.6 —40 clients
~ —20 clients —20 clients —20 clients|| (g6 —20 clients B —20 clients
0.7) 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100) 20 40 60 80 100 U’O(20 40 60 80 100
Round Round Round Round Round

Figure 3: Test set accuracy vs. communication rounds as number of clients increases

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
0.9
08 0.92
7 0.8
. 0.6 0.9
0.6 0.7
075 +20% +20% || (1 4 +20% || 0.88 +20% +20%
e —original || 0.5 —original . —original —original || 0.6 —original
~ — -20% — -20% . — -20% 0.86 — -20% _ — -20%
0.7 20 40 60 80 100 0-4 20 40 60 80 100 0.2 20 40 60 80 100 20 40 60 80 100 U")(20 40 60 80 100
Round Round Round Round Round

Figure 4: Test set accuracy vs. communication rounds for training 20 clients with different model
size

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

0.96 1

0.94 0.9

0.92 0.8

] 0.9 0.7
0751 80 clients, +20%]| 0.2|| [—80 clients, +20%]|| 0.2 [—80 clients, +20%|| 0-83| [=80 clients, +20%]| 0.6|/ [—80 clients, +20%
_|l [=80clients, -20% — 80 clients, -20% — 80 clients, -20% || (.86} |— 80 clients, -20% | =80 clients, -20%

0.7 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 U"‘)(200 40 60 80 100
Round Round Round Round Round

Figure 5: Test set accuracy vs. communication rounds for training 80 clients with different model
size

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
0.8p7 v ™ 0.8 0.9 S
W {ﬂf\‘“ﬂ'\” L WY YV d’“v‘w\“’/‘v [0.8
0.6 —17 concepts —7 concepts 0.6 i ik T concepts 08 —17 concepts —7 concepts
—6 concepts —6 concepts |{ (.4 ‘v;‘ —6 concepts|{ (.7 —6 concepts |{ 0.6 —6 concepts
0.4 —35 concepts —35 concepts ‘ —35 concepts —35 concepts —35 concepts
—4 concepts 2] —4 concepts || 0.2 " | —4 concepts || 0.6 —4 concepts , —4 concepts
0.2 3 concepts i 3 concepts ! 3 concepts _ 3 concepts 0.4 3 concepts
20 40 60 50 100 0 20 40 60 s0 100 0 20 40 60 s0 100°°0 20 40 60 S0 100 20 40 60 80 100
Round Round Round Round Round

Figure 6: Test set accuracy with different number of concepts over communication rounds

Table 7: Client operation time (second) on real IoT device

Receiving model ~ Concept Matching Training Sending model — Total

Vanilla FL 0.67 N/A 85.27 0.67 86.61
CM 3.35 8.52 85.27 0.67 97.81

system starts to treat the similar concepts (e.g., two FaceScrub concepts) as one. Although the model
accuracy on the affected concepts (2, 3, and 5) exhibit minor fluctuations during the training, the
smooth learning progress for the other concepts (1 and 4) is not affected. Nevertheless, the average
model accuracy achieves 89.5% and 88.9% respectively, and beats vanilla FL (86.7%). These results
demonstrate CM has good resilience in terms of the number of concepts configured in the system.
Furthermore, they suggest it is better if system administrators over-estimate the number of concepts,
because the performance is still very good in this case.

Client operation overhead. Designed for mobile or [oT devices, CM is evaluated on a real IoT
device in terms of the client end-to-end operation time. Compared with vanilla FL, the client opera-
tion overhead comes from receiving multiple concept models from the server and the client concept

16

Under review as a conference paper at ICLR 2024

matching. Table [/| shows the breakdown of client operation time on the Qualcomm QCS605 IoT
device in one round. Compared with a multi-epoch training process over the entire experienced
data, the concept matching can be achieved by testing only a portion of the data. The communica-
tion time is calculated as sending or receiving the model(s) of size 25.2MB over 300 Mbps WiFi
network. The total client end-to-end operation time in one round is 97.81 seconds, which is feasible
for a real-world deployment. Overall, the total CM operation time has a low overhead (11%) over
vanilla FL operations on the IoT device. We believe the improvement in performance achieved by
CM is worth this overhead cost.

17

	Introduction
	CM Overview
	Related Work
	CM Framework
	Problem Definition
	Learning Framework for FCL
	Design Discussion
	Concept Matching Algorithms

	Evaluation
	Experimental Setup
	Results

	Conclusion
	Algorithmic Description of Concept Matching Framework
	Theorem Proof
	Evaluation Details
	Dataset
	Model
	Experimental Settings
	IoT Device Setup
	Parameters for Clustering Algorithms
	Additional Results

