
Appendix

In Appendix A, extra quantitative results, including the results related to optimizing ∆ and quantitative
results on CLIC2020 [CLIC, 2022] are presented. In Appendix B, extra qualitative results are
presented. And in Appendix C, we present the implementation details, including the detailed
guidance to reproduce main results.

A More Quantitative Results

A.1 Experimental Results on CLIC2022

The results in Sec. 4.3 are based on Kodak dataset. In this section we present the results comparing
our Code Editing Enhance with other methods based on CLIC2022 dataset. From Fig . A1, we can
see that the main conclusion remains unchanged.

Figure A1: Comparison on CLIC [2022] dataset. Left: Ballé et al. [2018] as baseline. Middle:
Minnen et al. [2018] as baseline. Right: Cheng et al. [2020] as baseline.

A.2 Optimizing and Transferring ∆

As shown in Fig. A2, using gradient method to optimize ∆ of z brings significant performance decay,
while using gradient method to optimize ∆ of y is fine. So for Code Editing Enhanced, we use
gradient based method to optimize ∆y , and grid search to optimize ∆z .

We set the grid search range as ∆z ∈ {2−1.5, 2−1.0, ..., 21.5}, and we pick ∆z with the smallest R-D
cost (−Ly,z,∆y,∆z ). The result of searching ∆z is presented in Tab. A1. Note that as the value of
∆z is discrete and has only 7 possibilities, we can simply use uniform prior, and we need only 3 bits

Figure A2: Comparison of gradient decent and grid search for optimizing ∆z . Left: the trend of
∆y and ∆z during gradient based optimization. Right: R-D performance comparison. SGD is the
abbreviation of stochastic gradient descent, and in practical implementation we use Adam [Kingma
and Ba, 2014] as optimizer.

14



Table A1: Results of grid search with λ0 = 0.015 on Kodak dataset. −Ly,∆ is shown in this table,
lower is better.

λ1 = 0.0016 λ2 = 0.0032 λ3 = 0.0075 λ4 = 0.03 λ5 = 0.045 λ6 = 0.08

Based on Ballé et al. [2018]

∆z = 2−1.5 0.31686 0.44985 0.68303 1.24256 1.47532 1.89417
∆z = 2−1.0 0.31419 0.44715 0.68061 1.24029 1.47309 1.89212
∆z = 2−0.5 0.31168 0.44472 0.67832 1.23852 1.47096 1.89047
∆z = 20.0 0.30942 0.44253 0.67623 1.23741 1.47023 1.88992
∆z = 20.5 0.30788 0.44128 0.67568 1.23824 1.47200 1.89253
∆z = 21.0 0.30726 0.44126 0.67678 1.24219 1.47571 1.89552
∆z = 21.5 0.30895 0.44425 0.68222 1.25282 1.48909 1.91170

Based on Minnen et al. [2018]

∆z = 2−1.5 0.32714 0.45260 0.66707 1.24483 1.49512 1.95127
∆z = 2−1.0 0.32242 0.44801 0.66257 1.23849 1.49199 1.95180
∆z = 2−0.5 0.31751 0.44376 0.65881 1.23064 1.48237 1.93762
∆z = 20.0 0.31902 0.44674 0.66350 1.23026 1.47921 1.93465
∆z = 20.5 0.32906 0.45899 0.67721 1.24036 1.48695 1.93773
∆z = 21.0 0.34360 0.47753 0.69713 1.25969 1.50642 1.95827
∆z = 21.5 0.34862 0.48562 0.70974 1.27931 1.52575 1.97856

Based on Cheng et al. [2020]

∆z = 2−1.5 0.27705 0.39374 0.59356 1.12197 1.36487 1.84092
∆z = 2−1.0 0.27571 0.39263 0.59231 1.12086 1.36374 1.83952
∆z = 2−0.5 0.27465 0.39134 0.59127 1.11964 1.36280 1.83791
∆z = 20.0 0.27401 0.39034 0.59051 1.11934 1.36248 1.83809
∆z = 20.5 0.27309 0.39008 0.59065 1.12058 1.36370 1.83916
∆z = 21.0 0.27392 0.39136 0.59278 1.12506 1.36890 1.84496
∆z = 21.5 0.27644 0.39507 0.59910 1.13568 1.38064 1.85845

to encode it. And the value of ∆y is a single-precision float which takes another 32 bits to encode.
On Kodak dataset with 512× 768 pixels, compressing both of the ∆s requires around 8× 10−5 bpp.
And on CLIC2022 which is even larger, the bpp of ∆s is even less. So when presenting experimental
results, we simply ignore the bpp of ∆s.

Choi et al. [2019] also adopt the quantization stepsize control. However, our approach is very different
from it. Specifically, we find there is train-test mismatch of the entropy model in Code Editing Naïve,
which damages R-D performance. And then we propose adaptive quantization step to alleviate this
problem (See Sec. 2.3 and Sec. 4.2). On the other hand, Choi et al. [2019] adjust the quantization step
to fine-tune the bitrate. From the perspective of results, our proposed adaptive quantization works
in the a wide bitrate region while the quantization step adjustment of Choi et al. [2019] works in a
narrow bit rate region.

Moreover, Choi et al. [2019] sample ∆ during training, which requires a carefully designed prior
on ∆. According to the original paper, training ∆ ∈ [0.5, 2] brings best performance, and making
it larger or narrower brings performance decay. While for us, the ∆ is learned during SAVI stage
and no deliberate prior is required. And during training we keep ∆ = 1 like a normal model. The
advantage is that our method can be directly applied to any pre-trained neural compression model,
while Choi et al. [2019] can not. Furthermore, we study the effect of optimizing ∆ jointly with SAVI,
which is never studied before. Moreover, we provide non-trivial extra insights into why this approach
might work by theoretical analysis (Sec. 2.3) and empirical study (Sec. 4.2).

We note that it is also possible to treat ∆s as a vector ∆ representing per dimension quantization step.
In that case, the bpp of ∆ is unneglectable and has to be compressed separately. However, the vector
∆ is out of the scope of this paper.
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A.3 Go without Grid Search

Fig. A3 shows the result of fixing ∆z = 1.0 and performing no grid search at all. It can be seen
that the R-D performance drop is only marginal compared with the grid search scheme in Sec. A.2
Therefore, it is possible to abandon the grid search and trade R-D performance for speed.

Figure A3: Left: The R-D performance between w/ and w/o grid search of ∆z . Right: The R-D
performance beyond bpp = 1.0.

A.4 Go Beyond bpp = 1.0

Fig. A3 shows the result of bpp beyond 1.0. It can be observed that when we stick to a decoder trained
with bpp ≈ 0.5 (λ = 0.015), its R-D performance drops below the baseline when bpp approaches 1.5.
However, if we adopt a decoder trained with bpp ≈ 1.0 (λ = 0.045), the R-D performance of our
approach in high bitrate is significantly enhanced. We can achieve variable bitrate control without
R-D performance loss in 0.1 ≤ bpp ≤ 1.9.

B More Qualitative Results

B.1 Multi-Distortion Trade-off

We present more qualitative results of multi-distortion trade-off in Fig. B1-B3. Both Kodak and
CLIC2022 dataset are used.

B.2 ROI-based Coding

We present more qualitative results of ROI-based coding in Fig. B4-B6. The ROI maps are shown in
the main paper. Both Kodak and CLIC2022 dataset are used.

For segmentation based ROI, We selected the image 13e9b6 from the CLIC2022 dataset to test
the segmentation ROI. There are 4 people in this image. We use separate segmentation for each
person. Unlike the high contrast ROI shown in the main paper, we give the background a weight of
0.04 instead of 0. We define PSNRregion to evaluate the image quality when ROI is used. Given
an m× n image I and the reconstructed image K, MSEregionis defined as:

MSEregion =
1∑m−1

i=0

∑n−1
j=0 M(i, j)

m−1∑
i=0

n−1∑
j=0

M(i, j)[I(i, j)−K(i, j)]2

where M(i, j) is 1(0) if pixel (i, j) is inside(outside) the ROI region. PSNRregion (in dB) is defined
as:

PSNRregion = 10 · log10
(

MAX2
I

MSEregion

)
These results can be found at Fig. B7-B9. We can see that code editing is effective for complex
semantic ROI. And the visual quality of each person is improved accordingly as the ROI masks shift.
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λp = 0.5

Bitrate: 0.1305bpp
PSNR: 27.54dB
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LPIPS: 0.2792Original Image

λp = 0.1
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Bitrate: 0.1544bpp
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PSNR: 26.20dB
LPIPS: 0.2400Original Image

λp = 0.1

Bitrate:0.1194bpp
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λp = 0.5

Bitrate: 0.1226bpp
PSNR: 28.13dB
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Figure B1: More multi-distortion trade-off results I.
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λp = 0.5
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λp = 1.0

Bitrate: 0.1277bpp
PSNR: 27.02dB
LPIPS: 0.3139Original Image

λp = 0.1
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PSNR: 29.71dB
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λp = 0.5
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LPIPS: 0.3171Original Image

Figure B2: More multi-distortion trade-off results II.
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Figure B3: More multi-distortion trade-off results III.
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Figure B4: More ROI-based coding results I.
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Figure B5: More ROI-based coding results II.
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Figure B6: More ROI-based coding results III.
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Original Image ROI Map(baseline), black=0.04 Reconstructed Image

ROI Map(#1), black=0.04 (least bits), white=1 (most bits) Reconstructed Image

𝑃𝑆𝑁𝑅!"#$%& for person #1:
(Baseline) → (#1)
29.44𝑑𝐵 → 33.17𝑑𝐵

ROI Map(#2), black=0.04 (least bits), white=1 (most bits) Reconstructed Image

𝑃𝑆𝑁𝑅!"#$%& for person #2:
(Baseline) → (#2)
29.73𝑑𝐵 → 34.47𝑑𝐵

Figure B7: Segmentation based ROI coding results I.

23



ROI Map(#3), black=0.04 (least bits), white=1 (most bits) Reconstructed Image

𝑃𝑆𝑁𝑅!"#$%& for person #3:
(Baseline) → (#3)
26.55𝑑𝐵 → 32.57𝑑𝐵

ROI Map(#4), black=0.04 (least bits), white=1 (most bits) Reconstructed Image

𝑃𝑆𝑁𝑅!"#$%& for person #4:
(Baseline) → (#4)
30.99𝑑𝐵 → 35.50𝑑𝐵

Figure B8: Segmentation based ROI coding results II.
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ROI Map(all people), black=0.04 (least bits), white=1 (most bits) Reconstructed Image

𝑃𝑆𝑁𝑅!"#$%& for all people:
(Baseline) → (all people)
29.08𝑑𝐵 → 35.09𝑑𝐵

Figure B9: Segmentation based ROI coding results III.
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C Experiment Details

C.1 Detailed Experimental Settings

All the experiments are conducted on a computer with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
and 8× Nvidia(R) TitanXp. All the experiments are implemented in Pytorch 1.7 and CUDA 9.0. The
Hyper-parameters are aligned with Yang et al. [2020]. Specifically, we optimize ∆y,y, z with SGA
for 2, 000 iterations and learning rate 5× 10−3. More specifically for SGA, the temperature is set to
0.5× e−10−3(k−700), where k is current epoch index. For Code Editing Enhanced, we search ∆z to
be {21.5, 21.0, 20.5, 20.0, 2−0.5, 2−1.0, 2−1.5}.

C.2 Guidance for Reproducing Main Results

Baseline Models. To reproduce the results in the main paper, we train the baseline models [Ballé
et al., 2018, Minnen et al., 2018, Cheng et al., 2020]. We follow the settings of He et al. [2021].
These models are trained on the subset of 8,000 images from ImageNet for 2,000 epochs. We use
Adam [Kingma and Ba, 2014] with learning rate of 10−4 and batch-size 16.

Fig. 1 Left. For Code Editing Enhanced, we use SGA[Yang et al., 2020] to optimize y, z. For
Code Editing Enhanced(AUN), we use additive uniform noise as [Ballé et al., 2017, 2018, Cheng
et al., 2020]. For Code Editing Naïve, we fix ∆y and ∆z to 1.0. For ∆z optimization, we set ∆z to
{21.5, 21.0, 20.5, 20.0, 2−0.5, 2−1.0, 2−1.5}.
Fig. 1 Right. We set iterations to 0, 50, 100, 150 and 200, respectively. Due to early termination,
we adjust SGA temperature from original 0.5× e−10−3(k−700) to 0.5× e−10−3(k−100). For the red
curves(w/o Encoder FT.), we use the fϕλ0

where λ0 = 0.015. For green curves(w/ Encoder FT.), we
use a finetuned encoder fϕλ′ . fϕλ′ is finetuned from fϕλ0

on the training set for 500 epochs, with a
learning rate of 10−4.

Fig. 2. We compute the histogram of normalized dequantized results of quantized y(i) before
and after Code Editing on Kodak dataset which contains 24 images. And i superscript indicates
dimension. The source λ0 is 0.015, and the target λ1 is 0.0016. y are obtained by y ← fϕλ0

(x).
y∗

Naïve and y∗
Enhanced are obtained by Code Editing Naïve and Code Editing Enhanced, respectively.

∆∗ is obtained by Code Editing Enhanced. All the dequantized results are normalized by σ2, which
is computed from p(y|z) according to Ballé et al. [2018]. We get 11, 796, 480 y(i)s, and the bin size
for the histogram is 1.

Fig. 3. For Song et al. [2021] and Cui et al. [2021], we add their proposed Spatial Feature Transform
and Gain Unit to the the baseline models. We train these models using the same settings as training
the baseline models. For Theis et al. [2017], we add the scale vectors to the baseline models trained
under λ0 = 0.015 and finetune the scale vectors for 100 epochs, with a learning rate of 10−4.

Fig. 4. These curves are obtained by optimizing y and ∆ to maximize LMD
y,∆ (see Eq. 9). We adopt

a bitrate control scheme from Mentzer et al. [2020] to make the bitrate roughly same. First, we
set Rtarget to the bitrate before editing for each image. Then, we add a weight λr to the left term
logPθλ0

(⌊y/∆⌉; ∆) in Eq. 9. λr is set to λ(a) and λ(b) for − logPθλ0
(⌊y/∆⌉; ∆) > Rtarget and

− logPθλ0
(⌊y/∆⌉; ∆) < Rtarget, respectively, where λ(a) ≫ λ(b). Here, we set λ(a) to 4.0 and

λ(b) to 0.25.

Fig. 5. The setting is same as Fig.4. These two images are from CLIC2022[CLIC, 2022]
dataset, where IDs are 5ab399 and 6f2e3f. The cropping positions (left, upper, right, lower)
are (385, 1519, 865, 1919) and (0, 1300, 480, 1700), respectively.

Fig. 6. We optimize the target LROI
y,∆ to obtain the ROI-based coding results. Here, we adopt the

baseline model Ballé et al. [2018] trained under λ0 = 0.0016. We conduct the experiment on Kodak
and CLIC2022 datasets. We sample 3 images and show them in Fig. 6. They are from CLIC2022
dataset. Their IDs are 76e721, 2ff706 and 631791, respectively.

Fig. 7. For a fair comparison, we adapt the framework proposed by Song et al. [2021] to the baseline
model Ballé et al. [2018]. We feed the quality map together with the image to this model to get the
ROI-based coding results of Song et al. [2021].

26



Broader Impact

In CLIC (Challenge on Learned Image Compression) 2021, the champion solution Gao et al. [2021]’s
decoder size is 230MB. On the other hand, Savinaud et al. [2013] as a JPEG2000 codec is only
around 1.4MB. Thus, a flexible neural codec with one decoder for all conditions is highly valuable
in terms of disk storage reduction, which in turn benefits carbon footprint reduction. On the other
hand, our solution enables continuous control of bitrate with flexible ROI. This makes NIC as flexible
as traditional codecs, and thus prompts the practical deployment of NIC. Moreover, the distortion-
perception trade-off also attracts attentions of contemporary traditional codecs, such as H.266 [Bross
et al., 2021].
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