Under review as a conference paper at ICLR 2025

BENIGN OVERFITTING IN SINGLE-HEAD ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The phenomenon of benign overfitting, where a trained neural network perfectly fits
noisy training data but still achieves near-optimal test performance, has been exten-
sively studied in recent years for linear models and fully-connected/convolutional
networks. In this work, we study benign overfitting in a single-head softmax
attention model, which is the fundamental building block of Transformers. We
prove that under appropriate conditions, the model exhibits benign overfitting in
a classification setting already after two steps of gradient descent. Moreover, we
show conditions where a minimum-norm/maximum-margin interpolator exhibits
benign overfitting. We study how the overfitting behavior depends on the signal-
to-noise ratio (SNR) of the data distribution, namely, the ratio between norms of
signal and noise tokens, and prove that a sufficiently large SNR is both necessary
and sufficient for benign overfitting.

1 INTRODUCTION

Neural networks often exhibit a remarkable phenomenon, known as benign overfitting, where they
achieve a perfect fit to noisy training examples and still generalize well to unseen data (Zhang et al.
2021; Bartlett et al.,|2020). This phenomenon contradicts classical wisdom in machine learning, and
has become a central research question in the theory of deep learning. Existing works on benign
overfitting study under what conditions the phenomenon occurs in different architectures. These
works focus on linear models, and on shallow fully-connected and convolutional neural networks.

In recent years, Transformers (Vaswani, 2017) have emerged as a leading neural network architecture,
with impactful applications across a wide range of domains such as natural language processing and
computer vision. The fundamental building block of Transformers is the attention mechanism, which
allows them to process sequences and focus different parts of the input. Despite the central role of
the attention mechanism, we currently do not understand their overfitting behavior and the conditions
under which they exhibit benign overfitting.

In this work, we show the first benign-overfitting results for the attention mechanism. We consider
classification with a single-head softmax attention model, and study the conditions that allow for
benign overfitting. In our results, the data distribution consists of two tokens: a signal token, which
can be used for correctly classifying clean test examples, and a noise token, which is independent of
the label but can be used for interpolating (i.e., perfectly fitting) noisy training examples. We study
the singnal-to-noise ratio (SNR), namely, the expected ratio between the norms of signal and noise
tokens, that allows for benign overfitting.

Below we summarize our main contributions:

* In Theorem [ (Section [3) we show that under appropriate conditions, gradient descent with
the logistic loss exhibits benign overfitting already after two iterations. This result holds
when the SNR is ©(1/1/n), where n is the number of training samples.

* We then turn to consider other natural learning rules, which allow for benign overfitting
under a weaker requirement on the SNR. In Theorems E] andE] (Section E]), we prove that
minimum-norm (i.e., maximum-margin) interpolators exhibit benign overfitting when the
SNR is Q(1/+/n) without requiring an upper bound on the SNR.

* In Theorem[I0|(Section[d), we prove that the above requirement on the SNR is tight. Namely,
if the SNR is smaller than it, then the min-norm interpolator exhibits harmful overfitting,
where it fits the training data but has poor generalization performance.
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* In Section[6] we complement our theoretical results with an empirical study. We show that a
sufficiently large SNR and input dimension are necessary to achieve benign overfitting.

The paper is structured as follows. In Section 2} we provide some preliminaries and define the data
distribution and the single-head attention model. In Sections [3]and [ we state our main results on
benign overfitting with gradient descent and with min-norm interpolators. In Section 5| we discuss
the main proof ideas, with all formal proofs deferred to the appendix. Finally, in Section[6] we show
empirical results.

RELATED WORK

Optimization in Transformers. [Li et al|(2023) provided a theoretical analysis of training a shallow
Vision Transformer (ViT) for a classification task. They showed that the sample complexity required
to achieve a zero generalization error is correlated with the inverse of the fraction of label-relevant
tokens, the token noise level, and the initial model error. |Ataee Tarzanagh et al.|(2023a) showed that
optimizing the attention layer via gradient descent leads to convergence to an SVM solution, where
the implicit bias of the attention mechanism depends on whether the parameters are represented as a
product of key-query matrices or directly as a combined matrix, with different norm-minimization
objectives in each case. |Ataee Tarzanagh et al.| (2023b) provided a regularization path analysis and
prove that the attention weights converge in a direction to a max-margin solution that separates locally
optimal tokens from non-optimal. They also showed that running gradient descent, with a specific
initialization direction and without optimizing the attention head, converges in a direction to the same
max-margin solution. |Vasudeva et al.|(2024) expanded on their findings by identifying non-trivial
data settings for which the convergence of GD is provably global, i.e., without requiring assumptions
about the initialization direction. They also provided convergence rate bounds and analysis for
optimizing both the attention weights and the attention head, although they did not consider the case
of noisy data labels, as we do in our work. Another line of work looks at the learning dynamics
of single-layer linear attention models trained on linear regression tasks (Zhang et al., 2024} /Ahn
et al.}2023;|Wu et al., |2023). Additional works that consider optimization dynamics in Transformers
include Jelassi et al.| (2022); Oymak et al.| (2023)).

Benign overfitting. A significant body of research has explored why neural networks (NNs) that
perfectly interpolate the training data can still generalize well (Zhang et al., 2021} Bartlett et al.,
2020). This has sparked substantial interest in studying overfitting and generalization in NN trained
to fit datasets with noisy labels. The literature on benign overfitting is broad and cannot be reasonably
covered here. We refer the reader to the surveys |Bartlett et al.| (2021); Belkin| (2021)). Most relevant
to our work are|Cao et al.|(2022)); [Kou et al.[(2023)); Meng et al.|(2023) that studied benign overfitting
in convolutional neural networks. Their data distribution resembles ours, as we discuss in Section 2.1}
Benign overffiting in fully-connected two-layer neural network classification was studied in |Fre1
et al.| (2022} [2023)); Xu et al.| (2023)); | Xu & Gu|(2023); [Kornowski et al.| (2024)); (George et al.[ (2024);
Karhadkar et al.| (2024) for various activation functions, data distributions and loss functions (both
the logistic and the hinge losses).

2 PRELIMINARIES

Notations. We use bold-face letters to denote vectors and matrices, and let [m] be shorthand for
{1,2,...,m}. Given a vector &, we denote by z; its j-th coordinate. Let I; be the d x d identity
matrix, and let 04 (or just 0, if d is clear from the context) denote the zero vector in R%. We let ||-||
denote the Euclidean norm. We denote a multivariate Gaussian distribution with mean vector g and
covariance matrix 3 by N (u, ). We use standard big-Oh notation, with O(-), Q(-), O(-) hiding
universal constants and ©(-), Q(-), O(+) hiding constants and factors that are polylogarithmic in the
problem parameters. We use I(-) to denote the indicator variable of an event. For a finite set A,
denote the uniform distribution over A by Unif(.A) and let |.A| be its cardinality.

2.1 DATA GENERATION SETTING

In this work we focus on the following data distribution:
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Definition 1. Let p11, po € R? such that || || = ||pz2|| = p for some p > 0 and (1, p2) = 0, be
two fixed orthogonal vectors representing the signal contained in each data point. Define D jpan as
the distribution over R**¢ x {41} of labelled data such that a data point (X ,7) is generated by the
following procedure:

1. Sample the label §j ~ Unif{£1}.

2. Generate a vector u, which represents the signal, as follows: If y = +1, set u = 1, and if
y=—1, setu = po.

3. Generate a vector &, which represents the noise, from the Gaussian distribution § ~
N, Iy — papi /p° = papsg /p).

4. Denote X = (M) )T, Select k ~ Unif{1,2} and set £'*) = . Set the other token
(B=k) — ¢
x .

To study the overfitting behavior we also need to introduce label-flipping noise:
Definition 2. Let 1) € [0,1/2) be the label flipping probability. We define D as the distribution over

R2%4 x {£1} which is the n-label-flipped version of Dejean. Namely, to generate (X, y) ~ D, first
generate (X, ) ~ Dejean, then let y = y with probability 1 — 1 and y = —y with probability 1.

Our data distribution resembles the distributions considered by Kou et al.| (2023)); |Cao et al.| (2022);
Meng et al.| (2023)). They proved benign overfitting in two-layer convolutional neural networks, and in
their setting each data point consists of two patches (!, 2:(?) (rather than two tokens in our setting).
Since our single-head attention model is invariant to the order of the tokens, we assume without loss
of generality throughout this work that () is the signal token and () is the noise token in all data
points. Note that the noise token «(?) = £ is independent of the label, and that it is generated from
N(0,1;— pip] /p* — papg /p?), ensuring that it is orthogonal to the signal vector. Note that when
the dimension d is large, ||£|| ~ v/d — 2 ~ V/d by standard concentration bounds. Therefore, we
denote the signal-to-noise ratio (SNR) as SNR, = ||| /v/d = p/V/d.

We consider a training dataset {(X;,y;)}?_, of n samples generated i.i.d. from the distribution D.
Denote the index set of data whose labels are not flipped by C = {i : §; = y; } (“clean examples”),
and the index set of data whose labels are flipped by N' = {i : y; = —y; } (“noisy examples™). For
indices in C, we further denote C; :=C N {i : :c,El) =p1},Co:=CNn{i: :cgl) = o}, and define
the subsets A7, N2 of A analogously.

2.2  SINGLE-HEAD ATTENTION MODEL

We consider the following single-head attention model:

f(X;W.p)=v' XTS(XWq),
where S : R? — R is the softmax function, the key-query matrix W € R%*? and the linear head
vector v € R? are the trainable parameters, and the query vector g € R? is an arbitrary fixed unit

vector. We follow |Ataee Tarzanagh et al. (2023b) and assume that ¢ = (1,0,...,0)", obtaining the
following model:

f(X;p,v) =v' X'S(Xp), (1

Here the trained parameters are p,v € R%. Thus, instead of the key-query matrix W we have a
vector p that controls the attention. Throughout this paper we will use the model (I)). We denote
the output of the softmax layer S(X;p) by 8; = (si1,si2) ', and denote the output of the attention
layer X,L-Ts,» by r; = s;14i + Si2&, where 0 < s; 1,5, 2 < 1, 5,1 + s;2 = 1 are the attention on
two tokens of the i-th sample.

3  BENIGN OVERFITTING WITH GRADIENT DESCENT

In this section, we study the joint optimization of the head v and attention weights p using the logistic
loss function. We show that the model exhibits benign overfitting after just two iterations of gradient
descent (GD).
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Formally, for a training dataset {(X;,y;)}, we define the empirical risk as
1 n
L(v,p) =~ Ui f(Xi;p,v),
i=1

where £(z) = log(1 + exp(—z)) is the logistic loss function, and f is the model from Eq. (1). We
consider GD optimization. Starting from py = 0 and vy = 0, we have

Vi1 = Uy — [V L(ve, Pt) and Di+1 =Pt — BVpL(vs, pt),
where 3 is the step size. When we discuss some fixed ¢, we sometimes write in the subscript “t = -7,
e.g., pr—o instead of po. We make the following assumptions:

Assumption 3 (Assumptions for GD with SNR=0(1/+/n)). Let § € (0,0.5) be a desired probability
of failure. For universal constants C\, > 6, Cg > 16, as well as a sufficiently large universal constant
C that may depend on C, and C, the following conditions hold:

~

. Number of samples n is sufficiently large: n > C'log(1/9).
2. Dimension d is sufficiently large: d > Cn?log(n/d).

3. Signal strength satisfies p = C, - \/%
4. Label flipping rate satisfiesn < 1/C.
5. Step size satisfies § = Cg - (n/d).

6. Initialization at zero: ||vg|| = ||pol| = 0.

Item [T is required to estimate the number of clean examples compared to noisy examples. The
assumption of high dimensionality (Item [2) is important for enabling benign overfitting (see empirical
results in Section [6)), and implies that noise tokens from different training samples are nearly-
orthogonal. This assumption appears in many prior works on benign overfitting in neural network
classification (e.g.,|/Cao et al.|(2022)); Kou et al.|(2023); Meng et al.| (2023); [Frei et al.| (2022} [2023);
Xu et al.| (2023)); Kornowski et al.| (2024)); [ Xu & Gul (2023))). ItemE] states that the signal-to-noise

ratio (SNR) is \;E =0(1/y/n). In Sectionwe will discuss how the SNR affects the dynamics of

GD. Interestingly, SNR of ©(1//n) matches the lower bound of the required SNR that allows for
benign overfitting with the min-norm (i.e. max-margin) learning rule that we will study in Section 4]
Item [] ensures the flipping rate is small enough to allow the model to learn the signal token. Item 5]
namely, using a step size of ©(n/d), is required to achieve benign overfitting after two iterations;
with a smaller step size, the model will need more iterations to fit the noisy samples, which we will
demonstrate empirically in Section [6]

We now state our main result on benign overfitting with GD:

Theorem 4. Suppose that Assumption[3|holds. Then, with probability at least 1 — & over the training
dataset, after two iterations of GD we have:

* Higher softmax probability for optimal tokens:
sii7>1/2,VieC  and  si57>1-1/c VieN
where s; ; is the softmax probability of the 3™ token in the i sample at time t.
o The classifier X — sign(f(X; vi—2, pi—2)) correctly classifies all training data points:
y; = sign(f(X; vima, Pr=2)), Vi € [n].
* The classifier X s sign(f(X;vi—2, p1—2) generalizes well:

P(x,y)~p(y # sign(f(X;vi—2, p1=2))) < n+ exp(—d/Cin?),

where Cy := C'1(cp, cg) is a constant.
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‘We can also conclude that for the clean-labeled distribution Dgjea, We have

P (X y)~Daewn (Y 7 sign(f (X Vi=2, Pt=2))) < eXp(—d/C’lnz),
which approaches zero as d grows (see Assumption 3] item [2).

Theorem El] shows that after two iterations of GD, the attention focuses on the signal tokens for
clean examples, and on the noise tokens for noisy examples. The model uses the noise tokens for
interpolating noisy training examples, while still achieving good generalization performance using
the signal token.

4 BENIGN OVERFITTING OF MAX-MARGIN SOLUTION

In the previous section we showed that GD exhibits benign overfitting in a setting where the SNR is
©(1/+/n). We now turn to study the overfitting behavior of single-head attention models, when using
another learning rule, which returns solutions that interpolate the training data with large margin
while keeping the parameters norms small. As we will show, such a learning rule allows us to obtain
benign overfitting under a weaker requirement on the SNR, namely, the SNR is 2(1/+/n) without
requiring an upper bound on it.

We note that learning rules that return min-norm (or max-margin) solutions are considered natural,
and hence understanding properties of min-norm interpolators has attracted much interest in recent
years, even in settings where the implicit bias of GD does not necessarily lead to a min-norm
solution (see, e.g.,|Savarese et al.|(2019);|Ongie et al.[(2019); Ergen & Pilanci|(2021); |[Hanin| (2021);
Debarre et al.| (2022); Boursier & Flammarion| (2023)). More directly related to our work, min-
norm interpolation with Transformers has been studied in |Ataece Tarzanagh et al.| (2023bja), and
benign/tempered overfitting in min-norm univariate neural network interpolators has been studied in
Joshi et al.|(2023)).

We first consider the following learning rule:

(v(r,R)m(r,R)) = argmax miny; - f(Xi;p,'U) 7 )
ol <r,|pll <R i€[n]

where f is the model from (I). The learning rule returns a solution that maximizes the margin
min;ep, ¥i - f(Xy; p, v) under a restriction on the parameter norms. We make the following assump-
tion:

Assumption 5 (Assumptions for max-margin with SNR = Q(1/+/n)). Let § € (0,0.5) be a desired
probability of failure. There exists a sufficiently large constant C' such that the following hold:

1. Dimension d is sufficiently large: d > Cn?log(n/§).
2. Number of samples n is sufficiently large: n > C'log(1/0).

3. Signal strength: p > C+/d/n.
4. Label flipping rate: 0 <n < 1/C.

5. Norm constraint of p satisfies: R > C\/nn/d + 1/p?log(pn).

Items and [ are similar to Assumption 3| Item [3|requires SNR > €(1/+/n), which is a weaker
requirement than the ©(1/+/n) requirement in Assumption We will show later a lower bound on
the required SNR for benign overfitting, implying that the €2(1/y/n) bound is tight. Item 5| provides
the lower bound for the norm constraint of p so that the model can allocate enough attention on
signal token to achieve benign overfitting. Note that the norm constraint r for v can take any positive
value. Intuitively, since the model is linear in v, once p is properly learned, v can achieve accurate
classification even with a small norm.

With these assumptions in place, we give our result on benign overfitting with the learning rule ().
Theorem 6. Suppose that Assumption [B| holds, and consider the classifier X ——
sign(f(X; p(r Ry, V(r,r))), Where (V(r,r), P(r,Rr)) is the solution to Problem . Then, with proba-
bility at least 1 — § over the training dataset, we have:
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* The classifier sign(f(X; P(r,r), V(r,r))) correctly classifies all training data points:
yi = sign(f(Xs; P(r,r), V(r,R))), Vi € [n].
* The classifier sign(f(X; p(r,r), V(r,r))) generalizes well on test data:
Pix gy~ (y # sign(f(X; P(r.r)» V(r,R))))
<+ exp(—Q(d/n?)) + exp (- Q

-9 log(d))2)
Vmfd+1/p2 R 7
where ( = O(y/nn/d + 1/p?log(pn)/R).

Remark 7. To see why Theorem|[6|implies benign overfitting, consider the limit R — oo. Then, the
upper bound for test error becomes 1+ exp(—Q(d/n?)) + exp(—O((1/p? +nn/d) 1)), which can
be arbitrarily close to 1 if d is large (see Assumption 3] item([I).

Next, we consider the following learning rule, which explicitly requires to minimize the parameters
norms while allowing interpolation with margin at least :

(vy,py) = argmin s.t. miny; f(X;;p,v) > v, 3)
I+l €]

where f is the model from Eq. . We show that under Assumption the solution (v, p-) exhibits
benign overfitting for large enough v and d:

Theorem 8. Suppose that Assumption | (items [I| through [{)) holds, and consider the classifier
X — sign(f(X;py, vy)), where (vy, py) is a solution of Problem (3)). Then there exists o such
that for any vy > ~o , with probability at least 1 — § over the training dataset, we have:

* The classifier sign(f(X; p,,vy)) correctly classifies all training data points:
yi = sign(f(Xy;py,v)), Vi € [n].
* The classifier sign(f(X; p.,vy)) generalizes well on test data:

P(x )~ (Y # sign(f(X;ps, vy))) < ntexp(—Q(d/n?))+exp(—O((1/p*+nn/d) ™).

Thus, for large enough ~, the theorem implies that the trained model interpolates the training data,
and the test error approaches 1 as d — oo.

Note that Theorems|[6|and[§| hold only when SNR = ©(1/,/n). This raises the question: what is the
overfitting behavior of min-norm interpolators when the SNR is smaller? We now consider the case
where p < 4/1/Cn for some sufficiently large universal constant C. We will show that in this case,
although the model can correctly classify all training samples, the test error of learning rule (2) is at
least a universal constant, indicating that benign overfitting does not happen. Formally, we make the
following assumptions:

Assumption 9 (Assumptions for max-margin with SNR < O(1/+/n)). Let § € (0.0.5) be a desired
probability of failure. There exists a sufficiently large constant C such that the following hold:

1. Dimension d is sufficiently large: d > Cn?log(n/J)

[\

. Number of samples n is sufficiently large: n > Clog(1/6).

3. Signal strength: p < \/d/Cn.
4. Label flipping rate is a constant n) € (0,1/2).
5. The norm of p should be sufficiently large: R > C\/%log (%).

Compared with Assumption |5, the main difference is in the second item that SNR < O(1/y/n).
Additionally, the condition on 7 is relaxed, as in our analysis clean and noisy samples can be treated
equivalently when the norm of the signal token is sufficiently small. With these assumptions in
place, we can state the following theorem which characterizes the training error and test error of the
single-head attention model when the SNR is small:
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Theorem 10. Suppose that Assumption [9 holds, and consider the classifier X ——
sign(f(X;p(r Ry, V(r,r))), Where (V¢ gy, P(r,R)) is a solution of Problem . Then, with prob-
ability at least 1 — § over the training data, we have:

* The classifier sign(f(X; P(r,r), V(r,r))) correctly classifies all training data points:
yi = sign(f(Xs; P, r)» V(r,R))), Vi € [n].

* The classifier sign(f(X; p(r.r)> V(r,r))) does not generalize well on test data:

1

]P)(va)NDrlran (y 7& Slgn(f(X;p(T',R)? 'U(T‘,R)))) Z E'

5 PROOF IDEAS
In this section we briefly discuss the main proof ideas. The formal proofs are deferred to the appendix.

5.1 PROOF IDEAS FOR SECTION[3]

In this subsection we discuss the main proof idea of Theorem [d] Since the initialization is at
zero, vy is a linear combination of the training data tokens. Therefore, we can express v;—1 as
NF py + A5 o + 300 4017 1E;, where AT > 0, A57! < 0. Note that A\f > 0, A < 0 holds
since |C| > |N/|. We begin by analyzing the first step of GD. Specifically, we show that after one step,
the coefficients of v;—; can be estimated as [\;=!| ~ %(1 —2n),k € [2] and 017 = %,i € [n].
Moreover, we have p;—; = 0, and hence for a training sample (X; = (p, &;), y;), the margin is:

1 )

2 Lo 2 1 2
u (X v pemn) = Suiva () + )~ Su T sl + 5657 11617

where in the last approximate equality we use the high dimensional setting (i.e. by item [2|in our
assumption d >> n? log(n)) to neglect the Zie[n]:#j Yilj 9;115;& term, since it is much smaller
(in absolute value) than the other terms. Indeed, we have w.h.p. that |, &;| < V/dlog(n), ||€; I? ~d
and recall that ||| = C2(d/n) (itemin our assumption). Therefore, for a clean sample j € C,

the margin is y; f(X;; vi=1, pi=1) = 5(1%6277)% + %d > 0, for large enough C),. On the other

. . _2p) dC2
hal}d,. for a noisy sample]. € /\f, we have y; f(X;vi=1,Pi=1) =~ —6(11762”).7’) + S%d < 0.
This implies that the classifier sign(f(X;v;—1, pi=1) does not correctly classify noisy training
samples, but still correctly classifies clean training samples. Together with p;—; = 0, the classifier

sign(f(X; vi=1, pr=1) will also correctly classify, with high probability, a clean test sample.

Moreover, since the loss function ¢ is decreasing, the loss of noisy samples, denoted {¢—; ;,j € N,
dominates the loss of clean samples £;—1 ;,7 € C. This implies that after two iterations, the coefficients
|9§:2 |, 7 € NV, of the second (noise) tokens in v;—_2, corresponding to noisy samples, grow faster than
the coefficients |\{=2| of the first (signal) tokens. This property is important to allow for interpolation
of noisy examples. We also show that p,_o focuses on optimal tokens, namely, on the noise token for
noisy samples (i.e. sf:f >1-1/ C%’ Vi € N), and on the signal token for clean training and test
samples. Using this property we conclude that the model parameterized by (vi—2, p;—2) exhibits
benign overfitting.

Remark 11. Note that our proof implies the following behavior of GD. After the first iteration, the
model correctly classifies only the clean training samples, resulting in an expected training accuracy
of 1 — n. Additionally, the model successfully classifies a clean test sample w.h.p., leading to the
same expected test accuracy. After the second iteration, the model interpolates the training data,
achieving a training accuracy of 1. This is shown empirically in Figure[l} When using a smaller
step size, we empirically observe a similar trend: after the first iteration, the model learns the signal
tokens, and with more iterations, it captures the noisy tokens of the noisy samples and fits the entire
dataset. This behavior is shown in Figure

5.2 PROOF IDEAS FOR SECTION[]

Here we provide the proof sketch for Theorem[6] There are mainly two parts in our proof:
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* First we determine the convergence behavior of p and v when the norm constraint R is
sufficiently large.

* Using properties derived from this convergence, we can analyze the training and test errors.

The first part of the proof builds upon techniques from |Ataece Tarzanagh et al.| (2023b)), which
shows that jointly solving for v and p leads to convergence to their respective max-margin solutions.
While their approach focuses on the asymptotic case where R, r — oo under specific conditions on
the training data, our work extends these techniques to the signal-noise data model and provides
non-asymptotic results.

To begin, consider the output of the attention layer r; = X,"S(X;p) which is a combination of
signal and noise tokens. This can be considered as a “token selection” based on softmax probabilities.
Since {7; };c[n) determines the model’s output, we prove that only by selecting signal tokens for clean
samples and noise tokens for noisy samples can we reach the maximum margin when performing
SVM on (74, ¥;)ie[n) and we refer to this as optimal tokens.

Definition 12 (Optimal Token). We define the optimal token for sample (X, y;) as

rr=aV =, i€ Cpk e {1,2) and =z =¢, icN (4)

7 - [

Based on this optimal token selection, we define the corresponding max-margin solution for p and v,
denoted by P, and vyy,,,. We first define p,,,,, as follows:

Definition 13 (p-SVM).

Pmm = argmin ||p||  subject to:

peERI
P (m—&)>1,i€C and p' (& —pi) > 1,i € N
forallk € {1,2},i € [n]. Let Z := 1/||pmm|| be the margin induced by .

Then for a given p, we define v(p) as the standard max-margin classifier on (7, ;)ic[n) and vy, as
the standard max-margin classifier on (7}, y;);c[,) Which represents the limiting case when p = Py,
and R — +o00.

Definition 14 (v-SVM).
v(p) := argmin ||v|| s.t. y; - v 7 > 1,  foralli € [n)]. 5)
vER?
I(p) :=1/||lv(p)|| is the label margin induced by v(p). When r; = r},i € [n], we define
U = argmin ||v|| s.t. y; -v "7 > 1, foralli € [n]. (6)
veER?

T := 1/||vimm]| is the label margin induced by v,

To show the optimality of this token selection, we prove that any other token selection that incorporates
other tokens in r; will strictly reduce the label margin. This is formalized in the following proposition:

Proposition 15 (optimal token condition). Suppose that Assumption 5| holds, with probability at least
1 — & over the training dataset, for all p, the token selection under p results in a label margin (Def.
14) of at most T — > -max(l — 8;4,) where a; = 1(i € C) +21(i € N) and C > 0 is some

—t
lvmm[[3np i€[n)
constant.

Then, it is natural to make a conjecture that when jointly optimizing p and v for (@), they will
converge to their respective max-margin solutions p;,,, and v,,.,, as R,r — oo. We verify and
formalize it in the following theorem.

Theorem 16. Suppose that Assumption[5|holds, with probability at least 1 — 6 on the training dataset,
we have

* The margin induced by p(, ry/ R in p-SVM is at least (1 — ()=, where

_ log(4y/p? + (1 + K)d||vmm > dp?)
B RE '

¢
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Figure 1: The left panel shows the train and test accuracies during training. It shows that benign
overfitting occurs after 2 iterations. After the first iteration, the model correctly classifies the clean
training examples, but not the noisy ones. In the right panel, we show the softmax probability
of the signal token for clean and noisy samples (average of the softmax probabilities 52-71 over
C and N respectively). We see that after 2 iterations, the attention focuses on signal tokens for
clean examples, and on noise tokens for noisy examples. This aligns with Theorem[d Parameters:
n = 200, d = 40000, 8 = 0.025, p = 30,7 = 0.05, test sample size = 2000.

* The label margin induced by v, ry/r in v-SVM is at least (1 — ), where v =

27/ p?2+(1+k)d

Fexp((1-Q)RE)

Here, (¢,) quantify the difference between (p(,, r), V(. r)) and (Prmm;, Vmm). As R — oo, both
¢ and ~ converge to 0. Thus, for sufficiently large R, we conclude that p(TT) R) (pnr — &;) becomes
large for i € Cy. This ensures that p(,. g captures sufficient information about signal tokens, which
enhances the accuracy of test sample predictions. Specifically, the attention weight on a signal token
is lower bounded by 0.5(1 — () R= < (p(,. g), i) Since the signal token remains invariant between
training and test data, we can estimate the attention layer’s output for a new test sample (X, y).

Lemma 17. Suppose that Assumption 5 holds, with probability at least 1 — & on the training dataset,
Jor a given test sample (X ,y) with X = (u*, €*), where the signal u* can be py or pa, we have
with probability at least 1 — exp ( - %(%(1 —-()=- K/R)Q) that (p(y gy, W*) — (P(r,r),§*) > K,
for K < %(1 — ¢)RE. Here (,E follow the definitions in Theorem

Therefore, if K is large, which is equivalent to R is large, the attention weight on the signal token is
much greater than the noise token. As a result, the signal token p* will dominate the attention layer’s
output, i.e. r* — p*.

Finally, from Theorem@ V(r,R) CONVEIZES t0 Vypyp, ensuring that it can make accurate predictions on
(1, y) if (per, y) comes from the clean set. Thus, w.h.p. the learning of signal token y - (v(, g), 1*)
is large enough to eliminate the randomness introduced by the noise token (denoted by A(£*) here)
and the model will make accurate prediction with high probability: y - f(p(, r), V(rRr); X ) &~

Y- 'UEE’R),U’* —A(g") > 0.
6 EXPERIMENTS

We complement our theoretical results with an empirical study on benign overfitting in single-head
softmax attention. We trained single-head softmax attention models (Eq. (I)) on data generated as
specified in Section 2.T|using GD with a fixed step size and the logistic loss function. In all figures,
the x-axis corresponds to the time and has a log scale. We add 1 to the time so that the initialization
t = 0 can be shown in the log scale (i.e. iteration 10° is the initialization).

In Figure [T} we consider a setting similar to Theorem ] and demonstrate that benign overfitting
occurs after two iterations, and that the behavior of GD aligns with our discussion in Remark We
also plot how the softmax probabilities evolve during training, and see after two iterations a behavior
similar to the first item of Theorem[z_f} In Figure@], we consider a similar setting, but with a smaller
step size. Here, benign overfitting occurs after about 150 iterations.
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In Figure[3a] we explore the behavior of GD with different SNR levels. When the SNR is too small the
model exhibits catastrophic overfitting, namely, it fits the training data but has trivial generalization
performance. When the SNR is sufficiently large we observe benign overfitting. In Figure [3b] we
investigate the overfitting behavior with different dimensions d. If d is sufficiently large we observe
benign overfitting. If it is very small we are not able to overfit, namely, the training accuracy does
not reach 1. For intermediate values of d we observe harmful overfitting. Thus, we see that high
dimensionality is crucial for benign overfitting. Interestingly, we can see that achieving benign
overfitting is possible even when d < n?, suggesting that our assumption on d in the theoretical
results might not be tight.

Lo --=- prob =05
S 0.81 — Ciean sample
—— noisy sample
0.9 2"
=
506
5‘0.8 === acc = 0.5 S
g -~ acc=1-n=095 205
a —— Train acc o
Zos — Testacc 304
E
£
50.3
0.6 ’
0.2
0.5 0.1

10° 10! 102 103 10° 10t 102 10°
Iterations (Log Scale) Iterations (Log Scale)

Figure 2: The left panel shows train and test accuracies during training with a small step size. The
clean training samples are correctly classified already after one iteration, but in contrast to Theorem 4]
and Figure|l} benign overfitting occurs after about 150 iterations. In the right panel we see that the
attention starts separating signal and noise tokens shortly before benign overfitting occurs. Parameters:
n = 200, d = 40000, 8 = 0.0001, p = 30, = 0.05, test sample size = 2000.

1. | 1.
0 ] 0 -
(
0.9 - 0.9
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10! 102 10° 10° 10! 102 10° 10° 10°
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(a) Accuracy - different SNR’s (b) Accuracy - different dimensions d

Figure 3: Comparing train (solid lines) and test (dashed lines) accuracies, with different SNR (left
panel) and different dimensions (right panel). In the left panel, we observe that for small SNR
(purple line), the model exhibits catastrophic overfitting, similar to Theorem [T0] For larger SNR
values, the model demonstrates benign overfitting. In the right panel, we see that for small d (purple
line), the model is unable to fit the data (at least in the first 10° first iterations), and both the train
and test accuracies are at the noise-rate level. For intermediate values of d (green and blue lines),
the model exhibits harmful overfitting, and for larger d (yellow line) the model exhibits benign
overfitting. We note that benign overfitting occurs here for d = 2n < n?, which suggests that the
assumptions on d in our theorems are loose. Parameters (left panel): n = 400,d = 40000, 5 =
0.00015,n = 0.1, test sample size = 2000. Parameters (right panel): n = 500,35 = 0.02,p =
30,n = 0.1, test sample size = 10000.

7 CONCLUSION

This paper took an initial step in establishing the benign overfitting phenomenon in a single-head
softmax attention model. Our results open up several future directions, including analyzing gradient
descent for more than 2 steps, more complex data distributions containing more than 2 tokens and
varying sequence length, and the self-attention architecture.

10
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Remark 18. Throughout our proofs, we assume without loss of generality that p, = (p, 0,0, ...,0) 7",
o = (0,p,0,....0)" and & = (0,0,£7) for &€ ~ N(0,1;_5). Indeed, since p, and i are
orthogonal, we can find orthogonal matrix A € R4 such that Ay, = (p,0,0,...,0) T, Ay =
0,p,0,...,0)" and A& ~ N (A0, A(I; — pip] /p* — popg /p?)AT), which mean that A&; =
(0,0,&7) for & ~ N(0,1;_5). We emphasize that an orthogonal transformation does not affect our
results.

A.1 PROOFS FOR SEC.[3]
A.1.1 NOTATIONS FOR SEC.[3l

Given a, b, ¢ € R, we denote by c(a £ b) the close segment [c(a — b), ¢(a + b)]. Given vector x, we
denote by x[i] the i™ coordinate of x, and z[i : j] denotes the subvector containing the elements
from the i to the j‘h, inclusive. We also list some key notations used in this section for convenience.

Table 1: Usefull notation.

Tij 4" token in the i sample

¥ y;iv, x; ; i.e. jM token score in time ¢

aﬁ) ;  softmax probability of the 7™ token in the i sample in time ¢
% £(Xi;ve,pt)

We remind that C, N C [n] denotes the indices of clean and noisy training examples, and C, Ny
denotes the clean and noisy examples from cluster £ € {1,2}. For example if i € Cy, then z; 1 = i
and y; = 1, and for j € N; we have that z;; = p; and y3 = —1. Let S'(v) := VS(v) =
diag(S(v)) — S(v)S(v) " denote the Jacobian of the softmax function S(v) at v € R

13
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A.1.2 ADDITIONAL LEMMAS & DEFINITIONS FOR SEC[3]

The following equations will be useful throughout the proof:

Vo L(v,p) Zf’ yi X, S(Xip) @)
i=1

VpL(v,p) = %Zé; - XS (Xip)vi, where v; = y;iv' X; 8)
i=1

V'(x) = =1/(1 + exp(z)) ©)

§'(v) = diag(S(v)) — S(v)S(v) " (10)

Definition 19 (Good Training Set). We say that a training set (X1, ..., X,) is good if
o |&113 € (1 £ 0,(1))d, foralli € [n].

[(€i,&;5)] < \/dlog(12n2/$), for any i, j € [n].
o [Nl € 5(n+on(1)) and |Cr| = (1 —n £ 0,(1)), for k € {1,2}.

Definition 20 (Good Test Sample). We say that a test sample (X = (x1,x2),y) is good w.r.t. a
training set (X1, ..., X,,) and constant C1 if

(@2, ®2)| < %, Vi € [n)

Next we write Lemma [66]slightly different, and also add a formal proof for completeness:

Lemma 21. Let 6 > 0 and C > 0. Suppose that Assumption [23](item[I)) holds with constant C, then
with probability at least 1 — 0 /2 we have that

Cxl € 5 "1+ /2/0), \Nk\eg(ni\/Q/C), vk € {1,2).

Moreover, we have

Cil € 2 (l—njzon( ), |Nk|eg(nion(1)), Vk € {1,2} .

Proof. By Hoeffding’s inequality,
P(llcil - S0 -n)| = Valog(16/9)/2) < 65,

which means that with probability at least 1 — 6/8 we have that [C;| € §(1 — 1 % c,), Where

= /2nlog(16/0)/n. Hence, if n > C'log(16/4), then ¢,, = /21log(16/0)//n < /2/C.
D

Slmllarly, we can estimate [N| for k € {1, 2}, and by union bound, the result follows.
Lemma 22. Let z,~,p € R? and let o = S(p), then
2'S'(p)y = (m —72)(1 — ar)as(z1 — 22)

Proof. Observe that a; 4+ oo = 1. Therefore,
2 2 2
27S' (p)y = 2T diag(a)y — 2T aa 'y = Z 2i0GY; — Z % Z i
i=1 i=1 i=1

= z10071 + 220272 — (121 + 222) (171 + Q2Y2)

= (12 — (1m1 + a272)) azze + (11 — (11 + a272)) a1z
= (172 — auy1) @aze + (@am1 — a22) a1z

= —ay (71 —2) azza + a2 (11 — 2) @121

= aq (71 - 72) Oé2(21 - 22)

Lemma allows us to analyze VL as a function of the score gap.

14
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A.1.3 PROOF OF THM. [4]

Proof of Thm. 4| To simplify the proof, we will use the following assumption, which is slightly
weaker than Assumption [3}

Assumption 23 (Assumptions for GD with SNR = ©(1/y/n)). Let § > 0 be a desired probability
of failure. For constants ¢, > 6,cg > 16¢, log(ci), there exists some large enough constant

C = C(cg), such that the following hold.:

1. Number of samples n should be sufficiently large: n > C'log(16/9)
2. Dimension d should be sufficiently large: d > Cn?log(12n2/5).

3. Signal strength is: p = c,+/d/n

4. Label flipping rate n: n < 1/C.

5. The step size 3 satisfies: 3 = (cg -n)/(c3 - d).

6.

Initialization at zero: ||vo|| = ||pol = 0.

Apart from slight adjustments to the constants within the logarlthm at items [T] and 2] (which can
be absorbed into C), the only changes are cg > 16¢, log(c ) (instead of Cz > 16) and 3 =

(¢ -n)/(c2 - d) (instead of § = Cp - (n/d)). Indeed, given C’g >16,C, > 6and g = Cs - (n/d)
which satisfy Assumption define ¢, := C,, > 6,c3 := Cﬁcﬁ > 16¢, log(cﬁ), which holds for any
¢p > 6. We also have that 8 = Cp - (n/d) = (cg/c2) - (n/d) . i.e., B, ¢,, cg satisfy Assumption
Next, under Assumption 23] we argue that with probability at least 1 — ¢ the training set is good (Def.

[ ie.
* [Ck] € 5(n*xon(1)) and Ny, € 5(1 —n=£o0,(1)), for k € {1,2}.
s ||&112 € (1 £ 0,(1))d, forany i € [n].

[(€i,&;)] < \/dlog(12n2/é), for any i, j € [n].

Indeed, this holds by Lemma[64] Lemma[21] and the union bound. We emphasize that the notation
o (1) represents a term that becomes arbitrarily small as n increases, and thus it can be bounded by a
small constant if C' from Assumption [I]is large enough.

Next, we show that under a good training set, the model exhibits benign overfitting, already after two
iterations. See Remark [T8]for the data setting used throughout the proof.

GD after 1 iteration. We start by analyzing the first coordinate of v; (i.e. v after one iteration of
GD). By assumption( iterr@), we have that py = vg = 0, which implies that £ ; = —1/2, for
any ¢ € [n]. Hence

/3 n
BV L(v, po)[l] = “on Zéo i YiTia Z yzp+ -— Z Yip
i 1€cl 16_/\/1
= e - i
é(l — 2= o,(1))p “good” training set

In the same way, we can estimate the second coordinate of v;—1:

Vi= 1 Zyzp"'i Z Yip € — 1_277:|:0n(1))p
’LGCQ i€N2

15
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where we remind that y; = —1, when ¢ € Cs, hence v;—1[2] has the same bounds as v;—1[1], just
with opposite sign. We move to analyze the rest of the coordinates of v;—1:

i=1

Overall, we can write v;—q as \i= g + A= po + D07 | 40071, with

B B

)\fi:1 S g(l —2n=+ On(l))’ )‘321 € _g(l - 2ni0n(1))a 9;?:1 = ﬁ

. 11
n (11)
Moreover, since v/~ = 0 for every i € [n], we have that p; = 0 (see Eq. .
Preparation for next iteration. To estimate (v;—2, pt—2), we first need to estimate the loss for
clean/noisy samples and the score difference, i.e. 7}, — 72,7 € Cand yj 5 — 7} 1,5 € N.

We remind that || u;||* = p* = c2d/n (Assumption(item ). For j € Ci, where k € {1,2} we
have that

1 .
Y f( X5 vi=1,P1=1) = 52/;’%11(%’,1 +j2) since p; =0
1= I 2, 1 = -
= SN 4 S0 I S S wn e e N > 0
i€[n]:i£]
(12)
Since the training set is “good” then by Eq. we can bound y; f(X;; vi=1, pr=1) as follows:
yi [(Xj;0i=1,pi=1) < ﬁ(l —2n+o0,(1)) -2 d + Ed(l +o,(1)) + ﬁn\/dlog(12n2/5)
J VEI =1 L= = 16 L P n 8n 8n
A(1—=2n)4+2+0,(1 d
< p( n) (1) . ﬁ— Assumption 23] (item [2)
16 n
1—=2n)+2/2 + o0,(1
=cg- <( ) 16/ £ ( )> Assumption 23] (item [5)
l.1cg
< 13
T (13)

where the last inequality holds since ¢, > 5, which implies that 2/ cf, + 0,(1) <0.1. Similarly, we
have that

: B 2 d B B
3 f (Xji e, Pimt) 2 451 = 20— on(1) -3 & 4 Lod(1 — 0,(1)) — Lon/dlog(120275)
S1-2m)+2-0,(1)\ pd
- 16 n
B (1—2n)+2/c; —o0n(1)
“ 16
0.905
14
T, (14)
For j € N, we have:
1 .
Y [ (X3 ve=1, Pt=1) = 51/3"0;1(13]‘,1 +x;2) since p; =0
1., 1 . I6] _
= *§|>\§51\ el + 595'71 I1€;1% + 2 Z viy;€l & yNT <0

i€[n]iiA)
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Since the training set is good then by Eq. [L1} we can bound y; f (X j; vi=1, pt=1) as follows:

Y f (X3 vi=1,P1=1) < —1%(1 —2n—o0,(1))- cz . % + %d(l +on(1)) + %n\/dlog(mrﬂ/é)
- —c(1=2n)+2+0,(1)\ Bd
= 16 n
B —(1—2n) +2/c2 + on(1)
o 16
< ’01'3057 (15)

where the last inequality holds for small enough 7 and since ¢, > 5, which implies that 2/ c% +2n+
0n(1) < 0.1. Similarly, we have that

£ 2001~ 0,(1)) ~ Lono/dTog(1227)

16 n
—(1—=2n) +2/c2 —o0,(1)
> cg < 16 ?
—1.1cg
> =% (16)

We remind that —¢; ; = 1/(1 4 exp(y; f(Xi; vi=1,P1=1))) and that § = cg - n/(dc) for some
constant ¢g > 16¢,. Combine with Egs. @ and@ we have that

i€C, —l_y; >1/(1+exp(l.1cg/16)) :=m& "' >0 (17)
i€C, —li_;,; <1/(1+exp(0.9c5/16)) := ME™' <1/(4c)), (18)

where the last inequality holds since cg > 16¢, and since 1 4 exp(0.9¢,) > 402 for any ¢, > 6.
Moreover, by Egs. [I5]and[I6] we have that
JEN, —li_y; >1/(1+exp(—0.9¢5/16)) := miF" > 0.99 (19)
JEN, —li_y; <1/(1+exp(—1.1¢s/16)) := M7 <1 (20)

The notations M/, and m, (M}, and m};) denote the upper and lower bounds, respectively, on the
derivative of the loss for clean (noisy) samples at time ¢, and we use them throughout the proof. We
remind that v} ; = y;v," ; ;. Then by Eq. [11} for i € C}, we have that

1B €
vt e g -mEon(1)p’ = (1 -2 E0n(1))

-1 Bd ¢
15t e (1 on(1) = 7 (1/c; % 0n(1))
— — C
Wt =izt e YU -2/ 2 on(1)). 1)

where in the calculation of 7}31 we use Zie[n]:i £ yiyﬂ;-:lEing = 0,(1) - d, since the training set
is good. For ¢ € NV, we have that

A5 e 202+ 0, (1) = ~ L1~ 2+ 0n(1))

8
- d
15 € 200k 0,(1)) = L1/ + 0,(1)

— — Cc
13! AT € F 12/ — 2+ 0a(1)) (22)

17
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GD after 2 iterations.
Analysis of v;—s.

Observe that
_ﬁv £(fvlvpl __7Z£12 yZXTS 2p1 :_72611 yz w11+m12)
We start by analyzing the first coordmate of VyL(v1,p1).
s
—BVuL(v1,p1)[1] = Z —0y i vz [1] + o Z 0 ;- yiwia (1]
16C1 i€N7
g / B /
~ o Z —lyip— m Z —lyip
1€Cq i€N
i1 DORTED SR M @
- m 1,2 1,5 p-
i€Cy JEN
Observe that
Z —0),; — Z ;> 1 —n—=o0,(1)) -me — g(n +o0,(1)) - My good training set
1€Ck FENL
>0 Eqs. [T7]and 20}

where the last inequality holds for small enough np < 1/C, where C := C(c,, cg) (see Assumption
H). Substituting it into Eq. 23] we obtain that

—BVuL(v1,p1)[1] > 0.
On the other hand, by Eq. 23] we can upper bound the first coordinate of the gradient of v by

—BVyL(v1,p1)[1] < % (Z —5/1,1') p

i€Cy
<2, <1008
Similarly, we can estimate the second coordinate of V, £(v1, p1):
0> ~BYuLlonp)2 = 1
Write vi—g = N2y + A2 00 + 00 | 1:0072¢,. Together with Eq. [11] we get that
A2 = AT = BV L(v, p)[1]/p < g(l +on(1)) + % < % (24)
AT > A > §(1 — 21— 0,(1)) (25)
N2 = VL, P2 > 2 (14 o, (1)) - 2 > 2 26)
AP S AT < —§<1 = 21— 0a(1)). @27)

Next, we analyze the rest of the coordinates of V,,L(v1, p1).

ﬂ B
—BVuL(v1,p1)[3:d] = Z i viki + o Z 0 ;- yi&;5,
zEC JEN
and use it to analyze the coefficients of the noise (second) tokens in v;—s, i.€., 9;?:2. Indeed, fori € C
we have that

0 =0 D = Dt ) Eq. [T

€ n(mc + 0. 5) 8 (Mc + 0. 5)] (28)
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For j € A/ we have that

0= =0t~ 1—££ _fn( 1;+0.5) Eq.[TT]
€ %(m/\/+05) QE(MN-%O.E)) . (29)

Now we move to analyze p;—o and show that p,—» focuses on optimal tokens for training samples.
pi—2 focuses on optimal tokens. Observe that py = —3V,,L(v1, p1). Therefore, for j € Cy,
Pz (%1 — 2)

_ T _ 6 - Tg/

= (@1 —xj2) FVpLve,pr) = (x)j1 — xj2) Z Vi X S (Xape )i

n

3

B -1 B -
~n _gll,i ’ m;’lleiTS/(XiPt)’Yf 't n Z ;- i 2XTS/( i)Y !
i=1 i=1
B - - —1y =
=0 _Ell,z : (7511 - %?}21)(1 - 043711)@5,11(“?},153@1 + ij,2wi,2) Lemma[22]
i€[n]
B - - 2 2
= ;( 1) =) = ai)aga(llagall” + e
B - - 1y =
+ n Z _E/l,i : (’Yf,ll - 75,21)(1 - 0‘5,11)045,11(33;1431‘,1)
1€CK i#£]
B - - 1\ =
T Z *6/1,@ : (’75,21 - 7;’5711)(1 - O‘ﬁ,ll)o‘ill(a};lmi,l)
1E€ENRi£]
B - - Z1\ e
+ n Z - /11 ) (’Yfgl - 75,21)(1 - 045,11)@5,11(“’;2%,2) .
1€[n]:i#£]

Observe that o :1 = a5 51 = 1/2. In Egs. ﬁ 21| and [22] E we calculate the score differences (e.g.
%‘,1 — % 51). Overall, we can lower bound the above equation by:

> 2 (me - L1 -2/ 20— 0,(1)) - d(1 — 0,(1))
2 (@ onV)- G me 21— 2/ - 2 - 0,(1)52)
% ( (n+ o0n(1 ~%~MN%’(1+2/c§ —2n+on(1))zc§>
%(n MN (142/c% =20+ 0a(1)) dlog(12n2/§)).

The first term dominates the last term since d > ny/dlog(12n2/§) (see Assumptlonn (1tem ).
The second term dominates the third term for small enough 7 (see Assumption[d). Overall, we obtain

that

Py (zj1 — x;2) >0, (30)

which means that for any ¢ € C we have:

2 _ 1 >

1
=, (31)
1+exp(—pg (w1 —xj2)) ~ 2

t:
zl

19
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For j € Ny,
g — -
ps (Tj2 —xj1) = = 1052 =7 = ainaga(lzall” + lzel)
B ,
_E Z /1,1 (7;11_711"21)(1_05511) i1 ( ],13311)
ZECk i#£]
5 Z 5/1 i %tzl - Wﬁl)(l - aﬁl)af,:ll(w;ﬁm)
1E€ENi£]
= g S b (IF = AEHA = alTYalT (@) ,®is)  LemmalZZ
Le[n]'iyéj

Observe that o :1 = al3 2 =1/2. In Eq . and Eq E we calculate the score differences (e.g.
%,1 —732"). Overall, we can lower bound the above equation by:

(mN (1+2/c —277—0n(1))~d(1—0n(1))>
( (1 =7+ o0n(1)) - g M . 12/ 2n—|—on(1))Zc§)

[NV - mN 1+2/c —277—0,(1))202)

?\Q ?\*@ ?\Q ?\E

(n My 2142/ = 20+ 0,(1)) dlog(12n2/6)).

8

Observe that the third term is non-negative. Moreover, we argue that the first term is at least twice the
sum of the second and last terms. Indeed, enough to show that

(mar- (1+2/c2 — 20— 0,(1)) - d(1 — 0,(1))) >
2 ((1 +0,(1)) - % - Mp - dc§> +2 (n My (142/¢ + on(1)) dlog(12n2/5)) ,

which indeed holds since ny/dlog(12n2/6) = d- 0,(1), and M - c < 0.25 while mar > 0.99 (see
Eqs. [I9]and[I8). Overall, for any i € N we have that

PE (i~ w50) > L (mac (14 2/~ 2= 0,(1)) - d(1 — 0,(1))

= 8% (mN gﬁ(l +2/c; =20 —0,(1)) - (1~ on(l)))

Z 2 IOg(CP)7

where that last inequality holds since c¢g > 16¢,log(c,), which implies that 0.90[23 /6403 >
2log(c,) = log(c?). We conclude that,

1 1 1
al=2 — > =
Y02 T T Y exp(—p] (@2 — 1)) ~ L+ exp(—log(2)) 1+ 1/c3
c? 2 -1
=L _>2 =1-1/c. 32
c2+17 ¢ /% (32)
We conclude that for any j € A we have that
P> 1-1/c, o <1/ch (33)

Together with Eq. [31] this proves the third part of the Thm.
The classifier sign(f(X;v;—2, p:=2)) classifies correctly clean training samples. Let (X; =
(zj1,%)2),y,) for j € C. We remind that ;1 = py, for k € {1, 2} and x5 ; = &;. we have that,

. =2 T t=2, T
f(Xjvi=2,Pri=2) = 0770y ;1 + 57V, T 9,

20
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and it suffices to prove that
y; (f(Xj;v2,p2)) > 0.
Indeed,

) _ot=2 T t=2 T
‘f(X' v,p) = Q0 17YjV Tj1 + Qi 5"YVg Tj 2

2 = =
Tl lewl® + o507 1E 17 + o5y Y wifi T &y >0

i€ [n]iiAg
Pl lle])” = o3P0 max|6;]v/dlog(1202/5)
_ d _
> ol (g) ;ci ol %(MN +1)/dlog(12n2/6) Egs. 29} 23] and 27]
1(B\d, 1 8
> (2)&2_ 2,2 2 .
2 3 (9> LA L. (My + 1)/dlog(12n2/4) Eq.[3T]
>0, d > n+/dlog(12n2/4§)

as required.
The classifier sign(f(X;v;—2, pi=2)) classifies correctly noisy training samples. Let (X; =
(xj1,2j2),y;) for j € N. We remind that «; ; = py, for k € {1,2} and x5 ; = &;. we have that,

. _ o t=2, T t=2, T
[(Xj3vi=2,Pr=2) = ;170 Tj1 + ;5 0y T 2,
and it suffices to prove that

y; (f(Xj;v2,p2)) > 0.

Indeed,

yif(Xj;v,p) = ﬁQinUQTCEm + CYEZQQZ/W;ZB]‘ 2
—a PNl l® + 5202 1IE 1P + 5Py D wifl T €y <0

i€[n]:iA]

—a77 (32) 42+ ol vt — (1) - 5?2 0(1) B B} ERanal
1 /38\ d 1\ s B
>-% (16> Aoy (1 - CQ) 2 0.99d(1 ~ 04(1)) ~ - 0,(1)  Eas. BJand[19

P

>0,

as required.
The classifier sign(f(X; v;—2, pi—2)) classifies correctly clean test samples.

Let (X = (@1, x2),y) be a fresh clean sample i.e. (X,y) ~ Dejean. Observe that &1 = puy, for some
ke{l,2}andy = 1iff k = 1. By Remark with probability at least 1 — 61 exp(—d/4C1n?)
for some constant C'; = C(c,,cg) that will be chosen later, we have that (X = (z1,x2),y) is a
good test sample w.r.t. C (Def. . We work under the event that (X = (1, x2),y) is a good test
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sample and show that y = sign(f(X; v¢=2, pt=2). Recall that p» = —V,L(v1,p1) and therefore:
s (x1 — x2)

= —(@1 — @2) " BV pL(V=1, pr=1) = (@1 — T2) gz Vi X S (Xap)y ™

n
=03 el XIS (Xipt - z @ X (Xipo
=1

S it = - el alT @] @i+ @) @) Lemmal2
i€[n]
B - -
= — Z /1,1 (75,11 —’Yt21)(1 — o 11) 1 (g i)
1€Cy,
B
T Z 5/1,1' (viz' — ’Yf,ll)(l — o7 (@] @)
i€NG
B — — 1\ =
+ n Z _Ell,i ) (75,11 - ’73,21)(1 - af,11)a§,11($;wi,2)
i€[n]i]

Observe that o’ Il = iy 51 =1/2. In Eq. and Eq. Ewe calculate the score y/=!. Overall, we
can lower bound the above equation by:

451 ((1_ _On(l))'g %(1—2/0 —2n—0n(1))20§>
_ % ((n +on(1))- g : MN%ﬁ(l +2/c2— 20+ On(l))ici>
- % (n : MN%(l +2/c2 — 2+ on(l))ci) :

Once again, the first term dominates the last two terms when C} is large enough and when 7 is small
enough (Assumption[d). This means that the softmax probability of the first token is:

1 1
> —. (34)
1+ exp(—pg (x1 — x2)) ~ 2

Let 1 = py, for k € {1,2} and x5 = €. Then,

f(X50,p) = a1v] T + pv; @,
where a1, oo are the softmax probabilities of po for X. It suffices to prove that
y(f(X;v2,p2)) > 0.

Since the test sample is "good", we have that Vi : £ £ < ﬁ, which implies that

yf(X; 'UQ?pQ) = Oé1y’ngSC1 + agyv;:cg

= o | Me| x| + 0423/2%915?5 YA > 0

i=1

> anl Al = azn mase 6] 1

B\ d B d
> )22 - aon— —— .
> (9) —C agnQn(MN+1)Cm Eqs. 29 [25] and [27]
1/6\d, 1 8 d
> (2) 42 Zn 2y + 1) Eq.
—2(9> 3N, MV DT %54
> 0,
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where the last inequality holds for large enough C. Overall,

P(x y)~p(y # sign(f(X; vi=2, Pr=2)))
<N+ Px )~ Do (¥ 7 Sign(f (X5 v4=2, Pr=2)))
< n+ 6n?exp(—d/4C1n?).

By Assumption [23(item , we can also upper bound the above term by 7 + exp(—d/Cyn?), for a
slightly larger C';. This proves the last part of the theorem. O

A.1.4 EXTENSION TO MULTIPLE TOKENS

In this part we focus on the following data distribution:

Definition 24. Let puy, o € R? such that |1 || = ||p2|| = p for some p > 0 and (u1, pa) = 0, be
two fixed orthogonal vectors representing the signal contained in each data point. Define D jpan as
the distribution over RT*4 x {£1} of labelled data such that a data point (X ,7) is generated by
the following procedure:

1. Sample the label §j ~ Unif{+1}.

2. Generate the signal token as follows: If y = +1, set x1 = py; and if y = —1, set &1 = po.

3. Generate noisy tokens &, for 7 € {2,3,...,T}, from the Gaussian distribution &, ~
N0, Iy — pap] /p* — paps [p?) and let x, = €.
4. Denote X = (x1,xa,...,x7) .

We make the following assumptions:
Assumption 25 (Assumptions for GD with SNR = ©(1/y/n)). Let § € (0,0.5) be a desired

probability of failure. For any constants Cr > 2,C, > 6(Cr —1),Cg > 160%, as well as a
Zz:)%c.iently large universal constant C that may depend on C,, Ct and Clg, the following conditions

1. Number of samples n is sufficiently large: n > C'log(1/9).

2. Dimension d is sufficiently large: d > Cn?log(n/d).

3. Signal strength satisfies p = C, - \/d/in

4. Label flipping rate satisfiesn < 1/C.

5. Step size satisfies § = Cg - (n/d).

6. Initialization at zero: |vo|| = ||pol| = 0.

7. Number of tokens satisfies: 2 <T < Cr

We now state our main result on benign overfitting with GD for the multiple token setting:

Theorem 26. Suppose that Assumption [25| holds. Then, with probability at least 1 — 6 over the
training dataset, after two iterations of GD we have:

* Higher softmax probability for optimal tokens:

— 1 .. _ 1 )
8232 > f’ VieC and 85112 < m, Vi € N

where sf ; is the softmax probability of the 4™ token in the i sample at time t.

* The classifier X s sign(f(X;vi=a, Pt=2)) correctly classifies all training data points:

yi = sign(f(Xy; vi=2, Pr=2)), Vi € [n].
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* The classifier X — sign(f(X; vi=q, p1=2) generalizes well:

P(xy)~p (Y # sign(f(X; vi—2, p1—2))) < n+ exp(—d/Cin?),

where Cy := C1(C,, Cg) is a constant.

We can also conclude that for the clean-labeled distribution Dgje,, We have

P(x y)~ Do (Y 7 Sign(f (X5 V1=, P1=2))) < exp(—d/Cin?),

which approaches zero as d grows (see Assumption 23] item 2)).

A.1.5 ADDITIONAL DEFINITIONS & LEMMAS - MULTIPLE TOKENS.

Definition 27 (Good Training Set). We say that a training set (X1, ..., X,) is good if

e [|&i-l13 € (1 +0,(0))d, foralli € [n],7 €{2,...,T}.

<£”,£JT | < /dlog(12n2T2/6), for any i,j € [n|, 7,7 € {2,...,T} such that
i 7.

|
(i,7) #
o Nkl € 5(nEo0,(1)) and |Ci| = 5(1 —n £ on(1)), for k € {1,2}.

Definition 28 (Good Test Sample). We say that a test sample (X = (21,2, ..., xT1),y) is good
w.rt. a training set (X1, ..., X,,) and constant C1 if

|<$17—,$7—>| ViE[n],T,T/E{Q,...7T}

< )
C 1mn
Next we write Lemma [66] slightly different, and also add a formal proof for completeness:

Lemma@ allows us to analyze VL as a function of the score gap.

Lemma 29. Let z,v,p € RT and let o = S(p). Define ypin := min,>2 Yr, Ymae = MaXr>2 Yr,
Y= (’len + 7ma1)/2 and € := (’Y’max - meln)/2 Then

T T T
o 20
2TS'(p)y € (1 —7)(1 — a1)y (zl — %) +e (2 g Zio; + o E zio; + (1 — al)a1z1>

24
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Proof. Observe that 3/ ; = 1. Therefore,

z'S'(p)y

T T T
= sziag(a)'y - ZTOéaT’Y = Zzi%@i - Z Zi 0y Z%‘Oéi
T - T
=z1mo1 + (Y £e) Z Zi0y — <21a1 + Z%%) <710¢1 +(y=*e) Zai>
i=2 i=2
= ((fyie) — (04171 +(yxe) Z )) Zz,oz ( - (al’yl + ('yie)Zai)) o121
T
=((vxe)—(am +(vE£e)(1 —a))) Z zioi + (11 — (a1 + (Y £ €)(1 —an))) arz
T
= (a1(y£€) — ary1 £ 2¢) Z zic, + (1 —a1)(m —vEe)arz
i=2

T T T
=a; (y— ) Zziai +(1—ay)(y1 —y)a1z1 ¢ <2 Zziai + o Z zioy + (1 — al)a1z1>
i=2 i=2 i—2

T
= (o1(yte) — a1y £ 2€) Z zii + (1 —a1)(y1 — vy £ e)arz
i=2

2; 0
= (71—7)(1—a1)041 (Zl — le 2@ ) te (2221011-"-@1222@1 1—0[1)06121)
- a1

O

We will show that in our setting the score difference between noisy tokens (i.e. € from Lemma[29) is
relatively small and thus the second term in Lemma[29]is negligible compare to the first term.

A.1.6
Proof of

PROOF OF THM.

Thm. [26] To simplify the proof, we will use the following assumption, which is slightly

weaker than Assumption 23}

Assumption 30 (Assumptions for GD with SNR = ©(1/4/n)). Let § > 0 be a desired probability of
failure. For constants cp > 2,¢, > 6(T — 1),cp > 16T3cp log(ci), there exists some large enough

constant

~

2.

3
4
5.
6.
7.

C = C(cg), such that the following hold:

Number of samples n should be sufficiently large: n > C'log(16/0)
Dimension d should be sufficiently large: d > Cn?log(12n*T? /).

. Signal strength is: p = c,+/d/n
. Label flipping rate n: n < 1/C.

The step size (3 satisfies: § = (cg - n)/(ci -d).

. Initialization at zero: ||vg|| = ||pol| = 0.

. The number of token T satisfies: 2 < T < crp

Apart from slight adjustments to the constants within the logarlthm at items [T] and 2] (which can
be absorbed into C), the only changes are cg > 16T?c,log(c?) (instead of Cy > 16T°) and

B=(cs-

n)/(c2-d) (instead of 3 = Cj - (n/d)). Indeed, given Cg > 1673,C, > 6(T'—1)and 8 =

Cj3-(n/d) which satlsfyAssumptlon. define ¢, := C), > 6(T—1), ¢ := Cpc, > 16T7c, log(c3),
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which holds for any ¢, > 6(T — 1). We also have that 3 = Cj - (n/d) = (cg/c2) - (n/d) , ie
B, ¢y, ¢ satisfy Assumption [30}

Next, under Assumption 30, we argue that with probability at least 1 — ¢ the training set is good (Def.

27)ie.
* [Ck| € 5(nxon(1)) and N, € §(1 —n=£o0,(1)), for k € {1,2}.
o [&+]13 € (14 0,(1))d, foranyi € [n],7 € {2,...,T}.
(52’7,5” | < /dlog(12n2T?/§), for any i,j € [n],7,7" € {2,...,T} such that
i (4, 7).

)T)

|
(i
Indeed, this holds by Lemma[64] Lemma[21] and the union bound. We emphasize that the notation

on (1) represents a term that becomes arbitrarily small as n increases, and thus it can be bounded by a
small constant if C' from Assumption [Iis large enough.

Next, we show that under a good training set, the model exhibits benign overfitting, already after two
iterations. See Remark [I8]for the data setting used throughout the proof.

GD after 1 iteration. We start by analyzing the first coordinate of v; (i.e. v after one iteration of
GD). By assumption (item @), we have that py = vy = 0, which implies that £; ; = —1/2, for
any i € [n]. Hence

g B
BV (w0, po)[1 E o viall) = 57 3wt 3 3 W
1€Cy i€ENT
= ﬂ(‘cl‘ - |N1|)P

€ %(1 —2n+o0,(1))p “good” training set

In the same way, we can estimate the second coordinate of v;—1:
B
V=12 2T7‘L_Zylp+7 Zyzpe—ﬁ(l—Qnion(l))p
l

where we remind that y; = —1, when ¢ € Cs, hence v;—1[2] has the same bounds as v;—1[1], just
with opposite sign. We move to analyze the rest of the coordinates of v;—1:

ﬂ n T
= Tn ;yz‘;ﬁim

Overall, we can write v;—q as \i= g + A7 o + >0 | 40071 2322 &, with

t=1 5 t=1 5 t=1 /6
—((1—=2n=+o0,(1 ——(1=2n+o0,(1)), 0;7" = —.
M€ p(=2mEo0u(1), A € —n(1 = 2n £ 0n(1)), 6; 5T (35)
Moreover, since /=" = 0 for every i € [n], we have that p; = O (see Eq. .

Preparation for next iteration. To estimate (v;—2, Pt—2), we first need to estimate the loss for
clean/noisy samples and the score ; , (see Table I)).

We remind that ||, I = p? = = cod/n (Assumptlonn(uem') For j € Cy, where k € {1,2} we
have that

1 .
Yif (Xjiv=1, pe=1) = 7 v Y m, since p1 =0
T=1

T-1
1,.,_ 1 ., B _
€ T‘X;c_l| llel® + T9§_1 E ||fj,TH2 + EO(d) YAt >0 (36)
T=1
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where the last inequality holds since the training set is “good” and 7' is a constant i.e.

> &l .& € £o,(1)-d.
i,7,7" (4, 7)#(G,7)

Since the training set is “good” then by Eq. we can bound y; f(X;; vi=1, pr=1) as follows:

Y f(Xj5vi=1,pi=1) < %(1 —2n+o0,(1)) - 0;2) . % + mez_nl)d(l +0,(1)) + g -o(d)

(1 =2n) +2(T — 1) 4+ 0,(1)

< 77 ) : % Assumption [30] (item [2)
1—2n)4+2(T —1)/c2 + on(1
=cp - <( " (4T2 )<y ( )> Assumption 30| (item [3))
1.105
< 37
< 7 (37

where the last inequality holds since ¢, > 5(T — 1), which implies that 2(T — 1)/c2 + 0,(1) < 0.1.
Similarly, we have that

. g 2 d, B B
Y [ (X ve=1,P1=1) > @(1 =21 —o0,(1)) - ¢, - -+ 2T2nd(1 —on(1)) — Eo(d)
- ci(l —20)+2(T —1) —o0,(1) ' Bd
- 472 n
(1~ 20) + 2T~ 1)/~ 0,(1)
G 472
0.965
2 e (38)
For j € Ny, where k € {1,2} we have that
1 T
Y f(Xj50i=1,P1=1) = T 'ijt—rzl Z:l Zjr since p; =0

T-1
L=t 2 L =1 2, B t=1
€ — N sl + 65 ;H&Mll £ =o(d) Y AT >0 (39)

where the last inequality holds since that the training set is “good” and T is a constant. Since the
training set is “good” then by Eq. we can bound y; f (X ; v;=1, pr=1) as follows:

U F Ko pic) < — g (= 2m—0u(0) -3 T+ PV a1 40,10y 4 2 o)
. (-c}i(l — 1) +42T(2T -1)+ on(1)> . % Assumption[30|(item[2)
—cs- <(1 — )+ Q(ZTQ /e + O"(1)> Assumption 30 (item 5)
S o0
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where the last inequality holds since ¢, > 5(7'—1), which implies that 2(7'—1)/ c,%+2n+on (1) <0.1.
Similarly, we have that

Y [( X3 Vp=1, Pr=1) > — 452 (1 —=2n+o0,(1)) - ci . % + 27@ d(1 —o0,(1)) — go(d)
N (—cp(l — )+ 2T —1) - on(1)> pd
- 472 n
—(1=2n)+2(T —1)/c; — on(1
- AT?
71.16#}
Z 72 41

We remind that —¢} ; = 1/(1 4 exp(y; f(Xy; v;=1,P1=1))) and that 5 = ¢z - n/(dc3) for some
constant cg > 16¢,. Combine with Egs. [37]and 38} we have that
i€C, —l_y,; >1/(1+exp(l.lcg/AT?)) :==m& " >0 (42)
i€C, —l_y,; <1/(1+exp(0.9c3/4T?)) := M < 1/(4(T —1)c2), (43)
where the last inequality holds since ¢g > 4T?(T — 1)c, and since 1 + exp(0.9¢,) > 4c;, for any
c, > 6.
Moreover, by Eqs. #0and T} we have that
JEN, —zg 1; = 1/(1 +exp(—0.9¢3/4T?)) := m/F" > 0.99 (44)
JEN, —l_y; <1/(1+exp(—1.1¢s/4T?)) := Mi7' <1 (45)
The notations M/ and m; (M}, and m};) denote the upper and lower bounds, respectively, on the

derivative of the loss for clean (noisy) samples at time ¢, and we use them throughout the proof. We
remind that %{T = yivtT x; . Then by Eq. , for ¢ € Cj, we have that

B

i € (1= 2t on(1)p” = 4T(1 — 21+ 0,(1))
B 2
te (1l on(1) = $5(1/ H0,(1), Y € {2, T)
’Yf,1 %2 € 4T(1 - 2/C —2n+o,(1)). (46)

where in the calculation of /5" we use 0,1 405~ Y L & &~ = 0,(1) - d, since the
training set is good. For i € N, we have that

t=1 p 2
. -1 -2n+o0,(1 =——(1-2n=%o0,(1

via € —yp(l=2mEon(1))p 4T( 1=+ 0,(1))

Vi % d(1 £ 0,(1)) = Ciu/c? +o0,(1)),V7 € {2,...,T}

Ve =Y Eﬁ(l—i—Z/c —2n=+0,(1)). (47)
GD after 2 iterations.
Analysis of v;—o.
Observe that

~BVuL(vy,p1) ——Zéu vi X S(Xip1) Z Yy @
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We start by analyzing the first coordinate of V., L(v1, p1).

—BVuL(v1, p1)[l Z 1 yiia[1] + % > =l yimia[l]
zeCl i€N7
B B
= Tn Z *5/1,1"/7* Tn Z *fll,i'P
1€Cq i€ENL
B
= T Z Ly — Z Ll | P (48)
i€Cy JEM

Observe that
n .
Z 0y, Z 1> 2(1—77—on(1))-mc—g(n—i—on(l))-MN good training set

i€Cy, JENR
>0 Eqs. B2]and [A5]

where the last inequality holds for small enough 7 < 1/C, where C := C(c,, c3) (see Assumption
M). Substituting it into Eq. 8] we obtain that

—vaﬁ(vl,pl)[l] > O
On the other hand, by Eq. #8] we can upper bound the first coordinate of the gradient of v by

—BVuL(v1,p1)[1] < % (Z _5/1,1‘) p

1€Cq
B /
< L. "y .
<o ¢, < 1/17,Eq. B3
Similarly, we can estimate the second coordinate of V, L(v1, p1):
B
> — >__Z
0> —BVyL(v1,p1)[2] > TP
. +=2 t=2 n t=2 T-1 .
Write vi—o = N[77p1 + A5 2o + >0 w072 > 4 Si. Together with Eq. |35} we get that
_ _ < 5B
t=2 _ yt=1 _ <21 6 4
A2 > A > %(1 — 21 — 0,(1)) (50)
_ _ 53
t=2 _ yt=1 _ s _B _ B 58
Ag A9 BV L(vi,p1)[2] > 4T(1 +0n(1)) 7T = 16 (51
- - p
N2 SN < - n (- 20— 0,(1)) (52)

Next, we analyze the rest of the coordinates of V,,L(v1, p1).

T
AL B ) = 1 S0 %2@%2—43,]»-@@
T=2

zeC =2 JEN

and use it to analyze the coefficients of the noise (second) tokens in v;—o, i.€., 91?:2. Indeed, fori € C
we have that

B, B

0,72 =0;""~ T = ) = (=1, +0.5) Eq.B3
e {T’;ma +0.5), TB (Me +0. 5)} (53)
For j € N we have that
- - B B
0:=% = ¢! 1_ﬁ€/1’j:ﬁ(_ 1;10.5) Eq. [33]
c {an(mNer) b (MN+05)} (54)
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Now we move to analyze p;—» and show that p;—, focuses on optimal tokens for training samples.

p:—2 focuses on optimal tokens. Define 7; ynin 1= MiN;>2 Vir, Vimazr = MAXr>2 Yir, Vi 1=
(Ymin + Ymaz)/2 and €; := (Ymaz — Ymin)/2- By Egs. andwe have that ¢; = 0,,(1) for any
i € [n]. Observe that p; = —8V,L(v1,p1). Therefore, for j € Cy, and any 7 € {1,2,...,T} we
have:

Py (Tj1 — )

B < _
—(@j1 — ) BVpL(ve, ) = (241 — l‘j,r)Tﬁ St XS (Xip)vi™

i=1

B Y T xT = T vT =1
:E;_éll,i'mj,lXi S'(Xipe). Z —0 i m) X, S (Xipe )y~ (35)

Write 21 ; ; := X;x; 1. Observe that z;; ; = (a:iTa:j,O, ...,0)fori € CtUN,and z1;,; = 0
otherwise. By Lemma[29] we can lower bound the first term in Eq. [55]as

iy Z -2 S (Xip)yf™ > = 0 Z - (i = = e (1 - 0, (1)2] 2
ZGCk
Z i - 'ijl)(l - 0‘5,:11)042,:11(1 - On(l))miT,leJ’
’LGNk

where the (1 — 0,,(1)) term is from the second tern in Lemma [29] and since ¢; = 0, (1). Now

we move to the second term of Eq. [55| Write z,,;; := X;x;.. Observe that X;x;, =
(0, 3’31,1%,77 . :BIT33J,T, .,xpxj,). By Lemma , we can lower bound the second term
in Eq. [53]as

RS -
_Ez_g/l," :z,]S/( lpt)’Yf !

B . - - -
= m 4 —4'1,1' ’ (Vf t— 75,11)(1 - 0‘5,11)0@, ! (1—-o0n(1 Z L 1 Ljr

B 1 =1 =1 2 T

> gy, () (63 =T - afiefE (- on(1)) wwn+%ﬁwwﬁ
B T

T T-1n Yo bt =l A= alihalT Ut ou(1) Y @l

1ENFE] T/=2

Overall,
P (0 — @j.r)
8 .
Z*Ffﬂﬁf—ﬁUﬂ—%n%ﬂkwdm(WmV+MwWAT%@

Z ~l1i- (1 =D = ol (1 - on(1))aiT (@] @)

zeCk i#]
Z —h (=" - %ﬁl)(l - 0‘57:11)0‘5,:11(1 - On(l))(ij,lmi,l)
ZGNk i#]
B T
_ ﬁ Z Z é i1 % 2 (11— ozﬁl)a;:ll(l +on(1)) Z (ij,TiUz',T/) ]
i€[n]iizj 7" =
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Observe that o} 7' = 1/T and that (1 — o 1)a; ) = (T —1)/T? for any i € [n]. In Egs. and

we calculate the score (e.g. fyﬁl). Overall, we can lower bound the above equation by:
B

> o (me - (1 =2/ek = 20— 0,(1)) - d(1 = 0 (1))

+W((1—n—on(1)) % mc4T(l—2/c —277—0”(1))5(;?))
8 (e on) B M S0+ 2765 — 2+ 0n(1) 563
(TT_Q:LW( MN%(1+2/c,%—2n+on(1)) dlog(12n2T2/6)).

The first term dominates the last term since d >> ny/dlog(12n?/6) (see Assumptlonn (1tem ')
The second term dominates the third term for small enough 7 (see Assumption[d). Overall, we obtain

that for any 7 € {2,...,T} that
P (%j1 —xj7) >0, (56)
which means that for any ¢ € C we have:

) 1 1

2= > — . (57
1+ 37, exp(p] (), — 251))

Similarly, for any j € N, and 7 € {2,...,T},

Py (zTjr — ;1)

t
Q;

6 -
< 0,05 v§,11><1—aj,naj,l(l—on(l)) (Il ll® + 2y 2 /(T = 1))
> e (i =T = el on(D)alT @] i)
niECk:i;éj

B - - 1y t=
+ n Z *éll,z‘ : (’Yf ' ’Yf,ll)(l - az,ll)alz?,ll(l - On(l))(w;‘flxi,l)

IENR 1]

T
g
G Z Z — T =R (L= el el T (L4 0n(1)) Z(mJTT;,;W,) _
i€[n]iity T =
Observe that o/ 7' = 1/T and that (1 — a;,1)a;1 = (T’ — 1)/T? for any i € [n]. In Egs. and

we calculate the score (e.g. vfil). Overall, we can lower bound the above equation by:

> Tf (mN 4T(l +2/c) —2n—on(1)) - d(1 — on(l)))

_ (TT—QTIL)B ((1 — 1 —on(1)) - g - Me 4T(1 —2/c% 2n—on(1));lci)
n (TT;:L)B (|Nk|' 4T(l +2/ck - 2n+on(1))zc§>

_(T-1B

— (n MN4T(1+2/C — 2+ on(1)) dlog(12n2T2/5)).

Observe that the third term is non-negative. Moreover, we argue that the first term is at least twice the
sum of the second and last terms. Indeed, enough to show that
(mar- (1+2/c2 = 20— 0,(1)) - d(1 = 0,(1))) >

2(T — 1) ((1 +0,(1)) - % - Mg - dc,%) +2(T - 1) (n My (1+2/c2 + on(1)) dlog(12n2T2/5)) :

31



Under review as a conference paper at ICLR 2025

which indeed holds since ny/dlog(12n?/5) = d - 0,(1), and Mc - ¢ < 0.25/(T — 1) while
my > 0.99 (see Eqs. 4]and[43). Overall, for any « € N we have that:

pI(@yr — ) = 2o (ma - (14 2/2 2 - 04(1) - d(1 — 0,(1))

2T%n 4T
3 ,
T /T2 (may - (1+2/c; = 20 = on(1)) - (1~ 0n(1)))
> 2log(c,),

where that last inequality holds since ¢z > 47%c,log(c,), which implies that 0.90% / 8T3c§ >
2log(c,) = log(c?). We conclude that,

1 1 1
at=2
aly® = < =
L1+ e (@, —w0)) L (T - Dexpllog(}))  14+(T - 1)
1
<. 58
ST %)
We conclude that for any j € A/ we have that
t=2 1
D *

Together with Eq. [57], this proves the first part of the Thm.

The classifier sign(f(X;v:—2, p:=2)) classifies correctly clean training samples. Let (X; =
(j1,...,zj7),y,) for j € C. We remind that &, 1 = py, for k € {1,2} and x; , = £, . we have
that,

T
2. T T
J( X3 vi=2, Pi= 2)*%1”2%,1+§ o vy a .,
T=2

and it suffices to prove that
y; (f(Xj5v2,p2)) > 0.

Indeed,
T
yi f(Xj;v,p) = yja§,:12'”;—wj,1 +Yj Z Of;-,:f";wj,r
T=2
T
= a2l ) + D 0l 7205 116541 +Zaﬂyg Yo wl L ye >0
T=2 i€[n], T i#EFVTET!
> a3 N [l ® — Za —1)% max|6;]/dlog(12n? /)
K3
d, — ) B
> o5 (4T+ )n = 3 Al = DO+ 05)Vllog2T75) B B 50and 5
S (CR L S S n(T—1)£(M +0.5)\/dlog(12n2T2/3) E
“T\iT+1)n T T N T & &

>0, d > n+/dlog(12n2T?/5)

as required.

The classifier sign(f(X;v,=2, pt=2)) classifies correctly noisy training samples. Let (X; =
(@j1,...,xjr),y;) for j € N. We remind that & ; = py for k € {1,2} and x; , = £, ;. we have
that,

. _ = 2 :
f(Xj7vt:23pt:2) - ag 1 'U2 :Bj,l + Qs 'U2 mJ T
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and it suffices to prove that
y; (f(Xj;v2,p2)) > 0.

Indeed,
T
yif(Xji0,p) = ysaivg @i +y; Y olivi @,
T=2
T
- 2
—af 2 el llel® + ) 0520, 11€5- )17 +Z%Tyg > Y0728 € Y <0
T=2 i€ln] T iA VTET

> —aj3? (m) n wZa’ L —(my +0.5)d(1 — 0, (1))

— Z oy Tﬁ (Mar +0.5)y/dlog(12n21?/4) Eqs. [54] A9 and [5T]
> <> <1566T) c + (1 - 012> %(mN +0.5)d(1 —0,(1)
—n(T — 1)%(MM + 0.5)y/dlog(12n21?/45) Eq.[59

>0, d > n+\/dlog(12n212/6)

as required.
The classifier sign(f(X; v;—2, pi=2)) classifies correctly clean test samples.

Let (X = (x1,...,2T1),y) be a fresh clean sample i.e. (X, y) ~ Dejean- Observe that 1 = py, for
some k € {1,2} andy = 1iff k = 1. By Remark|65] with probability at least 1 —6n exp( d/4Cin?)
for some constant C1 = C (¢, ¢g) that will be chosen later, we have that (X,y) is a good test
sample w.r.t. C (Def. . We work under the event that (X, y) is a good test sample and show that
y = sign(f(X; vy=2, pi=2). Recall that p; = —3V,L(v1,p1) and therefore (similar to the clean
sample case) forany 7 € {2,...,T}:

D2 (:cj’ ij)
Z (i A el hal T - 0u (1) (2] i)
lECk
Z =145 (1 - alTY)alT (L - on(1) (@] i)
IENk
T
- T n ZZ — T AT = el T A+ o (1) D (@) i) -
zE[n]T 2 s

Observe that oafjl =1/T and that (1 — a; 1) 1 = (T — 1)/T? for any i € [n]. In Egs. and
we calculate the score (e.g. 'yfil) Overall, we can lower bound the above equation by:

OS2 (= n= o) mea -2/~ 2 - 0,(1) 262
- O (e onta) - 5 - M2+ 2/ - 20t 0u1) 1)
(-1

SO (w4 2/ - o)) ).

Once again, the first term dominates the last two terms when C' is large enough and when 7 is small
enough. Overall, for any 7 € {2,...,T} we have

p;(iL‘j’l — :Ej7-,—) > 0. (60)
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This means that the softmax probability of the first token is::
_ 1 1
af7? = > — . (61)
L+ Y exp(p] (@) — 1)) T

Letx; = ppfork € {1,2} and x, =&, for7 € {2,...,T}. We have that,

f(X; 0120, pr=2) = a1~ 2’02:131—1-2043 2vy .,
T=2

and it suffices to prove that

y(f(X;v2,p2)) > 0.

Indeed,
T
yf(Xj?”7P) = yJOq v2 x| + yZatT 21}2 T,
T=2
= o=\l [l +Za y >yt e YA > 0
T=2 i€[n], 7’
> =2 A e §ja n(T — 1) mas |6 -

T-1

d — B d
) ch, - z;ai *n(T — V- (MN+O5)01 Egs. [54] [50]and [52]
d
n

(B
=" <4T+1

1/ B 1 b d
21 (@es) w1 p) oo moncrongy
>0,

where the last inequality holds for large enough C';. Overall,

IP>(X,y)~D(y # sign(f(X; vi=2, pr=2)))
=n+t IP>(XA,y)~73c1m,. (y # sign(f(X; vi=2, Pt=2)))
<+ 6n%exp(—d/4C1n?).

By Assumption [30|(item , we can also upper bound the above term by 7 + exp(—d/Cyn?), for a
slightly larger C. This proves the last part of the theorem. O

A.2 PROOFS FOR SEC.
A.2.1 ADDITIONAL NOTATION

We first introduce some additional notations. Denote

’I7/1Z|C|7 n2=|/\/|; n1i=|Ci|, n2i=|/\/'i|fori:1,2.

Denote the output of the softmax layer S(X;p) by

=(1-8,8)"

Denote the output of the attention layer X' s; by 7; = (1 — 8;)p; + B;&;, where 0 < 3; < 1 s the
attention on the noise token of each sample. Then f(X;;p,v) = (v, r;) can be treated as a linear
classifier on (y;, 7;)ic[n]- Additionally, from the property of log function, item|l| I in Assumption |5 I

can be understood as d > Cn?log(poly(n)/5) and the same is for item 5]
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A.2.2 PROOF OF THM.

Proof Sketch

There are two main parts in our proof. In the first part, we prove that only by selecting signal tokens
for clean samples and noise tokens for non-clean samples can we reach the maximum margin when
doing SVM on (y;, 74)icn)]-

Definition 31 (Optimal Token). We define the “optimal token" for sample (X;,y;) as
r:::Hi7i€;C
ri=¢,ieN (62)

Next we define the respective max-margin solution for p and v. We will show that when jointly
optimizing parameters p and v for (2)), they will converge to their respective max-margin solutions as
R,r — oo, which are p,,,,,, and v,,,,,, defined as follows.

Definition 32. (p-SVM)
Pmm = argmin HpH
p

subjected to

p (mi—&)>1ieC

P (&—pm)>1ieN (63)
Soralli € [n]. 2 = 1/||pmml| is the margin induced by .-
Then for a given p, we define v(p) as the standard max-margin classifier on (y;, 7;)ic[n) and Yy,

as the standard max-margin classifier on (y;, 7} );c[) Which can be understood as the limit scenario
when p = pym and R — 400 .

Definition 33. (v-SVM)

v(p) = argmin ||v|| s.t. y; - v 7 > 1, foralli € [n]. (64)
veRd

I'(p) = 1/||v(p)|| is the label margin induced by v and p. When r; = r},i € [n],
Vpm = argmin ||[v|| s.t. y; - v 'rX > 1, foralli € [n). (65)
veER?

T = 1/||vmm|| is the label margin induced by V.

After proving the converfnece direction of pr and v,., we can utilize their properties similar to p,,,m,
and v,,,,, to proceed the training and test error analysis. Therefore proving that the model exhibits
benign-overfitting.

It is worth noting that in the first part, we show the optimality of the token selection in (62)) is strict
in the sense that mixing other tokens in r; will shrink the label margin. We formalize this into the
following proposition:

Proposition 15 (optimal token condition). Suppose that Assumption 5| holds, with probability at least
1 — 6 over the training dataset, for all p, the token selection under p results in a label margin (Def.

14) of at most T — W ~mz[1>]<(1 — Sia;) where a; =1(i € C) +20(i € N) and C > 0 is some
mm ie n
constant.

We will give detailed proof in the following.

Optimal Token Condition
Since v, satisfies the KKT conditions of the max-margin problem (64)), by the stationarity condition,
we can represent Uy, as

Vmm = A + dophs + > yibii. (66)

i€[n]

Note that the conditions in can be written as:
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Condition 1 (Optimal tokens).
vl >1
—v gy > 1
yv'& > 1ieN

Plugging (66) in the condition[I] we can rewrite these conditions as:

A lpa® > 1
—Xo - [lpe]|? > 1
0; - 1€ 1* + yiye _2'91"(&,&0 >lieN

Then we introduce a lemma to estimate the coefficients 6; of v,,,,, under this condition:

Lemma 34 (balanced noise factor for KKT points). Suppose that Assumption |5| holds, under
Condition[l] we have that for v,,m,

0; =0, i€C; (67)
0. c [ (1 — k)d — 4ngy/dlog(6n2/9) 1 ] PeN
"L 4 k)A((1 — k)d — 2ny\/dlog(6n2/0)) (1 — k)d — 2ny+\/dlog(6n2/5) .’ '

(63)

Proof of Lemma Note that Condition[T|does not have any constraint for samples with i € C. Thus
we have 6; = 0 for any i € C in the representation (66). For 6; with i € N, we first prove the upper

bound by contradiction. Denote j = argmax 6;. Then we have
iEN

g & = biy0:(& &) = 01& 15+ D viyibiléin &)
1EN i£§ A EN
>0 (1—k)d—nqb; - 2+/dlog(6n?/9),

where the inequality is from Lemma [64] and the definition of j. Consider the contrary case when
0; > 1 we have

(1—r)d—2n2+/dlog(6n2/5)’

W mlm =)=y 2y dlog(6e/8)) = 1.

By the complementary slackness, if y;v " &; > 1, then we must have §; = 0, and thus we reach a
contradiction.

Then we prove for the lower bound. For Vj € N we have
1 <0115 + Z viy;0i(&i, &;)
i#jiEN

<0 (1+kK)d+ne m%c@i - 24/dlog(6n?/5)
1€
<6 (L+r)d+ 2 - 27/dlog(6n2/9).

(1 = K)d — 2ng4/dlog(6n2/9)

The second inequality is due to Lemma[64]and the last inequality is from the upper bound we just get.
Therefore, we have

0 > (1 — k)d — 4ng+/dlog(6n?/9)
7T 1+ k)d((1 = K)d — 2ny\/dlog(6n2/5))

This completes the proof. O

Then we introduce a lemma to estimate ||V, ||:

36



Under review as a conference paper at ICLR 2025

Lemma 35 (Norm of v,,,,). Suppose that Assumption P holds, for the solution v, of (64) under
the token selection ([62), we have

2
2

1 nn
mm =0 — -
ol =0(y/ 55+ 7).

Proof of Lemma[33] As v, is the max-margin solution and satisfies KKT condition, it can be
represented as

2 577n
< 2 4 22
< Jomml* < 5+ 75

w‘d
S

This implies

Vmm = A + dopta + Y yibi&i + Y yibi&i. (69)
ieC ieN

AS v, satisfies Condition (1, we have A\ > 1/p? and A2 < —1/p?. So we could lower bound
|V | as

wmm 1> = A2l + Nllpez I+ D OF1EN7 + D > wiys0i5(€i. &)

ieN ieN jeN
2 ng(l—k) n*n? 2 n
> 2o e Y 2 o
> 22U o) 2 24 I,

The second inequality is from Lemma [34]that 6; = ©(1/ d) for ¢ € N and the last inequality is from
Assumption[3]

Then to upper bound ||V, ||, consider the following possible solution ¥
T=p P —p pat Y 2yii/d.
ieN
For i € C, we have
Yo =y g > 1
And for i € N, we have
it = y0 & =20&l1P/d Y 2yi(6i &) /d
JEN j#i
> 2(1 — k) — 2ng+/log(6n2/4)/d > 1.

The first inequality is from Lemma and the second inequality is from Assumption [5| Therefore, v
is a possible solution of SVM problem [33| when p converges to p,y,.m,. So we have

2 577n
o < B = 270+ 3 A161%/ 4 3 3 dyias {6 &)/ < g + =0
ieEN i€EN jJEN
The last inequality is from Lemma[64] Lemma [66]and Assumption[5] Combine the results above, we
have ||vm||% = @(pi2 + ). O

Based on the lemmas above, we introduce our main proposition in this section:

Proposition 15 (optimal token condition). Suppose that Assumption | holds, with probability at least
1 — & over the training dataset, for all p, the token selection under p results in a label margin (Def.

of atmost T — > -max(1l — s;q,) where o, =1(i € C) +21(i € N') and C > 0 is some

__c_ .
3
lvmm[[3np i€ln)
constant.

Proof of Proposition[I5] The main idea is to show the optimality of the token selection rule in the
sense that mixing any other tokens will shrink the label margin. For a given p, we say a sample x; is
a “mixed sample” if r; # r}. We say r; is a mixture of optimal token and non-optimal token in this
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case. Note that for any p with finite norm, r; # 7. This notation is introduced for the clearness of
the proof.

We use contradiction to prove Proposition[I3]by showing that any token selection different from (62))
can only result in a strictly smaller label margin than that for the max-margin problem (64)). Since v
satisfies the KKT conditions of the max-margin problem, we can write v as

v =X+ dopa + > yibiki + Y vibiki. (70)
ieC ieN

For a given p, denote v’ as the max-margin solution in (64), and I'" = 1/||v’|| as the new label margin.
According to Lemma [35] we have

1 nn
ol =0 25 + 5 ) = 201/6%),

Then we have

F—L-max(l—smi)>I‘—L>E

|Vmm|[>n0%  i€n] |Vmml3np* — 2

for sufficiently large d. Here the last inequality uses ||V, |2 = Q(1/p?). Thus we only need
consider the case when the new label margin IV > I'/2, or equivalently,

V'] < 2[|vmmll- (71)

Assume that there are k& samples (0 < k& < n) that violdate the token selection rule and among
them, p samples are from clean set C and k — p samples are from label-flipped set A/. Denote the
indices of the k£ samples as [,,. Then we consider the following three scenarios:

1. p# 0,k — p = 0. (All mixed samples come from C)

2. p=0,k —p# 0. (All mixed samples come from N\)

3. p# 0,k — p # 0. (Mixed samples are from both sets)
We will separately discuss each scenario and show that Proposition[I5]holds in all cases.
Casel: p#£0,k—p=0

Under this scenario, we have:
I,NnC=1,; I,NN=a.

We proceed to analyze this scenario by dividing it into three distinct subcases.

® p<n1,IUﬂC17é®,IUﬂC27£®
e p<ny, I,NC;, #3,1,NCy :Q,(z’,i’e [2],2752/)
*p=m

Casel.1p <ny, I,NC1 # 2, [,NCy £ T

In this case, both clusters exist clean samples that are not mixed. Denote the index of mixed samples
I, as {ki, ko, ..., k, }. For every mixed sample k;, we have vy, = B, pii; + (1 — Bk, )€k, - Then the
conditions under Case 1.1 become

Condition 2 (p clean samples violating optimal token selection).

vip >1
*’UT[,LQ >1
yv' & > i €N
yi’UTTi >1,i€el,
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From the condition above, we could see that in this case, mixing one more clean sample is equal to
adding one more constraint. Therefore, mixing p samples will not result in a better solution than only
mixing one sample, i.e. larger max-margin in our setting. So we can reduce this case to mixing only

one clean sample with index k* = argmin f3;. Denote 7y« = By« + (1 — 8)&x+ for some 8 € [0, 1).
iel,
Without loss of generality, we assume g« = 1, yp» = +1. Then the conditions become:

Condition 3 (one clean sample violating optimal token selection).

vipy >1

—v py >1
yv'& > 1ieN
Y0 T > 1

Denote v” as the optimal solution under this condition. v’ can also be written in the form of with
coefficients denoted as A}, \, and 6}, 4 € [n]. Plugging this representation into the condition 3| we
have:
ALl > 1
=g [lp2)? 21
0; - 11&l1° + Z;; Yiyi 0 (i, &) > L,i €N
i Fi

BAL - lpall? + (1 = B) (0 16k 117 + ;; Y yi0i (& € )) 2 1

First, we introduce another lemma similar to Lemmato characterize the scale of 0., € [n] in this
case.

Lemma 36. Suppose that Assumption|5|holds, under Condition|3| we have
0;=0, ieC\{k"}

(1 = k)d — 4ng+/dlog(6n2/9) 1

[(1 + K)d((1 — K)d — 2n91/dlog(6n2/8)) (1 — k)d — 2na+/dlog(6n2/5)

Proof of Lemma[36] Same as Condition[T} Condition [3]does not have any constraint for samples with
i € C\{k*}. Thus we have 6] = 0 for any i € C\{k*}.

Meanwhile, Condition [3]introduces an additional constraint compared to Condition[T} Consequently,
the feasible region for {6 };c »r under Condition[3]is a subset of the feasible region for {6; };cxr under
Condition [1} Therefore, the bounds established in Lemma [34]remain applicable to {6 };c . O

i

}, ieN.

From this lemma, We can see that §; = ©(1/d) fori € N. To proceed, we introduce a crucial lemma:

Lemma 37. Suppose that Assumption |5 holds, denote v and v’ as the optimal solutions under
condition[I|and condition 3| respectively. We have

Ci(1— BN p?)? +5( nm )

nme _ 2 P S i —
115 = lvmmllz > 1 -2+ r)d d3/2

where 0 < Cy < 1 is a constant.
Proof of Lemma[37] We consider two cases under this scenario:
* §,=0inv

In this case, from Lemma [36|we have 8\] > (1 + o(1))/p? and all other conditions are
the same as the optimal selection. In order to get min ||v||, we have \| = (1 + o(1))/Bp?.
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Consider another solution v which has parameters \g1 = 1/p?, Ao = Ay, 0, = 01(i €
[n]). As vy satisfies all the inequities under Condition[1} we have I'y < T’ So we have

N e ol TG
F2 _ F/Q 2 F2 F/2 _ — 01 1
[voll> [[v'[|? [[vol[? - [[v"[|?
_(+o()/B -1 _(1+A1-F+ol) | 1-8
[[vol[? - [Jv"[|? B2lvoll? - [[vlI>  [lwoll® - [lv’]|
Therefore,
r—r > /1_ﬁ2 /22 1_26 me:
(Lo + ") [lvol|? - [[[|* — 2L0][vol? - [[v||
Setc = QFOHvOﬁQ.Hv,HQ = 2Hvo\|1\|v’\|2' we have IV < T' — ¢(1 — ). Moreover, we could

upper bound c as
1 1

2[fwolllv'[* = 2rfum,
The last inequality is from [|v'|| > [|vo|| > Trmm.
e 0, #0inv’
From KKT condition, we have

b [BNL - leml® + (1= B) (O 1€x+ 1P + D wre 93 (&i €x=)) — 1] = 0.
itk*

CcC =

As 6}, > 0, we have

BN a2+ (1= B)(0he €0 12 + 3 o 01001, £52)) = 1
ieN
So we can estimate 6}, as

O 1€k 11> = 6)\1/) Z Y Yil;0; (€, Er) < 1 6)\51'0 + 2ns max9 dlog(6n?/d)
ieN

11— ﬁ)\’lp2 2n2+/dlog(6n?/0)
- 1-8 (1 — K)d — 2ny+/dlog(6n%/5)

The first inequality is from Lemma[64] and the last equality is from Lemma[36] We can also
lower bound it as

A
Ol |2 = 2N S 066 > SN o a0 /TR (67 0)
1-p
ieN

- B)\’lp2 B 2n9+/dlog(6n?/5)

1-8 (1 — K)d — 2ny+/dlog(6n2/5)
The first inequality is from Lemma[64] and the last equality is from Lemma Therefore,

1-8A]

we have 6}. = O( BB)Z )+ O(F7)-

(72)

(73)

Then from the third inequality in Condition 3] we have

0; - 1&l1* + Z Yiyir 0i(€ir &) > 1 — Yiyr= O (&, Ep-)

i EN i #i

1 — BN p? nn
Zl—u_m“+ﬁm+0QWJ}K&£w
2(1 — BN 1p?)/1og(6n%/8) = rin

e I E S A <7)
2\/log(6n?/6)  ~/nn

21 = - 0(7)

1 3 log(6n2/§). (74)

Vd

40



Under review as a conference paper at ICLR 2025

The second inequality is from (72)); The third inequality is from Lemma [64] and the last
inequality is from the first inequality in Conditionthat Nip? > 1.

Consider v = X1u1 + Xguz + > yi@-&, which has \; = A, Ny = AL, 0, = 0l/(1 —
i€[n]

37”0%;?2/&) fori € A and 5; = 0 for ¢ € C. We can verify that v satisfies all conditions

for Vyy,m,. For Vi € N, we have

O &>+ 3wy (&i &)

VEN i #i
3+/log(6n2 /6
[ e+ ¥ yiyyeg/<si,sy>}/(1—V(fd/))m.
VEN i i

The last inequality is from . Meanwhile, we have Ai|[p]|> = XlHNIHQ > 1,
3

—Xaollp2]|? = =Ay||m2]|2 > 1. So @ is a possible solution for Condition [3| which im-

plies [[vpmml| < [[0]].

Next we estimate the difference between ||v’[|? and ||v||2. We write the expansion of ||v||?

1811 = Xl ll? + Mllpal® + D 71ENP + D wii6i0;(€i.€)),
iEN i,JENI#]
012 = A2 (g |” + A lpal> + > 02&N1 + > Yiy;0:07(&i, &5)-
ieNU{k*} i, ENU{k* };i#5

From the construction of ¥, we have \] = A1, \;, = Xo. So we have

10|12 = 812 2022 1€k 11 + D (02 — 0D &N>+ > ST ywti0i(En€)

ieN ieNU{k*} jeNU{E*}\{i}
I, I
- Z Z yiy;0:0; (&, €5) -
iEN FEN\{i}
I3
From (73)), we have
1— BN p? ~(nn
€0 | > (M),
g (1-8)y/(1 +r)d d

We then bound the last three terms respectively. First we have

1= X @ -0l < ( —gi7ms — 1) Rl

ieN ieN
oa/vd) ny(1+ k)d
T (1-0(1/Vd))? ((1 —K)d — 2n2\/dlog(6n2/5))2
— o
=0 (d3/2 ) ’
The first inequality is from the definition of 5,»; The second inequality is from Lemma

and Lemma
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Then we bound | I — I3] as:

L= I3l =" > (00— 0,0))  [(&. &)+ 01> 0l(&x . &)

ieN jeN\{i} iEN
< (Ggmman ) D X 0051 &l naf - mag0i- 16 &)
i€EN jeN\{i}
oa/Vd) (n2)?2+/dlog(6n2/5) +0/*_@<77n>
T (1-0(VA)? ((1—r)d—2ny/dlog(6n7/0))°  © \Vd

-o(%) o)

The first inequality is from the definition of 6;; The second inequality is from Lemma
and Lemma Combining the above results, we finally have

Ci(1—=BNpH?  ~/mn
nme 2 1
H’U ”2 ||vmm||2 - (1 _ 6)2(1 + H)d + O( )

372
O
Now we can prove the main proposition in this case.
Proof of Proposition[[3]in Case 1.1. From Lemma[37 we have
Ci(1 - BA1p)? 1\ _ Ci(1 - BAjp?)?
2 — 2> 2 AP — ) >R (1-8)=T(1 - B).
||’U H2 H'Umm”Q = (1 . ﬁ)Q(l + I{)d o d) = (1 + Ii)d ( 6) ( ﬁ)
In the last equation we substitute 7" = %’W > 0. Then we have
F F/Q 1 _ 1 _ H’U/”2 — ”vmm”2 > T(l — ﬁ) )
[omml[? V12 [omm|? - 0127 omm | - [0']12
Therefore,
F_F/Z /T(l_ﬁg /22 T(l_Qﬁ) ne = T(l_/B)IQZT(ljf)'
T+ ) lomml|? - 107112~ 2Cf[omm |2 - |02 2l vmm|[[[0"]] 2[|]]
The last inequality is from ||v’|| > ||Usm |- This implies
T(1-P) C1
M<lr—-—+<I'- ———(1-0).
2[v"]? [Vmm|*np?
The last inequality is from our assumption that ||v’|| < 2|y, || and p? = Q(d/n). O

Next we consider the other case.

Case1.2p=mn,

Next we consider the case when all clean samples are mixed. In this case, all samples in clean set are
mixed, so the first two inequalities in Condition [3] Ido not hold, which means that A} may be smaller
than \;. But we could still prove that Lemma[37]holds. We first write down the condltlon in this case:

Condition 4 (All clean samples violate optimal token selection rule).

yv' &> 10 eN
yv'r; >1,ieC
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Plugging the representation into the condition, we have:
0; - 1€ 11> + %ﬁ:‘yiyﬂ}(ﬁi,&ﬁ >1lieN
Bixi - all® + (1 = B;)(0; - [I&]* + § yiy;0i(&i &5)) 2 1,0 €C
VED)

Proof of Lemma[37] First we assume that max{\} - |p1]|%, =A5 - [|pu2||*} = ¢ in optimal v’. If

q > 1, this is the same as Case 1.3. So we assume that ¢ < 1. Denote k* = argmin 111%? and
icC ‘

B = B~ , consider the following condition

Condition 5 (Relaxed version of Condition [).
0 - 1€ 1” + X2 viyirby (€i &) > i e N
il i
0 &l + X vyt (&, &) > 11__%1,2' ecC
i' i

Compared with Condition[d] the second inequality is relaxed for ¢ € C. Therefore, denote the max-
margin solution as ¥ under Condition [5| we must have ||5|| < ||v’||. Then we will prove that Lemma
still holds between ||V, || and ||v]|, which indicates ||v’||3 — [|[vmm |2 > 1|9]2 — |vmm||3 >
C1(1=BX1p%)? SN )
(1-p8)2(1+k)d d.
lemma to estimate ;. Here we denote o =

+ o(%). Denote the parameters in ¥ are A1, A2 and 6;, we first introduce the following

1-Bq
1-p

Lemma 38. Suppose that Assumption[3| holds, under Condition 5] we have

5 [ a (1_ 2n/dlog(6n2/5) ) a
" LA+ k) (1 — k)d — 2n\/dlog(6n2/3) ) (1 — k)d — 2n\/dlog(6n2/5)
{ 1 (1_ 2am/dlog(6n?/9) ) a
T+ m)d\" "~ (1= r)d—2ny/dlog(6n7/0) ) (1 — r)d — 2n\/dlog(6n?[0)

Proof of Lemma Denote j = argmax é\i, we have
i€[n]

0: - 1€+ wiy0:(€i.&5) > 0;1€;11* — nf;\/dlog(6n2/6)
JFi
> 0,((1 — k)d — 2n+/dlog(6n2/5)).

The two inequalities are from Lemma [64]| and our definition of j. Consider the contrary case when

0; > (1—r)d—2n+/dlog(6n2/3)" " © have

for convenience.

>

],z’ec,

D)

>
N

],z‘eN.

~T
y;iv & > a.

By the complementary slackness condition, if y; 'TJTE j > « > 1, then we must have 9; = 0, and thus
we reach a contradiction.

Then we lower bound é\i, for i € C we have
a <0 &2+ yiy0i(€, &) < 0:(1 + K)d + 2n max 0;\/dlog(6n2/6)
o i€[n]
~ 2an+/d1 2/
<O+ r)d+ an og(6n2/9) .
(1 — k)d — 2n+/dlog(6n?/0)

The second inequality is from Lemma and the last inequality is from the upper bound of 0: we just
derived. Therefore, we have

G>_ @ (1 3 2n+/dlog(6n?/9) )
T (1+w)d (1 — k)d — 2n\/dlog(6n2/5) )
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Similarly, for i € A/, we have

Q> 1 <1 3 2an+/dlog(6n?/4) >
T 1+ k) (1 — K)d — 2n\/dlog(6n2/5) )

O

Note that we only consider the case when ||T| < [[v'|| < 2|[vym||. And from Lemma 38 we have

b; = O(«a/d) for i € C. So we must have @ = O(logn) is some constant. Otherwise, for i € C we
have
ill&il? > o — Zyiyi’9i<£i7£i’> = Qa).
i i

It further yields that

B 1 m 1 m a? nlog®n

2= Q(=) + (= Rllei]? = (= + 0 L My g8 75
1917 = 005) + 007) + S FII = 05 + 7 + 50 =0T, a9

which contradicts with ||v"|| = ©(,/1/p? + nn/d).

Then the difference between ||v,,,,||3 and ||| becomes

1B = vmmll? > D" G1IEN> — 2/ + 302 = 02)IE >+ D > wiys0:0,(€:.€5)

ieC ieN i€[n] j€[n]\{i}
I Iz
- Z Z Yiy;0:6; (&, &) -
ieEN jeN\{i}
I3

We will bound every term sequentially. For ¢ € C, we have

GlEIP =z o= > yiir(in€r) 2 o~ nmaxd; - 2/dlog(6n/9)

i €[n],i' #i
2 2 ~
o any/log(6n?/6) :a—O(n).
(1 — k)Vd — 2n/log(6n2/0) Vd

The second inequality is from Lemma[64} The first equality is from Lemma [36]and the last equality
is from Assumption [5} This implies

2 2 ~( n Conia®>  ~( n
Plelt— o > D2 _g(n ), Coma? 5 n )
; &l =2/0" =2 g7 — 2 B2 ) = 1+ r)d 4572
The second inequality is due to the SNR condition p/v/d = (1/,/n) so there exists a constant Cs

(1—C2)nya?
that 2 oz < iamd

Then for |I;| we have

Il < 6? — AlE
] < (max 67 —mind?) > |1&]

iEN

= <((1 _m)d—anl\/Wf - ((1+lf<;)d(1 T _;Z%)f) ‘na(1+k)d
( 1+ r)d )2(1_((1—m)d—4m\/m>2>%2
S

IN

(1 — k)d — 2nn+/dlog(6n?/5) (1+r)d
1Y g mmvlos(®n®/o)
OR )

n

Vd
~ [ n2n2
0<d3/2>.
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The second inequality is from Lemma [34]and Lemma [38} The third inequality is from the fact that
n <1l

As for the last two terms, we bound them respectively, for 1> we have

LI<> > lyiy;0:0, (&, &) < n® Inax 2. 2¢/dlog(6n2/6)

i€[n] je[n]\{i}

2
2 (&%

= A = r)d = 20y /dTog(6n2)3))?

-o(#)

The first inequality is from triangle inequality; The second inequality is from Lemma[64} The third
inequality is from Lemma[36] Last for I3, we have

Isl <Y > lwiwi0i0;(&i &) < (n2)” max 67 - 2\/dlog(6n2/9)

iEN jeN\{i}
1

< (n2) (1 — w)d — 2nn+/dlog(6n2/5))?

n°n
o(ﬁﬂ)

The first inequality is from triangle inequality; The second inequality is from Lemma[64} The third
inequality is from Lemma[34] Combining the results above, we have

Cony (1 — Bq)? n? Ci(1 - Bg)?
~(1-8)21+k)d + O<d3/2> = (1-B)2(1+k)d’

Therefore, we could then use the same method as above to prove that Proposition[I5]also holds in
this case.

dlog(6n2/4)

dlog(6n2/0)

111 = vmmlI?

Case1.3p<ny, I,NC;, #2, [,NCy =D

For the case when only one of the clusters in clean sets are all mixed, we can follow similar method in
Case 1.2 to prove that Lemma[37]still holds. Without losing generality, assume all clean samples with
label y; = +1 violate optimal token selection while only part of clean samples with label y; = —1
violate. we have

Condition 6 (One cluster and a clean sample in the opposite cluster violating optimal token selection).

7’UT/1,2 >1

yv'& > 1,0 €N
yvr; >1,i€Cpy
yi’UT'f‘i >1,1€ C_1N1I,

Similar to previous analysis, mixing multiple samples with label —1 will not result in a better solution

than only mixing one sample with label —1. Thus we can reduce this case to mixing only one clean
sample and denote this mixed sample as k_;. Therefore, we have

Xy flp2l? > 1
0! 1€ + vg'yiyi'%(&,&') >1,ieN
Y BN - lpal? + (1= B) (05, - 1€k, II* + E Uk Yl (€ &k L)) > 1

N2+ (= B0 [+ 5 v i €)= 1 € Con

175]@

Denote ¢ = A} - ||pe1]|? and ¢ < 1. Denote k* = argmin =
Z€C+1

Béq and 3 = [, we can further reduce

the condition to
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Condition 7 (Relaxed version of Condition [6).
0 &1 + 3 yiyw0y (& &) > i €N
i
0, 1€ 11> + X vivar 0} (&ir &) > 11__%qai €Cy1
i i

Condition [/|relax the constraints in Condition@ Meanwhile, it differs from Condition E] only in that
the last inequality holds for clean samples with label +1. Therefore, we can follow the proof above
to show that Lemma[37] still holds in this case.

O

Then we consider the second scenario.

Case2: p=0,k—p#0

Similar to the previous part, there are two cases we need to consider under this scenario:

1. k—p < no.

2. k—p=no.
We will go over every case sequentially.

Case2.1k—p<no

In this case, part of noisy samples are mixed. Denote the mixed samples as k1, ks, ..., k—p. And
for every mixed sample k;, we have r; = 3;&x, + (1 — 5;) k. Then the conditions under Case 2.1
become:

Condition 8 (k — p noisy samples violating optimal token selection rule).

'vTul >1

7’UTM2 >1

yiv' & > 1,i € Nyi ¢ [k —pl
ykiv—rrki > 172 € [k _p]

We could also write the last inequality as

Y, Biv &k, + k(1 — Bi)v g, > 10 € [k —pl.
Therefore,
ykivTéki = (1 - yki(l - ﬁi)v—rﬂ’ki)/ﬁivi € [k - p}'
For noisy samples, we have y; = —1 when p; = 1 and y; = 1 when p; = po, so ykiv—ruki <0
and thus (1—y, (1—8;)v " px,)/B; > 1. Compared to the constraint in Condition|I]that yy,,v " py,, >
1,7 € NV, the new condition is strengthened. So mixing 1 more noisy samples is equal to strengthening
1 constraint in the original setting. Therefore, mixing k£ — p samples will not result in a better solution

than only mixing 1 noisy sample. Similarly, we can simplify this case to mixing only 1 noisy sample
and denote this sample as k.. We have rp« = 8+ + (1 — 8) g~ and assume that £« = pu.

Denote v” is the optimal solution under this condition, and the parameters in v are A}, \j and 6} .
Then the conditions become:

Condition 9 (1 noisy sample violating optimal token selection rule).

vip >1

7’UT/,L2 >1

yiv & >1,i € N,i #k*
Yprv T > 1
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Plugging the representation (70) into the condition, we have:

Xl ? > 1

N a2 > 1

07 &2 + 3 vy b€, &) > 1i € Ni £ I
/#1

—(L= B - llpal? + BOOF - [16x+11% + Z Yk yi0] (i €kr)) > 1

We first introduce the following lemma which estimates the parameters of the noises. We define
L (- AN
B

for the convenience of the following proof.

Lemma 39. Suppose that Assumption 3| holds, under Condition[9] we have

(1 — k)d — 2ng+/dlog(6n2/9)
" a 2n9+/dlog(6n?/0)
O 2 (1+r)d <1 - (1 - kr)d —2nq dlog(6n2/6))
> (1 = k)d+ 2(a — n2)/dlog(6n2/0)
((1 = k)d — 2ny+/dlog(6n2/4))?

min 07 > 1 <1 B 2ang+/dlog(6n2/4) )
PN itk (1+k)d (1 — k)d — 2na+/dlog(6n2/4)

/"
k* =

max
iEN itk*

Proof of Lemma[38] From the last inequality in Condition [0 we have

O NEn >+ D vk 0] (& kr) > a> 1.

PEN iFk,
The last inequality is because \/||pt1||?> > 1 and 0 < 3 < 1. Denote j = argmax 6, we have
1€[n]
//T£J = 0N||£j H2 + Z ylyj Eu£]>
1€ENi#]
>0 (1 —r)d—ny ms[n]w;’ -24/dlog(6n?/5)
temn

=07((1 = k)d — na - 2y/dlog(6n?/9))
The first inequality is due to Lemma[B_Zf] and the last equation is from our definition of j. Consider the
contrary case when ¢ > we have
(1—k)d—2ns \/d log(6n2/5)’

yv" € > a.

14X (1=8) [ |I?
B

By the complementary slackness condition, if y;v” Tﬁj > then we must have

¢! = 0, and thus we reach a contradiction. Therefore, we have 8}/, < ¢/ < e
J J (1—rk)d—2n34/dlog(6n2/8) "

Then denote j' = argmax 6/, we have

i€[n],iFk*
y0" T = 001IE 1P+ DD iy 0 (& &)
iEN i)
> 07 (1 — K)d —ng max 07 - 2/dlog(6n?/8) — 0}/ \/dlog(6n2/5)
i€[n],i#£7’

, 5 3 ZaJW
2 0((1 = m)d = a2/ dlog(6n2/0) = (S P s

47



Under review as a conference paper at ICLR 2025

The first inequality is from Lemma and the second inequality is from the upper bound of 67/, we

(1—r)d+2(a—n2)+/dlog(6n2/5)

((l—ﬁ)d—Qng\/d log(6n2/8))2 ’ we have

just get. Consider the case when 67, >

yj/’UNTSj/ > 1.

By the complementary slackness condition, if y;/v” " €; > 1 then we must have 0% = 0, and thus
we reach a contradiction.

Then we estimate the lower bound of 0 when j # k... We have

1<y "€ =077 + Z yiy;0; (&, &) < 07 (1 + r)d + ny Hel?ﬁ](@g/ -24/dlog(6n?/4)

i€[n],iFj
1 )\// 1— 2
<0/(1+ R)d+ TN ONml” ) Jatog(en?/s),
B((1 — k)d — 2n2+/dlog(6n?/5)
where the last inequality is from the upper bound we just get. Therefore, we have
(= VAlog(67/8) 14 M(1- I
7T (14 k)d (1 = k)d — 2ng+/dlog(6n2/9) B
forall j € N and j # k..
Lastly we lower bound 6}/ . We have
L+ (L= Nl _
3 <
Similarly, we have
PR S & O VA 1721 (1 B 2ny/ dlog(6n?/9) )
b= (1+r)d B (1 — k)d — 2ny+/dlog(6n2/5) )

Yo 0" &, =0 (1+ K)d +no ?el?rf]( 07 - 2+/dlog(6n2/0d).

After getting the bound of parameters, we could derive the norm difference as above

Lemma 40. Suppose that Assumption |5| holds, denote v and v" as the optimal solutions under
condition[I|and condition 9 respectively. We have

Cs(1—-p
"3~ o3 > S5
where C3 = O(1).

Proof of Lemma[0} From the third inequality in Condition[9] for i € N, # k* we have
07 - N&l”+ Y wivir0(&i &) > 1 — yiyee 07 (&, € )-
it i,k

a—1 oY
(1+r)d—2\/dlog(6n?/6) — K"

Then we add y;yi+w(&;, £x+) on both sides, where we set w = 0}, —
Then we have
0 &l + D yivar b (€ &) + viyer w(€i, €)= 1 — yiges (0 — w)(&i, Enr)
i ik
> 1—2(0), —w)+/dlog(6n?/9)

(1 +k)d —2a4/dlog(6n?/0) 76)
(14 k)d — 2y/dlog(6n2/0)

The second inequality is from Lemma Now consider anew @ = Ay + Aopia + > v:0;&; with
1€[n]

Xl = )\/1/, Xg = /\/2/,
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0; =07 /(1 —2(0). —w)\/dlog(6n2/s)) fori € [n],i # k*

and
w

1—2(0y, —w)+/dlog(6n2/5)
We can prove that v satisfies all constraints for v, .

Gpe —

From the first two inequalities in Condition |9} we have X1]|p1]|2 = M/[|p1]® > 1, —Xe|pal® =

~M||p2]|* > 1. Then by dividing 1 — 2(6}.. — w)/dlog(6n?/3) on both sides of (76), for
Vi € N,i # k* we have

0 - &> + Zyiyi’§i<£ia£i’> >1
i'#i
24 Z Yiyr+0i(€i, €+ ) > 1. From the last inequality in Condmonﬂ

Lastly we prove that 0.+ ||+

we have

R P D i (€ Ee) =
i#£k*

Dividing 1 — 2(0}/. — w)+/dlog(6n?/J) on both sides, we get

o1l | o
+ i *9 %y .
1—2(6. — w)/dlog(612/0) ; it 08 &) 2 T 2(6/. — w)\/dlog(6n2/9)

Therefore we have

a— (O —wl&>  _  e— (0 —w)(1+r)d

O 160 12 + D v 0 (& r) >
ik
The second inequality is from Lemma [64| and the last equality is by our definition 6}, — w =

a—1 — . h . s >
RETSPREN I ey Thus, v is a possible solution under Condltlonand 1Tl > |vmml|-

1—2(07. — w)\/dlog(6n2/3) — 1—2(0/. — w)\/dlog(6n2/8)

Next we estimate the difference between ||v”||? and ||©]|2. The expansion of ||v"||? and || ||? are:

"2 = APl |1+ X a2 1P+ D 072 1&0% + D D wiys676] (&0, &),

iEN iEN jEN
_ —2 —2 ) __
01> = X leall® + Nllp2ll® + DO NEN+ D0 viy0:0;(&:, &)
ieEN i€EN JEN

According to the condition (71)), we have ||v"|| < 2||vmm| = ©(1/1/p? + nn/d), which implies
that « = O(y/nlogn). Otherwise, we have

eI > a— 3 yeewid) (6, &) = Q).
i#k*
It further yields that

1 m a? nlog®n

1 //2 2 _
— * —_— —_— ) = Q

12 nn
=0 Q

" = 9(5) + L) +0 L

which contradicts with ||[v”|| = ©(y/1/p2 + nn/d). We decompose the difference between ||v” ||?

and ||v]|? into four terms:

—2 - —
o2 = 2 = (612 = B )l€w P+ D O = T)IIEN2 =D D" vins005€:. &)

T iEN i#k* i€EN jEN
Iy g
+ Z Z ylyﬁ”m £msj> .
1EN JEN

Iy
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We now estimate [; to I, sequentially. For the first term,
> (617 — 00 )(1— k)d = (0. — O ) (6} + Op-) (1 — k)d
—1)(1 —20/.+/d1 2/
_ (a=1)(1 =267, /dlog(6n7/3) Q<1> Py
(14 k)d — 24/dlog(6n?/0)
a—1
=Q
()

where the first inequality is from Lemma [64} the second equality is from Lemma 38} and the last
equality uses the fact that « = O(y/nlogn). Then we can further upper bound jr\x/la;(k 0 as
1eN i#Ek*

d

1—r)d+2(a— dlog(6n2/6 1
e 7 < (=R 20 o) VAog©2]0) _ 1, -
PN iF#k* ((1 = k)d — 2ng+/dlog(6n2/4))? d
For the second term I, we have
LI< > (6 —0)(1+r)d
zGN’z;ﬁk*

< ( ! - 1) max 0/ - nn(1+ k)d
(1 —(8). —w)+/dlog(6n?/9))? €N iFEk*
_ 2 _
(o — 1)4/dlog(6n?/0) O(nn) O((a 1)17n>.
(1+ k)d — +/dlog(6n2/0) d3/?

The second inequality is from Lemma[38] The first equality is from and the last equality is from
Assumption[5]

Then we bound | — I3 + I4] as:

=L+ L <Y Y 0.0, —60]0]]- &, €&)

ieN jeN\{i}
> Yo 168, - 0707 (€€ +2 Y 00 — 0567 |(€re E)]
t€EN\{k*} jEN\{k*,i} teN\{k*}
1
<(77n)2( - 1) max  6/%.2./dlog(6n2/9)
(1= (0. —w)\/dlog(6n?/5))? iEN £k
O
+nn{ 0. — ) max  0/4v/dlog(6n2/§
7 ( Moo 2007, —w)\/dlog(6n2/0) /) ieN i#k* B(6n*/9)
(o — 1)y/dlog(6n2/45) (mm)?>(1+k), a-—1 1
< -0 - + -O(nn—=-) - 24/dlog(6n2/5§
(1+ k)d — \/dlog(6n2/0) gz )T g o) g(6n%/0)
(a—1)n?n?  (a—1)nn
The third inequality is from Lemma 34 and Lemma [38} The fourth inequality is from the fact that
o O B 92’* — O+ — 207 (0. — w)+/dlog(6n2/0)
M- 200/ —w) dlog(6n2/0) 1 —2(0). —w)\/dlog(6n?/d)
_ o) - 0GR
1—2(0). —w)\/dlog(6n?/0)
"o 0, " 9., P :
So we have 6}/, 20 o)A = < 0. — 0i+; The last equality is from Assurnpnon

Combining the above results, we have

"2 2 a—1 (O‘_l)nn 03(1—5)
1913 ~ ol > 0“7 ) + 0o L255™ ) > SUZA),

Here C3 = O(1) is a constant. O
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Now we can prove the main proposition in this case.

Proof of Proposition[[5|under Case 2.1. From Lemma0] we have

C3(1—58)
01~ Jomnl3 > S 1y )
Here we substitute 77 = % > (0. Then we have
e L1 Pl T0-8)
[vmml> 0”12 0”2 - [[omml> 7~ [0" )17 - [[omm]?
Therefore,
fwe_ TO-B TOQ-f _ TO-B _TO-H
O+ lvmm? - (012 7 20 [[omml? - 0712 2flomml[[[0"]* — 2[l0"]?
The last inequality is from ||v”|| > ||V ||. This implies
1 -78) Ch
I"<I'-———“2<I'———_(1-75).
T = ol
The last inequality is from our assumption that ||v”|| < 2||v,, || and p? = Q(d/n). O

Then we consider the other case.

Case2.2k —p=no

In this case, all noisy samples are mixed. From previous analysis, this is equivalent to strengthening
all conditions ;v ' €; > 1 while other conditions remain the same. As mixing k& — p samples will not
result in a better solution than only mixing 1 noisy sample, the proof is the same as Case 2.1 and we
omit it for convenience.

Finally, we consider the last scenario.

Case3: p#£0,k—p#0

This scenario is more complex as both clean and noisy sets are mixed. There are four cases to consider
1. p < ni1,k —p < ne. (Both clean and noisy sets are partially mixed)
2. p < n1,k — p = na (Clean set is partially mixed, noisy set is all mixed)
3. p=mn1,k — p < ng (Clean set is all mixed, noisy set is partially mixed)

4. p =n1,k — p = ne (Both clean and noisy sets are all mixed)
We will go over every case to prove Proposition (15| holds.

Case3.1p <ni, k—p<ng

This case is simple because from the analysis above, mixing 1 more clean sample is equivalent to
adding 1 more constraint and mixing 1 more noisy sample is equivalent to strengthening 1 original
constraint. So mixing both sets will not result in a better solution than only mixing 1 clean sample.
Therefore, the proof is the same as Case 1.1 and we omit is for convenience.

Case3.2p <ny,k—p=no

In this case, all noisy samples and part of clean samples are mixed. We can consider this case as an
extension of Case 2.2 by mixing some clean samples. From previous analysis, mixing 1 more clean
sample is equivalent to adding 1 more constraint. So this case will not result in a better solution than
Case 2.2. The following proof is the same as Case 2.2 and we omit it for convenience.

Case33p=mn1,k—p<ng

51



Under review as a conference paper at ICLR 2025

In this case, all clean samples and part of noisy samples are mixed. We can consider this case as an
extension of Case 1.2 by mixing some noisy samples. From previous analysis, mixing 1 more noisy
sample is equivalent to strengthening 1 original constraint. So this case will not result in a better
solution than Case 1.2. The following proof is the same as Case 1.2 and we omit it for convenience.
Case34p=mn1,k—p=ng

This case is more complex. We cannot simply consider it as an extension of Case 2.2 because the
analysis of Case 2.2 is based on the condition that there exist clean samples that follow optimal token
selection rule. Denote r; = B;u; + (1 — 3;)€; fori € C and r; = (1 — ;) p; + 3;€; fori € N. The
condition in this case becomes

Condition 10 (All samples are mixed).
yv" ey > 1.
This indicates
BiyiXi llmall* + (1 = Ba) (07 161 + %yiyﬂ}'@i,éj)) >1i€C,
(L= B P+ BTG+ 3 ] 160.€)) = L € .

Assume that min{\} - ||pe1||?, =AY - ||p2]|*} = ¢ in optimal v”. If ¢ > 1, we can directly follow the

proof in Case 2.2. Otherwise, denote o = 1{%". Wehave o > 1 duetog < 1and 0 < 3; < 1.

Without losing generality, we assume A} - [|p1||*> = ¢ < 1. Then consider the following relaxed
condition

Condition 11 (Relaxed version of constraints in Condition [I0).

07 N161% + > viy0) (€, &) > ai € Ca.
[E

Denote the optimal solution under Condition as © and the corresponding coefficients in ¥ as A, Ao
and éi, i.e.
b= A1 + dopo + Z 0:&;.
i€[n]
Since the constraints in Condition [11]is a subset of the constraints in Condition[I0] we have [|9]| <
|[v"]|. Meanwhile, we have the following lemma to estimate 6;:

Lemma 41. Suppose that Assumption [ holds, under Condition[I1] we have
@ =0,1 € hﬂ\Cu

{ « (1 B n+/dlog(6n?/9) ) a
(1+k)d (1 — w)d — ny/dlog(6n2/8) )" ((1 — k)d — 2n111/dlog(6n2/3)

Proof of Lemma Note that Condition[11]does not have any constraint for samples with i € [n]\C;.

Thus we have 6; = 0 for any i € [n]\C; in the representation (66). Denote j = argmax 6;, then we
1€Cq

v

0; € i€ Cq.

have
0 - 1E5112 + > w00 (€i.€5) > O511€;1I> — 20,1111/ d1og(6n2/8) > 6;((1 — k)d — 2n11+/dlog(6n2/3)).
k£

The two inequalities are from Lemma[64]and our definition of j. Consider the contrary case when

9] > ((1—}@)d—271,11 \/d 10g(6"2/6) , WE haVe

o T
y;v & > a.
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By the complementary slackness condition, if yj{;TEj > «, then we must have 9} = 0, and thus we
reach a contradiction.
Then we lower bound ;. For Vi € C; we have
« S 57 . H£1||2 + Z yzyﬂu,(E,, €j> S 9:(1 + Ii)d + 27111 max@ui dlog(6n2/5)
Iy i€[n]
2amn11+/dlog(6n?/0)

(1 — k)d — 2n11+/dlog(6n2/8)

The second inequality is from Lemma and the last inequality is from the upper bound of 6; we just
derived. Therefore, we have

Gs_ @ (1 3 2n114/dlog (612 /9) )
S AR\ (1— k)d - 2n11+/dlog(6n2/8) )

<0;(1+ K)d+

O

From this Lemma we have §; = ©(a/d) for i € Cy. Similar as , under our assumption
9]l < 2||vimmll, we have & = O(log(n)). Next we estimate the difference between ||¥||* and
||V ||>. We can prove that Lemmastill holds in this case.

Proof of Lemma#0 Under this case, the difference between |93 and ||v;,,,||3 becomes

1917 = lomml® = >~ (67 = 6D1&N7 = (AT = XD b |* = (A3 = Az 1

i€[n]
I
—Z Z yiyj9i9j<£i7£j>+z Z yiy;0:0; (&, &)
€N FEN\{i} 1€C1 jeCi\{i}

I I3

We then bound I; ~ I3 respectively. For I; we have

v v 2
L] > &7 =D 07lI&l* — 2/p° > n 112[17{}]91 (1 —kK)d—mno 11133;9?(1 +r)d—2/p°

i€Cy ieN
S a?nii (1 — k) ( B 24/dlog(6n2/9) > B na(1+ k)d 2
- (1+k)d (1 = k)d — 2n11+/dlog(6n2/9) (1 — Kk)d — 2ng\/dlog(6n2/6))2  p?

-+(})

The second inequality is from Lemma[64} The third inequality is from Lemma [34]and {1} The last

equality is due to the SNR condition p/+v/d = Q(1/+/n) so that p% < 15 For I, we have

V/dlog(6n%/5) 5
Bl < 3 max 02 - 2y/dlog(o2/5) < — v/ dos@/0) ____5( 1
Lo ien ((1 = K)d — 2ny+/dlog(6n2/65))2 d3/

The first inequality is from Lemma The second inequality is from Lemma Similarly, for |I3]
we have

v 2\/72 _
|I3] < > max 07 - 2/dlog(6n2/d) < 2n110°/dlog(6n?/0) _ O(nz)
i€Cy ((1 — k)d — 2n11+/dlog(6n2/4§))? d3/

The second inequality is from Lemma[#1] Combining the above results, we have

"2 2 ni1 A n an(l — /B)
oI5 - ol 2 0( ) - 0 7 ) = 22G=2

The remaining proof is the same as Case 2.1 and we omit it for convenience. O

1€Cq

Therefore, we complete the proof for all possible scenarios. [
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Training and Test Error Analysis
From Proposition [T5] we can analyze the properties of both parameters to estimate the training and
test error.

In this section, we first get the convergence direction of parameters p and v. The main difference
between our setting with |Ataee Tarzanagh et al.|(2023b) is that they only consider the infinite case and
their results hold only when R, — co. We extend their results to the finite case. Specifically, given
fixed upper bound R and r for ||p|| and ||v|| respectively, we denote the solution of the constrained
optimization (2)) as (v,-, pr) in this section for brevity.

Our main theorem in this section estimates the corresponding deviation of pr/R and v, /r from
their convergence direction py,,, /||Pmm || and Vrym / vam ||. For a given p, it is elementary that the
margin induced by p is min; 1, zq, (Tia;, — Tit,) llpll = 1, the margin becomes
Min; ¢, 2, (Tia; — Tit;) ' p. And for a given v, the label margin induced by v is min; y;v rz/H'vH.
Recall that the label margin induced by v,,,, is I' and the margin of p-SVM induced by p,,,, is E.

First we introduce a lemma to estimate the norm of ||, ||. This will benefit our proof of the main
theorem.

Lemma 42 (Norm of p,,,,). Suppose that Assumption | holds, recall that the solution of (p-SVM) is
Pmm- With probability at least 1 — § on the training dataset we have

_— 277
5+ B < PP < 5 +

1 nn
ma =0 ) e
ol =0y 5+ %):

Proof of Lemma First we prove the upper bound. Consider the following possible solution p:

zGN

This implies

We then proved that p satisfies (63). For k € C we have

i 4no+/dlog(6n2/6
BT (s — £5) = 245 &k) > dm dg( /)21
iEN

The first inequality is from the definition of d in Lemma [64] and the second inequality is from
Assumption And for k € N/, we have

P ) =24 Y48 s g S 8
1EN i€N ik
4 1 Z
> —24+4(1 — k) + z dc;g(Gn /5)21-

The first and second inequalities are from Lemma[64} The last inequality is from Assumption 3]

Therefore, the max-margin solution p,,,, must have no greater norm than p. So we can upper bound
Pmm a8

Pl < 1817 = 55 + 2 (&P + 3 (6n8)

iEN i, JEN i#£]
8 16 8 17
S -+ ﬁ((l + k)nad + 2n3+/dlog(6n2/6)) < — + %

The second inequality is from Lemma[64} The last inequality is from the definition of d in Assumption

Then we prove for the lower bound. As p,,,, is the max-margin solution and satisfies KKT condition,
it can be expressed as the sum of signal and noise tokens. Then we decompose prm = pj;™ + pg'™
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where pi;™ = f{""p1 + f3"" po and pg™t = Zie{n] g;"™&;. Note that pu; L &; forall j €

{£1},i € [n]. From Lemma we have f7 > 0.9/p?, so we can lower bound ||pj™||3 as
2-0.92 1

[ (= =

> .
P p

™ 13 = S 2l | + £57 122

As for || P |l2, from p-SVM condition, for every noisy sample we have

P (& — i) > 1,

which indicates

PE & = pon&i > 1+ P i > 1.9,

The last inequality is from Lemma[6] Sum up the inequality for all noisy sample, we have

1EN
Thus,
™| 1.9n9 _ 1.9n9 1.9n9 S nn
~ 2 sl el 3 (6ng) \/2 ny-(1+rk)d—V d

i,jEN

The second inequality is from Lemma[64] and the last inequality is from Assumption[5] Therefore,

1 nn
1prmm I* = ™ 13 + g™ 113 > AR

Combining the results above, we have

1 nn
2
Pl (p2 d )

O
Definition 43. Let f : R? — R%. We say that
Lm f(z,y) =L
iff Ve > 0 3M such thatVz,y > M we have that || f(x,y) — L|| < e.
Remark 44. Let ¢ : R — R be a function with lim,_., g(x) = oo. Assume that

lim, yyoo f(x,y) = L, thenlim,_,o f(x,g(x)) = L and lim, o f(g(z),2) =L

Now we introduce our key theorem:

Theorem 16. Suppose that Assumption[S|holds, with probability at least 1 — § on the training dataset,
we have

* The margin induced by p(, ry/ R in p-SVM is at least (1 — )=, where

log(4+/p? + (1 + K)d||Vmm|2dp?)
¢= R=

* The label margin induced by v, ry/r in v-SVM is at least (1 — ), where v =

27/ p?2+(1+k)d

Texp(1-CQ)R=)"

Proof of Theorem[I6] From Proposition[15] we have that for any ||p||, the label margin 1/|lv(p)|| is

at most
- C’maxie[n](l - Smi)

[Vmm|[3np?

)
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where ; = 1 fori € C and o; = 2 for i € N. Recall that s; = S(X;p) is the softmax probability
vector. We define ¢” = 1 — s;,, to measure the amount of non-optimality (attention on non-optimal
token).

We first consider the convergence of pr and use contradiction to prove the first statement. Denote
PE™ = Rpymm/||Pmm|| which has the same norm as pg and the direction of p,,,,,. Suppose the
margin induced by pr/Ris at most (1—¢)Z, i.e. min; ¢, 2a, (Tia; —Tit;) ' Pr < (1—C)RE, Vi € [n].
Note that here each sequence only has two tokens, thus ¢;, ; € [2],and t; = 3 — ;.

According to Lemma[42] we have
E = [Pmmllz ! = O((m/d+1/p*)71/2).

Following the definition of ¢¥ above, we set §q0 = SUP;e[n] ¢’" and ¢}, = SUP e[ a 7" to be
the worst non-optimality in pr and p7™*. Then we have

PR exp(x;, PR™) exp(z, ™)
' Ztep} exp(:c;p’]gm) B eXP(m;‘;iPTﬁm)
mmT

The last inequality is from the definition of p,,,, that p,| (%, — i) > 1,50 p B (Tia, —Tit) >

R/||pmm|| = RZ. Thus, ¢};,,, = Sup;ep, ¢ ™™ < exp(—RE). Then denote the output of attention

T T T
layer r; = X, S(X;pE™). Define ¢; = |7; — ®iq, ||, we have y; - 7 Vium > i - Tj Vimm —
l7i — Zio; || - |Umml|l = 1 — €;/T. So if we set €00 = SUD;¢[y] €i» Vmm achieves a label margin of

at least I' — €42 ON (i, 7)ie[n]. To better estimate €4, we define M = SUP; ] i — &l <

/p? + (1 + k)d, then we have

< exp(—RE).

€maz = M - @ 0. < M exp(—RZ). (79)
This implies the max-margin achieved by (pF™, v]"™) is at least
v f(PR™, v ;) = yiv;”m—rri > — remar > rI' — rM exp(—RE). (80)

The first inequality is from y; - 7, ¥™™ > r(T' — ¢;) and the last inequality is from .

Then we consider the case when min; ¢, za, (Tia; — ®it;) ' Pr < (1 — ¢)RZ the minimal margin
constraint is (-violated by pr. Without losing generality we assume that 1 = argmin[(z;q, —

i€[n]
wit)TpR]#ai. Then we have

exp(mﬂlpg) 1 exp(w]—tlpR) 1

a\maw Z - - —_—
Die exp(@pr) — 2exp(x],, pr) — 2exp((1—()RE)

From Proposition optimizing v-SVM on (y;, Fi)ie[n] can achieve the max-margin at most

8. _
miny; f (pr, vr; ;) ST = or—a—s - " 17ORE, (81)
i€[n] ( ) 2||Vmm ||Pnp?
And from the definition ¢ = 3z 10g(2M || vy ||>np? /C), we have
C

—_— —(1-¢R=E)>M —R=
o 2 OP(~(1 = ORZ) > Mexp(—RE)
for sufficiently large R, which implies
min y; - f(pr, vr;®;) < miny; - f(pr™, v;""; @;).
i€[n] i€[n]

This contradicts with the problem definition (2) to maximize the margin.
Then we prove for the second statement. When the margin induced by pr/R in p-SVM is less than

(1 — ¢)Z, we can use the proof above to derive a contradiction, so (€;o, — ®i;)  pr > (1 — ()RE
must hold. Then set 7; = X," S(X;pr), we have that

min y;v, 7; < min y;v, i, + sup v, (7 — Tia,)
i€[n] i€[n] i€[n]
<A =9TIr+ Mexp(—(1 —¢)RE)r
< (1—~/2)Tr.
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The second inequality is from previous analysis that (€;o, — i) ' Pr > (1 — ) RE, so |7 — x| <
M exp(—(1 — ¢)RZ=); The last inequality is from our definition v = WI‘EC)RE).
Therefore, combining with (80), we have

AI'r/2 > rM exp(—RE),

which implies

min y; - f(pr, vr; @) < miny; - f(pR™, v/ ;).
i€[n] i€[n]
Again this contradicts with the problem definition (2). O

Then we have the following lemma to bound the derivation ¢ and ~:

Lemma 45. Suppose that Assumption S| holds, consider the same setting in Theorem[I6] we have
(<02and~y <1

Proof of Lemma From the definition of ¢ in Theorem[16] we have
R= 1R\/nn/d—O-I/p2
1 2002 & d)(p2 )3
< log<n (0" + )Q(pgnn+ ) >
Ry/nn/d+1/p? pd R\/nn/d—i-l/p

Here Cy, Cs, C5 = O(1). The first inequality is from the upper bound of ||v;,,, || in Lemma[35]and
the last inequality is from the definition of R in Assumption[5} And for y, we have

. 20 o Mlvanll o VP D] 1)
Texp((1-QRE)  exp(R/[[vmmll) = 2 exp(R/\/qn/d + 1/p%)

Here C, C4 = O(1). The first inequality is from the lower and upper bound of || vy, || in Lemma
and the last inequality is from the definition of R in Assumption 3}

(= Og(M||vmmH3nP2)

log(pn) < 0.2.

Then we can estimate (pg, p) with the following lemma:

Lemma 46. Suppose that Assumption 5| holds, with probability at least 1 — 6 on the training dataset,
PR should satisfy

0.5(1 = Q)RE < (pgr, u;) < Rp
Sforje{1,2}

Proof of Lemma The upper bound is given by
(PR, 1j) < llprlll;] = Rp.
Then we use contradiction to prove for the lower bound. From Theorem[I6] pr satisfies
Pr(mi—&) > (1 - (REieC
P& — ) = (1= QREieN (82)

If (pr, pj) < 0.5(1 — {)RE, then for every clean sample from cluster j we must have (pg,&;) <
—0.5(1 — ¢)RE and thus

(Pr, Y &)=Y (pr,&) < —0.5(1 = ()RZny;.

i€Cy i€Cy

So we could estimate ||pg|| as follows

1
P&l = 0.5(1 = RE - nyjr~=—77 = 0.5(1 = ()RE - n
| Z &ill > &2+ X (&€
1€C; 1€C; ,j€C;
1 -
> 0.5(1 — ¢)RE - ny; > 0.4R=- ﬂ
2-ny;- (I1+k)d 2(1+ k)d
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The first inequality is from the property of innerproduct; The second inequality is from Lemma [64]
and the definition of d in Assumption[5} The last inequality is from Lemma @3] Meanwhile, from

Lemmawe have ||prml|l < \/8/p% + 17nn/d. Recall that = = || Py || ~L. Therefore, we further
have

0.42n1j

VAT
V20U + r)d ~ \ (8/p* +1Tyn/d) - 2(1 + k)d

0.04(n —nn — O(y/n))
= \/(8/p2 +17gn/d) - (1 + k)d R> R

|pr| > 0.4RE=

The second inequality is from Lemma 2} The third inequality is from Lemma [66] and the last
inequality is from Assumption [5|about SNR and 7). This leads to a contradiction.

O

Now we can estimate the output of attention layer for some test sample (X, y).

Lemma 47. Suppose that Assumption || holds, with probability at least 1 — & on the training dataset,
Sor a given a test sample X |y, where X = (u*,€*), w* can be py or po, we have with probability
atleast 1 — exp (— 3(3(1 — ()= — K/R)?) that

<pRa H’*> - <pRa€*> > K7
where K < %(1 — ¢)RE and (, E are defined in Theorem
Proof of Lemma Note that p " £* follows Gaussian distribution AV (0, R?), we have
* * * * * 1 —_
P((pr, ) = (PR, &) < K) = P((PR,€") > (P, ") = K) <P(ppg” > S (1= ORE - K)
1.1 -
<exp (- 5(5(1- OF - K/R)?).

The first inequality is from Lemma[46]and the second inequality comes from the property of Gaussian

tail probability. O

We also have the following lemma to estimate v,.. We first prove that v,. can be expressed as the sum
of signal and noise tokens.

Lemma 48. The solution of constrained optimization problem (2)) v, can be expressed in the form
that

v = Mg+ Aapr + Y 0.

i=1
Proof of Lemma[8] Similar to Theorem define 7; = X,' S(X;pr) as the output of attention
layer, we have

v, = argmax min yiva. (83)
ol <r €ln]

Then denote s = m[ln] y;v'r; and s, = In[ll’ﬁ y;v, 7. Then || can be written as
i€[n 1€[n

(vy, ) = argmax s, s.t. yv'r;>s, 1<i<n

v,s

[of| <.

The corresponding Lagrangian function is

L(s, ) = =s+ Y _tayi(s = yiv i) + do([[o]* = r?).
=1
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Take derivative of this function on (s, v), we have

n

= iyiri + 24w = 0.

i=1

Therefore from the last equation we can get

1 n
v= 200 ;%ym-

Asr; = Bipi + (1 — B;)&; for every i € [n], v can be expressed as the combination of signal and
noise token of every sample:

v = Mps + Aapr + Y 0.
i=1

Based on this representation, we can then bound the parameters in v,.:

Lemma 49. Suppose that Assumptionholds, denote v, = A1 + Aapo + > 6;&;. Then with
1€[n]
probability at least 1 — § on the training dataset, we have

AL > (1=~)Tr/p?,
Ao < —(1—7)Ir/p?,

10;] < 24/1/p2 + 5yn/d - Tr/Vd.

Proof of Lemma[d9 The first two statements are obvious because from Theorem[I6] we have
yiv, i > (1 =)0,

for Vi € C. This implies [\;| > (1 — y)I'r/p? for j € {1,2}. Meanwhile, we decompose
v, = vy, + Ve Where v, = A1 + Aopo and ve = > 6,£;. And we can upper bound ||ve|| as
i€[n]

lvell? = llvl* = llval® < 72 = Xp* = A3p* < r?(1 = 2(1 = 2)°T%/p?).

The first inequality is from ||v|| < r and the second inequality is from the first two statements we just

proved. Therefore, denote j = argmax 6;, we have
i€[n]

1€ 1? < llvell? < r?(1 —2(1 —)*T2/p?).
Then we can upper bound |6, | as
07 <r*(1—2(1—7)°T%/p") /1> < r*(1 = 2(1 —2)T?/p?) /(1 — k)d
2(1 —7)?2 1
:r2<1— 1—r)d<r*(1- 1—k)d
ol )/ 7 i+ s )
_ 1+5nnp?/d r? < 1 s\ T*?
24 5mmp2/d (1 —kK)d ~ 2d

2

The second inequality is from Lemma[64} The third inequality is from Lemma 35| that || vy, || <
\V/2/p? + 5nn/d and our definition of v = geim; The last inequality is from I' =
|Vmm || =1 > (2/p* + 5nn/d)~1. Thus, we can bound |6;] as
10;] < 20/1/p2 + 5yn/d - Tr/Vd.
O

Therefore, we can prove the main theorem.
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Proof of Theorem 6] First we show that the model can perfectly classify all training samples. From
Theorem[T6] we have
yiv, ri > (1 —~)r >0

for Vi € [n]. The last inequality is from Lemma[45] Thus y; = sign(f(X;; pr, v,)) for all i € [n].
Then we bound the test error. Given a test sample X, y, where X = (u*, &%), p* can be p1 or po.

From Remarki65] with probability at least 1 — 6n exp(—d/4C1n?),
d
fEN < —. 84
€60l < o 54

According to Lemma47} with probability at least 1 — exp ( — 3(3(1 — ¢)E — K/R)?), we have

(yor, e"p* + &) _ " (1 —y)0r|p*|? 1 3 «
: T;X Z Z - 01 : (2] .
Yy f(pRyv ) €K+1 p2(€K+1) 6K+1le[n]‘ ‘ |<£ € >‘
(85)

Let K = log(Vdy\/1/p®> +mn/d) + C < %

probability at least 1 — 6n exp(—d/4C1n*) —exp (— 3(3(1 — ()= — K/R)?),

eK(1 —y)r —n-d/(Cin)-24/1/p® + gn/d - Tr/d

(1 — ¢)RE. By uniform bound, we have that with

: r X ) >
y- f(pr,vr; X) 1 oK
- 0.8eKTr —/d/Cy - 2\/1/p? + nqn/d - Tr
- 1+ ek

>0,
where the first inequality uses ([84), (83) and Lemma[9} The second inequality is from Lemma 3]
and the last inequality is from Assumption [5]and our selection of K. Therefore,
1,1 - K
P(y # f(prvi X)) S exp (= 5 (51— QO = 1)) +6,

where ¢ = log@M”%’%’"”S"pQ) = @( v nn/;i;l/pz log(pn)), K =log(Vd+\/1/p2 +nn/d) + C =

O(log(~\/d/p? +nn) and Z = ||ppm|lz* = O((nn/d+1/p?)~1/2). Plugging in the order of = and
K, we have

Pix yy~p(y # sign(f(X;pr,v:)))
=Px y)~p(y # sign(f(X;pr,vr)), y = —Y)

+ IP>(X,y)~D(y 7& Sign(f(X;pR7 UT))) Yy = ZA//)
=1+ Px y)~p(y # sign(f(X;pr,v:)),y = ¥)
-9 10g(nd\/m))2>

Sn+exp(—d/Cln2)+exp<—®(\/W 7

10 losld)y

d
:n+eXp(—Q(ﬁ))+eXp(_Q(\/W R

where { = © (7W log(pn)). This completes the proof. O
A.2.3 PROOF OF THM. [§]
Lemma 50. Consider the next joint-constrained max margin solution:
argmax miny; f(X;;p, v). (86)

('Ut,Pt) =

loll?+llpI*<t

 then (vi,pt) = (U, R)s P(ry Ry ), Where (Vi R,), Pry.Ry)) 15 @
(items 1-3), with probability at least 1 — § over

Let vy = ||v¢|| and Ry := ||vy
solution to Problem@] Moreover, under Assumption
the random data generation, we have that ry — 0o, Ry — coast — oo.
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Proof. By Proposition with probability at least 1 — §, for all p € R?, the token selection under

p results in a label margin of at most " — ¢ - m[a>]<(1 —sP ) in[33|(with r; = X" S(X;p)), where
i€n °

a; =1(i € C) + 21(i € N), s = S(X;p) is the softmax probabilities, and ¢ := C/|v,m||>np? is
some constant (which may depends on n and d, but not in ¢).

Observe that as the norm of v increases, the margin increases; thus, it’s easy to verify that ||v:|| — oo
as t — oo. We argue that also ||p:|| — oo as ¢ — oo. To see that, assume by contradiction that
|lpell < Ry for some arbitrary large ¢ that will be determined later. Set ' = 1/ || vy || , ||vt]] = 74,

Bmm = (11 — 1)T 0. Hence t = 2 + R2 and ||Tym||* = (r — 1)2. The idea is that by decreasing
||| by 1, we can choose p with ||p||* + (r; — 1)2 = ¢t = r2 + R2, i.e., |p|* = 2r; — 1 + R2, which
can be arbitrary large for large enough ¢. Set I := 1/ || pym || and Prom = /21t — 1 + R2Pm.

The proof strategy is obtaining a contradiction by proving that (¥U,m, Dmm ) is @ strictly better
solution compared to (v¢, p;). Define ¢ =1 — sfai to be the amount of non-optimality sopftmax

probability where s = S(X;p) is the softmax probabilities and o; = 1 iff 7 € C and 2 otherwise.
Then we have that

max ¢t > K
1

where x > 0 is a constant that depends just on Ry and data parameters (e.g. n, d, p, d). On the other
hand, for every ¢ > 0, we have that

7
for large enough r; i.e. large enough ¢. Therefore, By Proposition [I3](see the first paragraph in the
proof), we can upper bound the margin induced by v; on (Y;, ;) for r; = X,"S(X;p;) by

min y;v, r; < 7(T — ck),

i€[n]
for some constant ¢ > 0. On the other hand, the margin induced by ¥, on (Y3, ;) for r; = @4,
is (r, — 1)T". This means that we margin induced by V,,,,, on (y;, ;) for r; = X, S(X;Pymm ) is at
least

*

. T . T =~ ) @1 15
Min Y7y Uy = MUY Omm — ¢ ||, — ;|| O ||
K3 K3

> (ry — 1)(T — Me),
(1)

where M = sup;,, ||x;

— scl(?) H Observe that this lower bound is bigger than the previous upper
bound when

(ry = )T — Me) > r (T — ck)

Me < —(T' — Me)/ry + ck.
Choose large enough ¢ such that (I' — Me)/ry < ck/2 and Me < cr/2, gives us the desired

contradiction. Recall that R; := ||p;|| and r; := ||v¢||. Since r? + R? < t, we have that (v, p; is a
solution to Problemwith r=r, R= R, and (v(n)Rt),p(mRt)) is a solution to Problem

O

Proof of Thm. [§] By Thm. [6] with probability at least 1 — 4, the training set is feasible, i.e. exists
(v, p) such that min;ecp,) i f (X3 v,p) > 0. Therefore, for any v > 0, with probability at least
1 — 0, we have that min,¢,) ¥ f(Xs; v+, Py) > 7, which proves the first part of the Thm. Next, we
show that the classifier sign(f(X;p,,v,)) generalizes well, for large enough 7. Recall the next
joint-constrained max margin solution:

(Ut7pt) = argmax mln ylf(Xl7p7 ’U)v (87)
lol?+llpl2<t *

which was introduced in Lemma Fix v > 0, and let (v., p+) be the solution of Problem Define
t(y) := ||v,y||2 + ||p,y||2. We argue that (v.,, p4) is a solution to Problemfort = t(~y). Indeed, let

m = max min y; f(X;; p, v)
ol +[Ip)I* <t (y) i€ln]

61



Under review as a conference paper at ICLR 2025

be the maximum margin for Problemwith t = t(7). Assume by contradiction that

m[ln] yzf(Xi;p'yv'U’y) <m,
S

which implies that

v < miny; f(Xi; Py, vy) < m.
i€[n]

Let (v*,p*) be a solution to Problem [3 . w1th = t(y) ie. |v*[]> + |p*]|> = t(y) and
min;ep, yi f (Xo; p*,v*) = m > . Write v’ := (y/m) - v*. We remind that f(X;p,v) =
v X TS(Xp) and overall we get that
2 |2 |2 |2 |2 |2
< I+ P = (r/m)? o7 + I < o™ (17 + [lp* )" = t(+)
* mingepn) ¥i f (X p", ") = L mingep) yif (Xisp™,v*) = L -m =17,
which contradicts the optimality of (v, p4) to Problem 3] We conclude that (v, p,) is a solution

to Problemfor t =t(y), ie. (vy,py) = (vt(v),pt(v)) where (vt(ﬁ/),pt(w)) is a solution for
Problemwith t=t(v). Let Ti(y) = ||vt(7)|| and Ry, 1= ||pt(7)|| By Lemma.we have

(U’Y’p’Y) = (Ut(’v)’pt("f)) = (v(V't(—y)vRt('y))7p(rt('y)aRt('y))) ) (88)

and that 7,y — 00, Ry(,y — 00 as t(7y) — oc. Clearly () — oo as v — oo. By Thm. |§|, The
classifier sign(f(X; pgr, v,)) generalizes well on test data:

Pix )~ (y # sign(f(X;P(rr)> V(rR))))
=n+ exp(—Q(d/nQ)) + exp ( ( (1-0) log(d) )2)

LT R
d +p2

In particular, there exists 7o, o such that for any r > ro, R > Ro, the above probability can be
upper bound by 7 + exp(—(d/n?)) + exp(—O((1/p? + nn/d)~1)) (see Remark . Choose large
enough ~yo such that for any v > o we have that 7;(y) > ro and R,y > Ro. Then we conclude

P x y)~p (y # sign(f(X; py,v,)))

=P(x y)~D (y # sign (f(X§p(rt(7),Rt(.y>)a v(rt(w),Rt(«,)))>)

< 1+ exp(=Q(d/n?)) + exp(=O((1/p* +1n/d) ™),
where the first equality is from Eq. [88] as required. O
A.2.4 PROOF OF THM. [I0]

Proof Sketch
First we prove that in this case, only by selecting the noise token for every sample can we achieve the
largest margin in the downstream task,

ri =§&;,Vi € [n] (89)

Similarly, we define the respective max-margin solution for p and v in this case.

Definition 51 (p-SVM, negative case). p should satisfy

Pmm (O‘) = argmin ”p”
p

subjected to

p (& — i) > 1, (90)
SJorall1l <i<n.Z=1/||pmml is the margin induced by p,m,.
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Definition 52 (v-SVM, negative case).

v(p) = argmin ||[v| s.t. y; - v r; > 1, foralli € [n]. 1)
veRd
T'(p) = 1/||v(p)|| is the label margin induced by v and p. When r; = £;,i € [n],
Uy = argmin ||v| s.t. y; -v' & > 1,  foralli € [n]. (92)
veRd

I = 1/||vmm]| is the label margin induced by v .

To prove this token selection is optimal, we need to explain that the optimality of the token choice is
strict in the sense that mixing other tokens will shrink the label margin. We formalize this into the
following proposition:

Proposition 53 (Optimal Token Condition). Suppose that Assumption[9 holds, with probability at
least 1 — § on the training dataset, for all p, the token selection under p results in a label margin of

atmostT' — ¢ - mz[u]((l — Si2)-
i€[n

Then we derive the convergence direction of p and v by Theorem[16] Note that as ||p|| — oo, the
attention is more focused on the noise token for every training sample. Therefore, the output of signal
token is upper bounded by a small value.

Consider a test sample (X,y), X = (¢/,&’). As ||p|| increasing, the noise token & will will
dominate the overall output if pES’ > 0, which indicates the output of attention layer will close to
the noise token, " — £’. Meanwhile, we can prove that pr and v, are near orthogonal, so pE& " and

v, &' are nearly independent variables subjected to Gaussian distribution. Therefore, the probability
that y;v,] ¢ < 0 is at least constant order.

Optimal Token Condition
First we find the optimal token selection in this case.

Proposition 53 (Optimal Token Condition). Suppose that Assumption[9 holds, with probability at
least 1 — § on the training dataset, for all p, the token selection under p results in a label margin of

at most I' — ¢ - max(1 — s;2).
i€[n]

Proof of Proposition Similar as above, we consider the following three situations:

1. p# 0,k — p = 0. (All wrong token selections come from clean set)
2. p =0,k — p # 0. (All wrong token selections come from noisy set)

3. p # 0,k — p # 0. (Wrong token selections are from both sets)
We will discuss each situation specifically and prove that Proposition [I5]holds in every possible case.

Situation1: p A0,k —p=20
First, let’s see the condition under the optimal choice of tokens:
Condition 12 (Original Condition).

yiv & > 1,4 € [n]

Similarly, v,,,,, also satisfies the KKT conditions of the max-margin problem in this case, so we
could write v as

v =Ap1 + Aepo + Z Yi0i&i. (93)
i€[n]
Plugging (93)) in the condition[I2} we can rewrite these conditions as:
0i - [1&:11* + Zyiyi/ei’<£ia€i’> > 1,1 € [n].
il
Then we introduce a lemma to estimate the parameters of optimal solution under this condition:
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Lemma 54 (Balanceing noise factor for KKT point). Suppose that Assumption [9) holds, under
Condition[I2] we have

max6; < 1 )
i€[n] (1 — k)d — 2n+/dlog(6n?/4§)
. (1 — k)d — 4n+/dlog(6n?/4)
min 6; > .
i€[n] (14 k)d((1 — k)d — 2n+/dlog(6n2/5))

Proof of Lemma First we prove the upper bound. Denote j = argmax 6;, we have
i€[n]

yiv &= uiyibil&n &) = 011E 15+ D viy0i(€i &)

Ze[n] Z#J"Le[n]
>0; - (1—r)d—nbj-2/dlog(6n?/5)

The last inequality is because Lemma[64] and the definition of j. Consider the contrary case when
0; > ! we have

(1—r)d—2n/dlog(6n2/5)’
1
-
v £ > -((1
v & (1 — k)d — 2n+/dlog(6n?/5) (

By the KKT conditions, if ijTSj > 1 then we must have ¢; = 0, and thus we reach a contradiction.

— Kk)d —n-24/dlog(6n2/6)) = 1.

Then we prove the lower bound. For Vj € [n] we have

L<O&15+ Y wiy0i(&i &) < 0;-(1 +l’~)d+mr€1?>]<0i - 24/dlog(6n?/6)
ij,i€[n] =

<b;-(1+r)d+ (1= r)d— 20 /dlog(62)9) -24/dlog(6n2/6).

The second inequality is due to Lemma[64]and the last inequality is from the upper bound we just get.
Therefore, we have

g5 (= r)d—dn/dog(67/5)
"7 (L (1 = W) = 2n\/dlog(6n7/5))

This completes the proof.
O

As for the signal parameters \; and Ag, to achieve the minimal norm for v, it is obvious that
A1 = Az = 0. Then we can estimate || vy, || in this case:

Lemma 55 (Norm of v,,,,,). Suppose that Assumption[9| holds, with probability at least 1 — 6 on the
training dataset, for the solution V., of (64) under the token selection (89), we have

2 < omm]? < 2
9q — "Tmmit = g

n
ol =0(y/5).

Proof of Lemma[53] As v, is the max-margin solution and satisfies KKT condition, it can be
represented as

This implies

Vmm = Mp1 + dophz + > _yibibi + > vibi&s. (94)
iec i€[n]
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As there is no constraint on Aj, A2, both of them can take O to achieve max-margin. So we could
lower bound ||v;,, || as

2

2 2 2 n n

||’UmmH > E[ ]ei ||£ZH + E[ | .E[ ]yiyﬁi@j(ﬁi,ﬁj> > O<d3/2) > 2
e|n 1€n| jEeN

The second inequality is from Lemma [54]that 6; = ©(1/d) for i € [n] and the last inequality is from
Assumption [9]

Then to upper bound ||V, ||, consider the following possible solution v
i€[n]
For i € [n], we have
o =y & =20&GlP/d D 2uiy5(€ &) /d
J€ln],j#i
> 2(1 — k) — 2ny/log(6n?/d)/d > 1.

The first inequality is from Lemma and the second inequality is from Assumption E} Therefore, v
is a possible solution of SVM problem@]when p converges to Py, SO we have

[l < 312 = 37 4ll&l2/d> + 37 dyay; (€. €,)/d <

i€[n] i€[n] j€[n]

on

7

The last inequality is from Lemma[64] Lemma [66]and Assumption[0] Combine the results above, we
have ||v,m[|? = ©(%).

O

Denote the mixed samples as k1, ko, ..., kp. And for every mixed sample k;, we have r, = (1 —
Bi)k; + Bi€k,. Without losing generality, we assume that y;, = +1 for all ¢ € [p]. Then the
conditions under Situation 1 become

Condition 13 (p clean samples violating optimal token selection).

{ yiv' & > 1,1 € [n]\[p]

virg, > 1,0 € [p]

Denote the max-margin solution under this condition as v’ with parameters A}, \}, 6. Plugging this

representation into the condition[I3] we have:
0; - 1|1 + _;_yiyi’92/<£ia£i’> > 1,i € [n]\[p]
(1= B)A; - el + Bi Oy, - 1€k, 11> + ; yirti (€ §ir) 2 1,1 € [p]
i #ki

We consider two cases: A [|p1||? < 1and X, ||pe1]|? > 1. First when \; ||p1]|? < 1, the condition for
mixed clean sample becomes:

1— (1= BN, [lpr]?
G;CL ’ HEszQ + Z yi’eé’ <€kw£i’> > ( g) 1”“1” > 1,
ik !

which indicates that the condition for 9;61, is strengthened. So mixing 1 more clean sample is equal to
strengthening 1 constraint in the original setting. Therefore, mixing p samples will not result in a
better solution than only mixing 1 clean sample. Then we can simplify this case to mixing only 1
clean sample and denote this sample as k., 7, = (1 — 8)p1 + BE€k, . Now the condition becomes:

Condition 14 (1 clean sample violating optimal token selection).
0; - 16w 11% + _§_yiyif9§f<£i7€if> > i€ [n\{k.}
(1= B)A -l + B0, - 1€k, 11 + ;C yir0is (k.. §)) = 1
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Similarly, we introduce the following lemma which estimates the parameters in v’. We define

_ 1= (1= BN fma?
B

for the convenience of the following proof.

Lemma 56. Suppose that Assumption[9 holds, under condition[I4} with probability at least 1 — 6 on
the training dataset, we have

= (L= R)d — 20y/dTog(6n2/3).
g >_° (1_ 2n/dlog(6n2/5) )
T (1+kR)d (1 — k)d — 2n\/dlog(6n2/5) )’
ax 9{<(1—n)d+2(a—n) dlog(6n?/0)
ien\{k.} "= ((1—k)d — 2ny/dlog(6n2/5))2
ro L (1_ 2na/dlog(6n/8) )
(1= r)d — 2n\/dlog(6n?/6)

min

0, >
ie[n)\{k.} (1+r)d

Proof of Lemma[56] Denote j = argmax 6}, we have
i€[n]

yv' & = 0511& 7 + Z Yiy;0i(&i. &)
i€[n],i#£]

> 05(1 — k)d — nmﬁcﬁg - 2+/dlog(6n?/4)
i€[n
= 05((1 — k)d — n-2y/dlog(6n?/d)).

The first inequality is due to Lemma[G_Zf] and the last equation is from our definition of j. Consider the
contrary case when 9’ we have
(1—k)d— 2n\/dlog(6n2/6)

yv' € > a

’ 2
By the KKT conditions, if y;v'"&; > M then we must have ; = 0, and thus we reach

a contradiction. Therefore, 9’ <@g < Q Then denote j' = argmax 6/, we
J (1—k)d— Qn\/dlog(6n2/5) i€[n] ik,

have

y0' TE =016 1P+ Y v 0i(& €)

ielniti’
>0, (1-r)d—n [m]zaw;é 0; - 24/ dlog(6n2/6) — 0}, +/dlog(6n?/6)
i€[n],i

/ : B Qa\/CW
> 0,((1 — r)d — n - 2y/dlog(6n2/3)) (1 — K)d — 2n4/dlog(6n7/5)

The first inequality is from Lemma and the second inequality is from the upper bound of 92* we

just get. Consider the case when ¢, > (1=r)di2(e—n)y/dlog(6n?/0)

((lfﬁ)d*?n\/d log(6n2/6))? , We have

yj/’l)/—rgj/ > 1.

By the complementary slackness condition, if y; v” Te 4+ > 1 then we must have 9;-, = 0, and thus
we reach a contradiction.
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Next we estimate the lower bound of 6;- when j # k.. We have
1 <y;0'Tg;
=017+ D vwi0i&n &)
i€[n] i)
<O05(1+k)d+ nmax 0, - 21/ dlog(6n2/5)
i€n
<01+ r)d+ - - 2n+/dlog(6n?/5
i ) (1 = k)d — 2n+/dlog(6n?/0) 8(6n%/0)

The last inequality is from the upper bound of ¢ we just get. Therefore, we have

0> I (1 3 2nay/dlog(6n2/9) )
P (L4 k)d (1 — k)d — 2n\/dlog(6n2/5)

forall j € [n] and j # k..
Last we lower bound 6, . We have
a < ypo" Ty,

=0, (1+r)d+ nmz[i}]( 0 - 21/ dlog(6n?/5)
1€n

Similarly, we have

S @ (1_ 2n+/dlog(6n2/9) >
B = 1+ R)d\ (1 - k)d— 2n\/dlog(6n2/0) )

Therefore, we could estimate the difference between ||v’||? and || v, ]2

Lemma 57. Suppose that Assumption[9 holds, with probability at least 1 — & on the training dataset,
denote v and v’ as the optimal solutions under conditionand condition respectively. We have

11— )

”UIHg - H’UmmH% > d

where C; = O(1) is a constant.
Proof of Lemma From the first inequality in Condition 14} for i[n], i # k, we have

;- 1617+ D vii0 (& &) > 1 — yiyn, 0}, (& &x.).

i ik,

. X : _pn a—1 /
Then we add y;yx, w(&;, &, ) on both sides, where we set w = ¢}, (r)i2y/dlosn2/3) < 0.

Then we have
0p 1€ 1”+ D wiywbi (& &) + yiyr, wi€i €k.) > 1 — ign, (0 — w)(&i, Ex,)
it i,k
>1—2(0;,, —w)y/dlog(6n?/d)

(14 £)d —2a/dlog(6n?/0) (95)

(1+ k)d — 24/dlog(6n2/0)

The second inequality is from Lemma Now consider anew v = A1 + dopto + > y;0,&; with
1€[n]

A=A A=Ay
0, =0;/(1 —2(0,, —w)/dlog(6n?/d)) fori € [n],i # k.
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and
w

1—2(0, —w)y/dlog(6n%/5)

We can prove that v satisfies all constraints for v, .
By dividing 1 — 2(0}, — w)/dlog(6n2/4) on both sides of l| for Vi € [n], i # k. we have

&P+ v 0, (& &) >
il

Then we prove that 0, ||€x« 1> + > viyw, 0,(&, &k, ) > 1. From the last inequality in Condition
ik

Qk* =

we have
O, &k N7+ D vk vibi(&ir€k,) > @
ik
Dividing 1 — 2(6;, — w)+/dlog(6n?/d) on both sides, we get

O, 16k, II? a
* = i 91 i3 .
1 —2(0;, —w)y/dlog(6n?/9) 7;; g 0:(i: 8. ) 2 1 —2(0;,, —w)y/dlog(6n?/5)

Therefore we have
-G - wlg P a— (6~ w1+ k)

Op 1€ 17+ D vivn. 0,(&i &) >

o 1—2(9’ — w)\/dlog(6n2/3) ~ 1— 2(0, — w)+/dlog(6n?/0)

The second inequality is from Lemma [64] and the last equality is by our definition 6; — w =
Thus, v is a possible solution under Conditionand lvll > |lvmml|-

a—1

(1+r)d—24/dlog(6n2/5)

Next we estimate the difference between ||v’||? and ||v||2. The expansion of ||v’||? and ||v||? are:

111 = AZ Nkl + NN+ Y0 02161+ D D wiwibi(i €9),

i€[n] i€[n] jE[n]
o)l = Allpea |1? + Mllez 1 + D OFIEN7 + D7 D wins0:0,(€i.&).
i€[n] i€[n] j€[n]

Similar to the condition (7I), we have ||v'|| < 2||vgmm| = ©(y/n/d), which implies that & =
O(y/nlogn). Otherwise, we have

O I€n 11> = o = >y yiti(&i &) = Qa).
ik
It further yields that

2
n n o«
1117 = Q(5) + 02 16w, 17 = (5 + —) =

which contradicts with ||v'|| = ©(y/n/d).

We decompose the difference between ||v’||? and ||v||? into four terms:

112 = llwll? = (622 — i€ 1P+ D (07 = 8)&]* - Z Z yiy;0:0;(&i: 1)

I i€[n],i#£k,
12 IS
+ Z Z yzyj €Za£]>
i€[n] j€[n]

Iy
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We now estimate [; to I, sequentially. For the first term,
I > (07 — 05,)(1 = k)d = (6}, —0,,)(0, +0,,)(1 — K)d
a—1)(1—26; +/dlog(6n?/é 1
DTG (1 g
(14 K)d — 24/dlog(6n?/0) d
a—1
=0
()
where the first inequality is from Lemma [64} the second equality is from Lemma [56} and the last
equality uses the fact that « = O(y/nlogn). Then we can further upper bound max 6/ as

i€[n],iFk
_ _ 2
max 0 < (1 —kr)d+ 2(a — n)y/dlog(6n?/4) :O(l). 96)
i€[n] ik ((1 — k)d — 2n+/dlog(6n?/4))? d

For the second term I, we have

LI < Y (-0 +k)d
1€[n],i#£k,

< < ! - 1> max 67 -n(l+ r)d
(1 — (8}, —w)+/dlog(6n?/5))? i€[nl ik,

(a — 1)4/dlog(6n?/6) n, ~((a—=1)n
i 0@ -0

The second inequality is from Lemma[56] The first equality is from (96) and the last equality is from
Assumption 9]

Then we bound | — I3 + I4] as:

=T+ Ll <Y > 106, — 005 (€. €))]

i€[n] je[n]\{i}

< > S 100, - 0051 (&€ +2 D 1040, — 04,01 1€k, &)
i€[n)\{ks} j€n]\{k,i} te[n]\{k.}

1
§n2( - — — 1) max 6% -24/dlog(6n2/6)
(1= (8, —w)y/dlog(6n?/6)) i€[n] ik
0
+nl 6, — —h ) maX 0:4+/dlog(6n?/5
( o 2(0;,, — w)+/dlog(6n?/3) ) i€lnl ik, 5(6n*/0)
(v — 1)4/dlog(6n?/5) n?(1+k), a-1 n
< -O(=) - 24/dlog(6n2/§
(14 k)d — +/dlog( 6n2/5 d3/2 ) d (d) g(6n?/9)
(la=1)n* (a—1)n
O( 2t me )

The third inequality is from Lemma [54)and Lemma 56} The fourth inequality is from the fact that
/ O, _ Ok, — O, — 205 (6}, — w)y/dlog(6n2/9)
M1 26, — w)y/dlog(6n%/8) 1 —2(6;, — w)/dlog(6n2/3)

_ oot
1 —2(0;, —w)y/dlog(6n?/5)
/o Gk* r_ . . . .
So we have ) 200, ) doaonT ) = < 0}, — 0y, ; The last equality is from Assumptlon

Combining the above results, we have
a—1 (a—1)mn Ci(1-p)
1913 = ol > 0( 21 ) + o0 ) > SUZE),
Here C; = O(1) is a constant. O
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Then we consider the case when A} |[pe1||? > 1. In this case, the condition for mixed clean sample
becomes:

1- (1 - 51‘))\/1”#1“2
Bi ’

i) 51” > >
i £k
and w < 1, which indicates that the condition for 0;6 is relaxed. So mixing 1 more

clean sample is equal to relaxing 1 constraint in the original setting. Therefore, mixing all clean
samples will achieve the best result. From the data generalization model, there are (1 — 7)n/2 + o(n)
clean samples with label +1 and denote S ; as their set. Now the condition becomes:

Condition 15 (All clean samples violating optimal token selection).
0F - & 11* + X2 viyir0y(€i &) > 1,0 € [n]\ Sia
i'#i
(L= BN, - [[pal® + BO; - &il1* + 3 wiyar0)(&i, &) = 1,0 € S
i

We have another lemma to estimate the scale of parameters in the max-margin solution in this case.
2\ 2 ~
Here a = :=0=BNlml” 454 B = min{g;}.
B 1€[n]

Lemma 58. Suppose that Assumption[9| holds, under Condition we have

1
maxf, <

i€ln] "7 (1 —kK)d — 2n\/dlog(6n2/5)’
i g > (1 — k)da — 2n+/dlog(6n?/d)(a + 1)
icln] "7 (14 r)d((1 — k)d — 2n+/dlog(6n2/5))

Proof of Lemma[58] First we prove the upper bound. Denote j = argmax 6;, we have

i€[n]
UTﬁg = Z yiyj9i<£ia€j>
i€[n]
= 0;11&;115 + Z yiy;0:(&i, &)

i#j,i€[n]

>0 (1—k)d—nb,-2+/dlog(6n?/d)

The last 1nequahty is because Lemma [64] and the definition of j. Consider the contrary case when

ej = (1—r)d— Qn\/dlog(6n2/5) we have

1

e
yjv & > (1—n)d—2n\/m

By the KKT conditions, if y;v " &; > 1 then we must have 6; = 0, and thus we reach a contradiction.

(1= K)d = n-2+/dlog(6n2/5)) = 1

Then we prove the lower bound. For V/j € S;; we have

a<Ol&lE+ > yzyy (&0, &5)

i#£j,1€[n

<0;-(1+r)d+ nm?>]<9i -24/dlog(6n?/4)
1En

<0;-(1+r)d+ &

(1 — k)d — 2n+/dlog(6n?/5) 2

The second inequality is due to Lemma[64]and the last inequality is from the upper bound we just get.

Therefore, we have
0. > (1 — k)da — 2n+/dlog(6n?/0)(a + 1)
7T (14 k)d((1 — K)d — 2n+/dlog(6n2/5))

dlog(6n2/4).

This completes the proof
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Then we can estimate the difference between ||v’||? and || v, || with the following lemma:

Lemma 59. Suppose that Assumption @] holds, denote v and v’ as the optimal solutions under
condition[I2| and condition I3 respectively. We have

Cal= )

||'U/H§ - vam||§ 2 5

where Cy = O(1) is a constant.

Proof of Lemma 59} Recall the expansion of || 0., [|% and |[v'[|2:

[Vmm|? = Z OZNEN + D > viy;0:0;(6:, &),

i€[n] j€[n]

lv']|* = X2Hu1ll2 + Z 07 11&lI* + Z Z Yiy;0305(&i,&5)-

Then we have

1117 = N 1> = A2l 2 + >~ (07 = 616> = D > wiv;0:05(60. &)

T i€[n] i€[n] j€[n]
12 I3
+ Z Z yzyﬂ”@” £Z7£j> .
Iy

(1A 2
We now estimate /; to I4 sequentially. Here we use the same notation o = % and

B= m[ln{Bi} as in Lemma|58| First from our assumption A} ||ze1||? > 1 we have
i€[n]

I = APl > 1/p°.
Then for I5, we have

15| < n(max 67 — min /) - (1 + k)d
1€[n] 1€[n]

~\((1 = R)d — 2n\/dlog(6n7/5))? (1 +r)*d? (1= K)d — 2n\/dlog(6n2/0)
1~ e (1= #)da = 2(a + 1)n/dlog(6n%/5))?
(1~ r)d — 2n/dIog(6n2/3))?

=d(1+k)n

ofs)

The second inequality is from Lemma[54]and Lemma 58]
Then we bound | — I3 + I4] as:

=T+ L[ <) Y (66— 0:0;) - |(6.&)|
i€[n] j€[n]\{i}

< (n)2(m?)]<91 - m[m] 62) - 21/dlog(6n2/5)
i€[n i€[n

IN

(mﬂ<u—md—m;ﬁ%mmm02<u+$&g%n§1;£%iggwaﬁj'2dbﬂmy@
o) -o(2)
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The third inequality is from Lemma [54] and 58} The last two equalities are from Assumption [0}
Combining the above results, we have

c n\ _ Co(1-p)
me _ 25 X ) s 27.
[V'[15 = lvmmll3 > Pz -I-O(d) > 7

Here Cy = O(1) is a constant. O

Therefore, combining Lemma [57]and [59] we have the following statement for the difference between
[[o[| and [[vm|:

C3(1—-p
[0/~ o3 > S5 o)
Here C's = ©(1) is a constant. The inequality is from the SNR condition that p = o(y/d/n).
Now we can prove the main proposition in this scenario.
Proof of Proposition[53]in case 1. From we have
C3(1 - )
o3~ lol3 > 5 — 50— )
Here we substitute S = % > 0 Then we have
T S W i e
| | [ | | e
Therefore,
r-1> 5:(1_25) mz = S(lz_ﬁ)/r
T+ Il - [lo']* — 2L[j[]? - [lv’]]
Setc = 2F|\v|\§~|\v’\|2 = 2Hv\|ﬁv/\|2 ,we have I" < T — ¢(1 — ). And we can upper bound c as
oo S < S Cs .
20llllv" 1> = rhm T Thmd
The first inequality is from ||v’|| > ||v]| and the second equality is from S = %.
O

Situation2: p =0,k —p#0

Then we consider the case when all wrong token selections come from noisy set. Same as above,
denote the mixed samples as ki, k2, ..., kx—p,. And for every mixed sample k;, we have r, =
(1 — Bi)pr, + Bi&k,. Without losing generality, we assume that yi,, = +1 for all i € [k — p), so the
corresponding signal token is g5. Then the conditions under Situation 2 become

Condition 16 (Change k-p noisy samples).

yiv' & > 1,0 € [n]\[k - p|
{ virg, >1i€k—p

Denote the max-margin solution under this condition as v’ with parameters |, A}, 8%, we can interpret
the condition for parameters:

0; - 1€ 11> + _g_yiyi'9§/<€u€i'> > 1,i € [n]\[k —p]
(1= Bi)Xy - a2l + Bi 0y, - 1€n. II” + ;C Y Yir Oy (&, &) = 1,0 € [k — pl

Compare with Codition the only difference is that we substitute A} || g1 ]|? with A} ||z ||?. From
the symmetry, we can see that the two conditions are actually the same. Thereofre, we can follow the
proof of Situation 1 to prove for Proposition [53|under this situation.
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Situation3: p A0,k —p#0

Last we consider the case when wrong tokens come from both clean and noisy sets. Denote the
mixed clean samples as k1, k2, ..., k, and the mixed noisy samples as ¢, gz, ..., gx—p. Without losing
generality, we assume that y,, = +1 for i € [p] and y,, = —1 for i € [k — p], which indicates that
their signal tokens are all p1. Then the conditions under Situation 2 become

Condition 17 (p clean samples and k-p noisy samples violating optimal token selection).

yv & > 1,0 € [n]\[K]
vTrkt{, 2 17Z S [p]
fvTrql >1,i€[k—7p]

Denote the max-margin solution under this condition as v” with parameters A}, \J, 6/, we can

interpret the condition for parameters:
07 - & 112 +i/§iyz’yi/9£’/ (&, &) = 1, € [n]\[K]
(1= B! - Nl |® + Bi (07, - N[ €x: II” + Z;C Yr: Yir 0 (€nir €ir)) = 1,1 € [p]
(1= BN - lal® = Bi (65, - [1€q,1I* + ;q Yoy 07 (€q,, &) = 1,1 € [k —p

We consider three cases: \{||p1|? > 1,1 > A/||p1]|? > —1and M/||py]|? < —1.

o M2 > 1

1-(1=B) Al |?
ﬂ.

First when A\ ||p21]/|* > 1, we have < 1, which indicates that the condition

for mixed clean samples’ parameter 9;% is relaxed. Meanwhile, for the mixed noisy samples
we have

1+ (1= BN/ | |I2
2 3 v &) 2 0O

i'#q;

which indicates that the condition is strengthened. Therefore, this case is an extension of the
second case of Situation 1 with strengthening some constraints. These constraints will not
result in a better solution than Situation 1. The following proof is the same as Situation 1
and we omit it for convenience.

© 1> Npa?* > -1

In this case, the constraints for both mixed clean and noisy samples are strengthened. So
this can be taken as an extension of the first case in Situation 1 with strengthening some
constraints. The following proof is the same as Situation 1 and we omit it for convenience.

* Ml < -1

In this case, the constraints are strengthened for mixed clean samples while relaxed for the
mixed noisy samples. So we consider it as the extension of Situation 2 when A} ||p1 [|? < —1
with strengthening some constraints. The following proof is the same as Situation 2 and we
omit it for convenience.

Therefore, we complete the proof for all possible situations. O

Training and Test error analysis

From Proposition [53|we can derive the convergence direction of p and v, i.e. Py, and v,y,,,. Note
that Theorem [T6]does not depend on the selection of optimal tokens, so it still holds in this case when
optimal tokens are noise tokens for all samples. We restate it here for convenience:

Theorem 60. Suppose that Assumption[9 holds, with probability at least 1 — § on the training dataset,
we have
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* the margin induced by pr/R in p-SVM is at least (1 — {)Z, where

log(4y/(1 + K)dl|vmm||*dp®)
R=

(=

* the label margin induced by v,./r in v-SVM is at least (1 — )T, where y = %.

Then we could estimate the test error in this case. From Theorem [60] we have

pr(& — i) > (1 —¢)RE,Vi € [n] (98)

yiv & > (1 —~)Tr,Vi € [n]. (99)

Here (,~, Z, T are the same as the definition in Theorem[60] Similarly, we have the following lemma
for ¢, ~.

Lemma 61. Suppose that Assumption[9 holds, with probability at least 1 — & on the training dataset,
consider the same setting in Theorem|I6] we have ¢ < 0.2 and v < 1.

Proof of Lemmal61] First we upper bound ||y, ||. Consider the following possible solution p:
~ &i
P=22y (100)
i€[n]
We then proved that p satisfies (90). For Vk € [n], we have

ﬁT(gk _ Z 9 \Si> Sk/ €L7£k> > 2 Z

1€[n] [n],i#

2
2n+/dlog(6n /5) -
P 2
The first and second inequalities are from Lemma[64} The last inequality is from Assumption[9]

>2(1— k) +

Therefore, the max-margin solution p;,,,,, must have no greater norm than p. So we can upper bound
Pmm as

Pl < 1817 = 5 (S &>+ S (68

i€[n] i,jE[n],i#£]

= ((1+ r)nd + 2n%\/dlog(6n%/5)) < on

The second inequality is from Lemma[64} The last inequality is from the definition of d in Assumption
9

Then from the definition of ¢ in Theorem[16] we have

log(4y/(1 + K)d||[vmml[>dp? Vn/d
¢ = Og( ( +f;—/%):‘H'U || P ) SCl%/log(él /(1—|—/€)d\|vmm||3dp2)

n/d n?
< Cs R/ log <d> < 0.2.

Here C, Co = O(1). The first inequality is from 2= = ||pym|| < 1/5n/d; The second inequality
is from the upper bound of ||v;,,.y, || in Lemma|[55|and the last inequality is from the definition of R in
Assumption[9} And for ~, we have

_ oM _ o Mlvaml c V- (n/d)
Cexp((1 - ()RE) Lexp(R/|vmml]) ~  Zexp( R/\/i

Here C1, C4 = ©(1). The first inequality is from the lower and upper bound of ||v,,., || in Lemma
and the last inequality is from the definition of R in Assumption 3}
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Then we have the following lemma to estimate the innerproduct of pr and signal token:

Lemma 62. Suppose that Assumption[9 holds, with probability at least 1 — & on the training dataset,
we have

[(Pr, 1) < 0.9(1 = Q)RE
forj e {1,2}.

Proof of Lemmal62] First we use contradiction to prove for the lower bound. Assume that
(PR, )| > 0.9(1 — ()R=. We can estimate ||pg|| as

lprl? > (0.9(1 — Q)RE)?/p* > (0.522/p?) - R* > (0.1d/np?) - R? > R

The second inequality is from Lemma ; The third inequality is from 22 = ||p,um| =2 > d/(5n);
The last inequality is from our SNR condition p = o(y/d/n). This leads to a contradiction.

O

From Lemma 48] we can denote v, as

v = A1+ Aopey + Z Yi0:&;.

1€[n]
Denote vg = Zie[n] y:0;&; as the noise part of v,.. Then we prove that pr, v are near orthogonal

Lemma 63. Suppose that Assumption 9 holds, with probability at least 1 — 6 on the training dataset,
we have

(PR, ve)| < ¢

Sor some constant ¢ € (0,1).

Proof of Lemmal63] First plugging in the parameters in v¢ we have

(Pr,ve) = > yibipRi

> ipp&i— D Oipp&i
yi=+1

yi=—1

< (a1 +n21)(max 0;) (R= + O(Rp)) — (n12 + n22) (min ;) ((1 — () RE — O(Rp))
< (n/2)(mlax 0; — ml_in 0;,)R= + O(\/ﬁ)(mlax 0;,)R= —l—n(mZax 0;)(CR=+ O(Rp)) .

I Iz I

The first inequality is from Theorem.that 1 - (QRE<ph(& —pi) < REand pyp; = O(Rp)
and the second inequality is from Lemma@ Then we bound I; ~ I3 respectively. For I;, we need
to first bound 6;. From Theorem [60] we have

(1—7)Ir < yv, & < Tr,Vi € [n].

Denote j = argmax; 0;, we have

yiv) & > 0;]1€512 + nbj/dlog(6n2/8) > 0;((1 — k)d + ny/dlog(6n2/6)).

Therefore, we can upper bound 6, as

' Y, & Ir
b = (1 — k)d + n\/dlog(6n2/5) = (1 — k)d + n\/dlog(6n2/5)

Then we can lower bound 6; as

Trny/dlog(612/0
v & < 0;)|&1? + nb;/dlog(6n2/8) < (1+ k)db; + rny/dlog(6n?/0)
(1 = k)d+ ny/dlog(6n?/f)

(101)
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Therefore,

4. > (1 =7)(1 = Kk)I'rd — y'rny/dlog(6n2/9)
T (14 k)d(1 — K)d+ ny/dlog(6n2/5)

So we can estimate I; as

I < (nRZ/2) - ( Ir (1 =y)A=rK)lrd - 'yI‘rn\/dlog(6n2/6))
N (1 = k)d + ny/dlog(6n?/9) (14 k)d(1 — k)d + ny/dlog(6n?/9)
1 — U=00=r) | ynlog(6n/3)
< RVnd/2 - Tr- ( Ltn (L$r)d )

(1 — k)d 4+ ny/dlog(6n?/9)

< Rr(k+7).

The second inequality is from E = ||pmm| = ©(y/d/n) and the last inequality is from I' =

[Vmml| ™ = ©(V/d/n).

Then we bound I5. From we have max; §; = O(I'r/d). Therefore,
I < O(vn)O(I'r/d)RE < Rr- O(1/v/n).
The last inequality is from I, = = ©(,/d/n).
Last we bound I3 as
I3 =nO((T'r/d)(CRE+ O(Rp))

< O(rv/n/d)(log(4/(1 + £)d|[vmml|*dp?) + O(Rp))

< Rr-O(p\/n/d).
The first inequality is from I', = = @(W) and the last inequality is from Assumption@

Combining the results above, we have

(Pr,ve) <Ii + 1o+ I3 < Rr-O(y/1/n+py/n/d) <c

for sufficiently large d and n. Here the last inequality comes from Assumption [0 O
With the lemmas above, we could prove for the main theorem

Proof of Theorem First we show that the model can perfectly classify all training samples. From
Theorem [16] we have

yiv, T = yiiv, & + yi(1 = Bi)v i > Bi(1 —y)Ir —0.9(1 — B;)(1 — y)I'r > 0,
for Vi € [n]. The last inequality is from Lemmal61] Thus y; = sign(f(X;; pr,v,)) forall i € [n].
Then we bound the test error. This is equivalent to estimate y - f(pr, v,-; X ) and we could write it as

_exp((pr, ))v, '+ exp((Pr, &))v, €

v f(pr.vr X) =y exp((pr, ') + exp((pr, €'))

We first upper bound the term y - exp({pr, p'))v,” p’. From Theorem the non-optimality of i-th
sample is

1— B = exp((Pr, 1:)) - 1
" exp((pr, i) + exp((Pr, &) ~ 1+ exp((1 - ¢)ZR)

The last inequality is from the first statement in Theorem [60] Consider the sample that contains the
same signal token as ', we have

forall i € [n].

exp((pr, wi))v, pi
exp((Pr, pi)) + exp((Pr, &)

(1= Bi)v, p; =
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Therefore,

xp((Pr, i) + exp((pr, &:))
1+ exp((1 —¢)ER)
2exp((Pr,&i)) | T 2exp(ER) | 1

S e - ozR) Ml S oo - ozR) P

< 2exp(CER) - pr = (4/(1 + K)d||[vmml[*dp®) - pr < Cn*?pPr (102)

for some constant C' > 0. Here the third inequality is from pg (& — p;) > 0; The fourth inequality
is from the fact that (pr, &;) < ZR and the last inequality is from |lv,| < r,||p;|| < p. Then we
can bound the test error as

P(y - f(pr.vr; X) < 0) = P(y - exp({pr, 1)v, 1’ +y - exp((pr. &'))v, € <0)
(y - exp({pr, €'))v, & < —Cn®?p%r)

‘|vrTMi|

€
y - exp({(pr, )0, 1’ < exp((pr, i) |v, | <

>P

> iIP’(yvgf’ < —e RO .cnd2p%r | (pr/R,€&') € [1)C, C’]>
N 1(1 _ cC + Cexp(—R/C)n?/2p? _

—4°2 27(1 —¢?) — 16

The first inequality is from (102)); the second inequality use the fact that there exists a constant C' > 0
such that P(N(0,1) € [1/C,C]) > 1/4; the third inequality comes from Lemma [67| and the last
inequality uses Assumption 9] O

A.3 SUPPLEMENT LEMMAS

Here we list some technical lemmas for the main proof.

Lemma 64. (Properties of Training Data) Suppose that 6 > 0 and k = O(y/log(6n/d)/d) =
O(1/+/d) .Then with probability at least 1 — 6, we have

(1 —w)d < [|&ll3 < (1 +r)d
(&, &5)] < 2/ dlog(6n?/0)
Sforany i, j € [n].

Proof of Lemma By Bernstein’s inequality (see Theorem 2.8.1 in [Vershynin|(2018))), with proba-
bility at least 1 — 0/(3n) we have

€113 — d| = O(v/dlog(6n/9)).
Therefore, there exists k = O(4/log(6n/d)/d) that
(1 —r)d < [|&]3 < (L + k).

Moreover, (§;,&;) has mean zero. For any ¢,j € [n] and ¢ # j, by Bernstein’s inequality, with
probability at least 1 — §/(3n?) we have

[(€i,&5)] < 2+/dlog(6n2/6).

Applying a union bound completes the proof. O

Set § = 6m exp(—d/4C1n?) for any constant C; > 0, we can follow the proof of Lemma [64]and
conclude the next remark:

Remark 65. (Properties of New Test Sample) Let (X = (ux, €),y) ~ D. Then with probability at
least 1 — 6n exp(—d/4C1n?), we have

foranyi € [n].
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Lemma 66. With probability at least 1 — 69,

1 1
IC] = n(1 —m)| < \/nlog(5);  [N]=nn| < y/nlog(5);
n(l—mn) 1 nn / 1 .

Proof. Note that |C| ~ Binom(n,1 — ). Applying Hoeffding’s inequality, we have

2
P(|[C] = (1 —=n)n| > 1) < 2exp(72%).

Lett = y/nlog(1/0). We have that with probability at least 1 — ¢,

el — (1~ ] < \/mlos(3).

Similarly, note that |[N'| ~ Binom(n,n),|C1| ~ Binom(n, (1 — n)/2),|Ca| ~ Binom(n, (1 —
n)/2),|Ni| ~ Binom(n,n/2) and |[N2| ~ Binom(n,n/2), we have that each of the following
events holds with probability at least 1 — §:

1 1
|IC] — n(1—n)| < nlog(%); IIN\*nnléy/nlog(g);

1
1] =n(1=m)/2| < y/nlog(5), i=12

1
||N;| = nn/2| < nlog(g), i=1,2.
O

Lemma 67. Suppose X ~ N(0,1;), and v,p € R? are two vectors with ||v|| = ||p|| = 1,v'p < c
for some constant ¢ € (0, 1). Given some constant C > 1, for z < 0,

1 1 cC -2
Pv'X <zlp'X €[1/C,C]) > = — — ———.
(v zlp [1/C.C) =5 N

Proof of Lemma[67) Denote z,, = v' X ~ N(0,1),2, = p' X ~ N(0,1). Then we have z,, x, ~
N (0, 1). Denote the covariance between x,,, Tp by co, then we have

co = Cov(z,,z,) =v' Cov(X)p=v'p<c

d
Ty = cozp + /1 — r,

where r ~ N(0, 1) is independent of z,,. It follows that

Note that

1 zZ — CoTp 1 z—cC 1 1 cC—2z
]P’(:cv<z|xp€[c,0]) P(r < 1_C%|mp€[C,C])_P(r<m)_2 i
O

A.4 ADDITIONAL EXPERIMENTS
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Figure 4: Comparing train (solid lines) and test (dashed lines) accuracies with different SNR
(left panel) and different dimensions (right panel), as in Figure 3b] In the left panel, we see that
for higher SNR more than two iterations are required to achieve benign overfitting. In the right
panel, we see that for small d (purple line), the model is unable to fit the data (at least in the
first 10 first iterations), and both the train and test accuracies are at the noise-rate level. For
intermediate values of d (green and blue lines), the model exhibits harmful overfitting, and for larger
d (yellow line) the model exhibits benign overfitting. We note that benign overfitting occurs here
for d = 2n < n?, which suggests that the assumptions on d in our theorems are loose. Parameters:
n = 500, 5 = 0.02, p = 30, = 0.1, test sample size = 10000.
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Figure 5: Self-attention experiments. The left panel shows the train and test accuracies during training.
It shows that benign overfitting also occurs after 2 iterations. In the right panel, we show the softmax
probability of the signal token for clean and noisy samples (average of the softmax probabilities s
over C and N respectively). We see that after 2 iterations, the attention focuses on signal tokens
for clean examples, and on noise tokens for noisy examples. This indicates that our results can be
extended to self-attention mechanism. Parameters: n = 200, d = 40000, 8 = 0.025,p = 20,7 =
0.05, test sample size = 2000.
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Figure 6: Multi-token experiments. The first panel shows the train and test accuracies during training.
It shows that benign overfitting also occurs after 2 iterations. In the middle panel, we show that
for clean samples the softmax probability of the signal token s i1 dominates the overall attention.
While in the last panel, we show that for noisy samples the softmax probabilities of noise tokens
are average. This indicates that our results can be extended to multi-token settings. Parameters:
T =5,n=200,d = 10000, 8 = 0.025, p = 15,7 = 0.05, test sample size = 2000.
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Figure 7: The left panel presents a heatmap of the test acc, plotted across varying signal-to-noise
ratios (SNR) and sample sizes (n). Yellow indicates small test acc, while blue represents high
test loss. The right panel shows a heatmap with a cutoff value of 0.7, where values below 0.7 are
categorized as O (blue) and values above 0.7 as 1 (green). In both panels, the red curves represent
the expression SNR? = 2.1/n. This validates our tight bound of SNR = ©(1/,/n) to achieve
benign overfitting, and with a smaller SNR the model exhibits harmful overfitting. Parameters:

d =900, 5 = 0.01,n = 0.1, test sample size = 2000.
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Figure 8: The left panel shows the train and test accuracies during training (with Gaussian ini-
tialization, where each entry has variance 0.01). As in Figure [I] It shows that benign overfitting
occurs after 2 iterations. After the first iteration, the model correctly classifies the clean train-
ing examples, but not the noisy ones. In the right panel, we show the softmax probability of the
signal token for clean and noisy samples (average of the softmax probabilities 3371 over C and
N respectively). We see that after 2 iterations, the attention focuses on signal tokens for clean
examples, and on noise tokens for noisy examples. This aligns with Theorem ] Parameters:
n = 200, d = 40000, 5 = 0.025, p = 30, n = 0.05, test sample size = 2000.
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Figure 9: Multi-layer experiments. The left panel shows the train and test accuracies during training
in a 4-layer single-head attention model. It shows that benign overfitting also occurs after 2 iterations.
After the first iteration, the model correctly classifies the clean training examples, but not the noisy
ones. In the right panel, we show the softmax probability of the signal token for clean and noisy
samples (average of the softmax probabilities 53-71 over C and N respectively) in the first layer.
We see that the attention focuses on signal tokens for clean examples, and on noise tokens for
noisy examples. This indicates that our results can be extended to multi-layer models. Parameters:
n = 200, d = 10000, 8 = 0.025, p = 40, n = 0.05, test sample size = 2000.
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Figure 10: The left panel shows train and test accuracies during training with GD with weight decay,
as in Figure 2] The clean training samples are correctly classified already after one iteration, but
in contrast to Theorem [ and Figure [I] benign overfitting occurs after about 150 iterations. In the
right panel we see that the attention starts separating signal and noise tokens shortly before benign
overfitting occurs. Parameters: weight decay = 0.01, n = 200, d = 40000, 8 = 0.0001, p = 30,7 =
0.05, test sample size = 2000.
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