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ABSTRACT

Sampling from probability distributions is a fundamental task in machine learning
and statistics. However, most existing algorithms require numerous iterative steps
to transform a prior distribution into high-quality samples, resulting in high com-
putational costs and limiting their practicality in time-constrained and resource-
limited environments. In this work, we propose consistency samplers, a novel
class of samplers capable of generating high-quality samples in a single step. Our
method introduces a new consistency distillation algorithm for diffusion-based
samplers, which eliminates the need for data or full trajectory integration. By
utilizing incomplete sampling trajectories and noisy intermediate representations
along the diffusion process, we efficiently learn a direct one-step mapping from
any state to its corresponding terminal state in the target distribution. More-
over, our approach enables few-step sampling, allowing users to flexibly balance
compute costs and sample quality. We demonstrate the effectiveness of consis-
tency samplers across multiple benchmark tasks, achieving high-quality results
with one-step or few-step sampling while significantly reducing the sampling time
compared to existing samplers. For instance, our method is 100-200x faster than
prior diffusion-based samplers while having comparable sample quality.

1 INTRODUCTION

Sampling from an unnormalized target distribution ρ ∝ ptarget without access to data samples is a
fundamental challenge across various domains, including machine learning (Neal, 1995; Hernández-
Lobato & Adams, 2015), statistics (Neal, 2001; Andrieu et al., 2003), physics (Wu et al., 2019;
Albergo et al., 2019), chemistry (Frenkel & Smit, 2002; Hollingsworth & Dror, 2018), and many
other fields involving probabilistic models.

Many existing sampling algorithms are inherently iterative, with the accuracy of the final samples
depending heavily on the number of steps. For example, Markov chain Monte Carlo (MCMC)
methods rely on iteratively generating samples through a Markov chain that converges to the target
distribution (MacKay, 2003; Robert, 1995). Similarly, diffusion-based samplers frame sampling as
a stochastic optimal control problem, transforming samples from a simple prior distribution into the
target distribution by iteratively solving a controlled stochastic differential equation (SDE) (Zhang
& Chen, 2022; Vargas et al., 2023; Berner et al., 2024; Zhang et al., 2024; Richter & Berner, 2024).
However, these iterative samplers often suffer from slow mixing and require hundreds or even more
steps to converge, making them impractical for use in large models and resource-limited scenarios.

In this work, we propose a novel class of samplers, consistency samplers (CS), that can generate
high-quality samples in just a single step. A comparison between CS and existing iterative samplers
is shown in Figure 1. To achieve one-step sampling, our method introduces a new distillation algo-
rithm for diffusion-based samplers, inspired by the idea of consistency models (CM) (Song et al.,
2023). Unlike CMs, our approach does not require access to data or the generation of full sampling
trajectories. Instead, it leverages intermediate noisy representations to learn the consistency func-
tion, significantly reducing the computational overhead of the training process. In our numerical
experiments, we demonstrate the effectiveness of consistency samplers across multiple benchmark
tasks, achieving high-quality results with one-step or few-step sampling, and drastically reducing
the sampling time compared to existing methods. In summary, our contributions are as follows:
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...

Iterative sampling methods (e.g. MCMC, diffusion-based samplers) 

Consistency sampler

Noise Step 1 Step N-1 Step N

Step 1Noise

(N times faster)
CS (ours) DDS

DIS

Langevin
Dynamics

Figure 1: The proposed consistency sampler (CS) achieves high-quality sampling in just one step,
significantly accelerating the sampling process compared to methods like MCMC (e.g. Langevin
Dynamics) and diffusion-based sampling (e.g. DDS, DIS), which require numerous steps to gradu-
ally generate samples.

• We introduce consistency samplers, a new class of samplers that can generate high-quality
samples in one or a few steps from complex unnormalized distributions. Our distillation
training algorithm is computationally efficient, requiring only incomplete sampling trajec-
tories from diffusion-based samplers and eliminating the need for pre-collected data.

• We provide a theoretical analysis of the proposed consistency distillation training objective,
establishing guarantees on the convergence and correctness of the consistency sampler un-
der our training framework.

• We empirically demonstrate that our consistency samplers perform effectively on stan-
dard sampling benchmarks, achieving high-quality results in both one-step and few-step
sampling tasks. Our approach accelerates sampling by 100-200x and reduces the neural
network size by half compared to previous diffusion-based samplers, all while maintaining
comparable sample quality.

2 RELATED WORK

Iterative sampling methods. Markov chain Monte Carlo (MCMC) is commonly used for sampling
unnormalized distributions. The core idea is to construct a Markov chain whose equilibrium dis-
tribution matches the desired target distribution (Brooks et al., 2012). Popular MCMC algorithms
include Metropolis-Hasting (Metropolis et al., 1953; Hastings, 1970), Gibbs sampling (Geman &
Geman, 1984), and Langevin dynamics (Rossky et al., 1978; Parisi, 1981). Instead of propagating a
single sample, sequential Monte Carlo (SMC) methods propagate a population of particles through
a sequence of intermediate distributions (Doucet et al., 2001). An example is annealed importance
sampling, which transforms a simple distribution into the target distribution using annealed interme-
diate distributions and importance weights (Neal, 2001).

The classical Schrödinger bridge problem (Schrödinger, 1931; 1932) seeks the most likely stochas-
tic process that transports one distribution to another consistently with a pre-specified Brownian
motion. The sampling problem can then be framed as an optimal control problem, where a con-
trolled SDE is used to evolve samples from an initial distribution through the Schrödinger bridge
to the target distribution (Tzen & Raginsky, 2019; Vargas et al., 2022; Zhang & Chen, 2022). This
approach motivates the study of diffusion processes as samplers Geffner & Domke (2023); Vargas
et al. (2023); Richter & Berner (2024); Zhang et al. (2024); Phillips et al. (2024).

Key to MCMC, SMC, and diffusion-based samplers is their iterative nature, where each method
progressively refines samples through a series of transformations or updates to more accurately
represent the target distribution. Our work asks whether it is possible to skip the iterative refinement
process by learning to directly map the initial distribution to the target.

Accelerating strategies for sampling. Robert et al. (2018) surveys various techniques to improve
MCMC efficiency, including Hamiltonian Monte Carlo, which leverages the geometry of the target
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distribution for more effective sampling (Duane et al., 1987; MacKay, 2003; Brooks et al., 2012;
Chen et al., 2014). To reduce costs on large datasets, subsampling MCMC methods (Bardenet
et al., 2017; Andrieu & Roberts, 2009; Zhang & De Sa, 2019; Zhang et al., 2020b) and stochastic
gradient MCMC methods (Welling & Teh, 2011; Chen et al., 2014; Zhang et al., 2020a;c) have been
developed. These approaches are orthogonal to our method since they reduce the cost per step but
remain fundamentally iterative in nature.

Amortized inference, on the other hand, shifts the computational cost to a training phase, resulting in
a sampler that is faster at test time (Gershman & Goodman, 2014). For instance, amortized MCMC
(Li et al., 2017) distills an MCMC sampler by training a student model to mimic the sample after
T -step MCMC transitions. Most amortized inference methods rely on simulation-based training,
where a teacher sampler generates data during training. GFlowNets (Bengio et al., 2021; 2023)
focus on sampling complex composite objects by sequentially composing their elements. While
GFlowNets amortize the computational challenges of lengthy stochastic searches and mode-mixing
during training, their sampling process remains sequential, as objects are constructed step-by-step
through a series of constructive steps. In contrast to amortized MCMC, our method only requires
generating incomplete samples during training and enables single-step sampling, unlike the sequen-
tial sampling process of GFlowNets’ generative policy.

Diffusion generative models. In contrast to diffusion-based samplers, diffusion generative models
rely on direct access to data from the target distribution and progressively perturb this data toward
noise via a diffusion process (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021b). The generative process learns to reverse this diffusion through denoising score
matching (Hyvärinen, 2005; Vincent, 2011). Several strategies have been proposed to accelerate
the generation process of diffusion generative models. For example, faster solvers (Song et al.,
2021a; Nichol & Dhariwal, 2021; Jolicoeur-Martineau et al., 2021; Karras et al., 2022) reduce the
number of reverse iterations from hundreds or thousands to just tens. Additionally, knowledge
distillation techniques can further minimize the number of steps, allowing for single-step or few-step
generation (Salimans & Ho, 2022; Song et al., 2023). In this work, we extend ideas from distillation
techniques for diffusion generative models to diffusion-based samplers to design an efficient, single-
step sampler.

3 PRELIMINARIES: DIFFUSION-BASED SAMPLING

Diffusion-based samplers are controlled stochastic processes that gradually transform samples from
a simple prior distribution x0 ∼ pprior into approximate samples from the target distribution xT ∼
ptarget by evolving forward in time t ∈ [0, T ]:

dxu
t = (µ(xu

t , t) + σ(t)u(xu
t , t)) dt+ σ(t) dwt, (1)

where w is a standard Brownian motion, µ is the drift term, σ is the diffusion coefficient, and u is a
control term that adjusts the drift.

The objective is to find u such that Eq. (1) approximates the reverse-time process of an inference
diffusion that adds noise to samples drawn from the target distribution:

dyv
t = (µ(yv

t , t) + σ(t)v(yv
t , t)) dt+ σ(t) dwt. (2)

where v(yv
t , t) = σ⊤(t)∇ log pyv

t
(yt) (Anderson, 1982).

By ensuring that yv
0 ∼ pprior and u = v, one can achieve pxu = pyv , and thus xu

T ∼ ptarget.
However, directly computing the score∇ log pyv is intractable, and we assume that no dataset from
ptarget is available to approximate it.

Let Pxu denote the path space measure corresponding to the process defined by Eq. (1), and let Pyv

denote the path space measure of the process defined by Eq. (2). Further, let U ⊂ C(Rd×[0, T ],Rd)
represent the space of admissible controls. Diffusion-based samplers seek to find an optimal control
u∗ that minimizes the divergence between the path measures of the generative and time-reversed
inference processes:

u∗ ∈ argmin
U

D(Pxu∥Pyv ), (3)

where D(·∥·) is an appropriate divergence measure (e.g., Kullback-Leibler (KL) divergence) be-
tween the two path distributions.
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In practice, one then generates samples by simulating xu∗
using the Euler-Maruyama integrator:

xt+∆t = xt + (µ(xt, t) + σ(t)u∗(xt, t))∆t+ σ(t)∆wt, ∆wt ∼ N (0,∆tI) (4)

where ∆t is the step size. The smaller ∆t is, the more accurate the approximation becomes, but this
also increases the number of required steps N , and thus, the computational cost.

4 CONSISTENCY SAMPLER

In this section, we introduce consistency samplers, a method for distilling diffusion-based samplers
into single-step samplers.

4.1 PARAMETERIZATION

We propose distilling a diffusion process induced by a control function u, which satisfies the problem
in Eq. (3), into what we call a consistency sampler. Given u, the consistency sampler learns a
deterministic consistency function f : (xu

t , t) 7→ xu
T , which maps any intermediate state of a path

directly to its terminal state. As a result, one-step sampling becomes feasible from any point in time,
in particular from the initial state.

To ensure that the learned consistency function outputs the correct terminal state, we parameterize
the consistency sampler such that the consistency function is the identity f(xu

T , T ) = xu
T at the

terminal time. Following Song et al. (2023), the consistency sampler is parameterized as follows:

fθ(x
u
t , t) = cskip(t)x

u
t + cout(t)Fθ(x

u
t , t), (5)

where the coefficients cskip(t) and cout(t) are such that cskip(T ) = 1 and cout(T ) = 0, ensuring that
the output is equal to the terminal state. Here, Fθ is a free-form neural network, and its architecture
can be borrowed from prior diffusion-based samplers.

To train the consistency sampler, we aim to ensure that the learned function provides consistent
mappings between adjacent points along the diffusion trajectory. Specifically, we minimize the
difference between the outputs of the consistency function applied to the states of two consecutive
time steps, xu

tn and xu
tn+1

, in a given time discretization.

Consistency distillation of diffusion generative models rely on a direct access to samples from ptarget
to learn the consistency function (Song et al., 2023). In contrast, our approach assumes that we do
not have access to data, and generating a dataset of samples from the target distribution using a
pre-trained sampler is computationally expensive.

4.2 EFFICIENT INTERMEDIATE CONSECUTIVE STATES GENERATION

In practice, the SDEs commonly used in diffusion-based samplers often have linear drift terms of
the form µ(xt, t) = µ(t)xt. This is true for widely used SDEs such as the variance exploding and
variance preserving SDEs (Song et al., 2021b). In such cases, the backward perturbation kernels,
which describe the transition from xT to xt, are known to follow Gaussian transitions:

PB(xt|xT ) = N (xt; s(t)xT , s(t)
2g(t)2I), (6)

where

s(t) = exp

(∫ T−t

0

µ(ξ) dξ

)
, and g(t) =

√∫ T−t

0

σ(ξ)2

s(ξ)2
dξ.

See Eq. (29) in Song et al. (2021b), and Appendix B of Karras et al. (2022).

A straightforward approach to learn the consistency function would be to generate approximate sam-
ples x̂u

T by fully integrating the diffusion process from noise, and then applying the backward per-
turbation kernel to obtain consecutive intermediate states x̂u

tn and x̂u
tn+1

. While this method allows
for the direct application of the consistency techniques from Song et al. (2023); Song & Dhariwal
(2023), it is inefficient as it requires fully integrating the process for every training iteration.

We propose a more efficient method that avoids the need for full integration. Starting with an initial
sample x0 ∼ pprior, we randomly sample a timestep tn from a predefined time discretization and
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t = 0 t = T

fθ(x̂u
tn, tn)

fθ′ 
(x̂u

tn+1, tn+1)
pprior ptarget

Figure 2: Consistency samplers are trained to map consecutive points (indicated by the black and
gray dashed curves) along the partially integrated trajectory of the PF ODE (represented by the green
curves), bypassing the need for fully integrated trajectories.

simulate the forward process only up to tn+1. This provides the intermediate states x̂u
tn and x̂u

tn+1

directly, without needing to run the entire process up to T , thus reducing the training time. The
proposed training procedure is illustrated in Figure 2.

4.3 PROBABILITY FLOW ODE FOR DETERMINISTIC TRANSITIONS

When simulating the forward SDE (Eq. (1)), the transition between two states is stochastic due
to the randomness introduced by the Brownian motion. This stochasticity creates challenges for
learning the consistency function, as the probabilistic nature of state transitions induces ambiguity
in the mapping. Specifically, the same intermediate state xu

t can correspond to multiple potential
future paths, complicating the task of learning a unique and consistent mapping from xu

tn and xu
tn+1

to xu
T .

Fortunately, for all diffusion processes, there exists a corresponding deterministic process whose tra-
jectories share the same marginal probability densities as the original SDE (Song et al., 2021b). This
deterministic process is governed by an ordinary differential equation (ODE), commonly referred to
as the probability flow ODE (PF ODE). The PF ODE corresponding to the forward generative SDE
(Eq. (1)) is:

dxu
t =

(
µ(xu

t , t) +
1

2
σ(t)u(xu

t , t)

)
dt. (7)

By leveraging the PF ODE, we can obtain deterministic consecutive points x̂u
tn and x̂u

tn+1
for train-

ing the consistency function, thus avoiding the stochasticity challenges posed by the SDE. When
simulating the pre-trained diffusion-based sampler during training, we therefore use the PF ODE
(Eq. (7)) instead of the SDE (Eq. (1)).

4.4 TRAINING OBJECTIVE AND THEORETICAL GUARANTEES

Given a time discretization 0 < t1 < · · · < tN = T , the consistency sampler is trained to mini-
mize the difference between the outputs of the consistency function at x̂u

tn and x̂u
tn+1

, obtained by
integrating the PF ODE (Eq. (7)) from t0 to tn+1.

The training loss is formulated as:

L(θ,θ′;u) := E
[
λ(tn)d(fθ′(x̂u

tn+1
, tn+1), fθ(x̂

u
tn , tn))

]
(8)

where θ′ ← stopgrad(θ), and λ(·) is a positive weighting function that controls the contribution
of each time step to the loss, and d(·, ·) is a distance metric. The training procedure is outlined in
Algorithm 1.
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Algorithm 1 Data-free consistency sampler training

Input model parameters θ, control u, learning rate η, distance metric d(·, ·), loss weighting λ(·)
θ′ ← θ
repeat

Sample x0 ∼ pprior and n ∼ U{1, N − 1}
Sample x̂u

tn+1
and x̂u

tn by simulating Eq. (7) from x0 to x̂u
tn+1

using u

L(θ,θ′;u)← λ(tn)d(fθ′(x̂u
tn+1

, tn+1), fθ(x̂
u
tn , tn))

θ ← θ − η∇θL(θ,θ′;u)
θ′ ← stopgrad(θ)

until convergence

Algorithm 2 Multi-step sampling from a consistency sampler

Input Consistency sampler fθ(·, ·), sequence of timesteps t1 < · < tn
Sample x0 ∼ pprior
xT ← fθ(x0, 0)
for i = 1 to n do

Sample xti from Eq. (6)
xT ← fθ(xti , ti)

end for
Return xT as the generated sample.

Next, we provide an asymptotic analysis of the error between the learned consistency sampler and
the true consistency function induced by the pre-trained control and the PF ODE (Eq. (7)) when
optimizing the loss in Eq. (8).

Theorem 1. Let fθ(xt, t) be a consistency sampler parameterized by θ, and let f(xt, t;u) denote
the consistency function of the PF ODE defined by the control u. Assume that fθ satisfies a Lipschitz
condition with constant L > 0, such that for all t ∈ [0, T ] and for all xt,yt,

∥fθ(xt, t)− fθ(yt, t)∥2 ≤ L∥xt − yt∥2.

Additionally, assume that for each step n ∈ {1, 2, . . . , N − 1}, the ODE solver called at tn has a
local error bounded by O((tn+1 − tn)

p+1) for some p ≥ 1.

If, additionally, L(θ,θ;u) = 0, then:

sup
n,xtn

∥fθ(xtn , tn)− f(xtn , tn;u)∥2 = O((∆t)p),

where ∆t := maxn∈{1,2,...,N−1} |tn+1 − tn|.

Proof. We provide a proof in Appendix B.

If the consistency sampler achieves zero loss, Theorem 1 implies that, under regularity conditions,
the estimated consistency sampler can become arbitrarily accurate as the step size of the ODE solver
decreases, ensuring the learned model closely approximates the true consistency function.

4.5 SAMPLING FROM CONSISTENCY SAMPLERS

With a well-trained consistency sampler fθ(·, ·), we can generate approximate samples from the
target distribution in a single step by first sampling from the prior distribution x0 ∼ pprior, and then
evaluating the consistency function fθ(x0, 0).

We can also further refine this generated sample by performing multiple denoising and noise addition
steps using the backward perturbation kernel from Eq. (6), akin to the consistency models distilled
from diffusion generative models. The multi-step sampling procedure is outlined in Algorithm 2.
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Figure 3: Comparison of samples generated with one, two, and three steps by the consistency sam-
pler (CS), time-reversed diffusion sampler (DIS), and denoising diffusion sampler (DDS) across
GMM, rings, and image targets. CS consistently produces sharper results and successfully recovers
all modes of the target distributions.

5 NUMERICAL EXPERIMENTS

In this section, we empirically evaluate the performance of the proposed consistency sampler, trained
using Algorithm 1. The control uθ is modeled as a neural network, which is pre-trained using either
the denoising diffusion sampler (DDS) (Vargas et al., 2023) or the time-reversed diffusion sampler
(DIS) (Berner et al., 2024). Both DDS and DIS implementations rely on the PIS-GRAD architecture
introduced by Zhang & Chen (2022), where the control is:

uθ(xt, t) = NN1;θ(xt, t) + NN2;θ(t)×∇ log ptarget(xt),

with NN1;θ and NN2;θ representing two neural networks. Across all experiments, we use a two-
layer architecture with 64 hidden units each for both networks. The training objectives of DDS and
DIS are presented in Appendix A.

The training cost of CS is less then that of the denoising diffusion sampler (DDS) and the time-
reversed diffusion sampler (DIS). In DDS and DIS, the controlled process appears directly in the
training objective (see equations 10 and 11). Unlike diffusion models that use the denoising score
matching objective and can resort to Monte Carlo approximations (Hyvärinen, 2005; Song & Er-
mon, 2019), DDS and DIS require full trajectory simulation during training. Similarly, CS requires
trajectory simulation during training; however, CS integrates only partial trajectories up to a random
timestep. This approach saves approximately 50% of the training time for a fixed number of training
iterations.

In our parameterization of the consistency sampler (Section 4.1), we initialize the network Fθ in
Eq. (5) with NN1;θ(xt, t). As a result, the consistency sampler requires roughly half the number of
parameters compared to DIS and DDS, thereby reducing both the computational cost of a forward
pass through the model and the memory requirements.

In all of our experiments, DDS and DIS follow a variance-preserving SDE (Song et al., 2021b) with
a Gaussian prior, and are trained using the log-variance divergence (Richter & Berner, 2024) with
200 diffusion steps to solve the optimal control problem of Eq. (3). The consistency sampler is
trained with 18 diffusion steps, using λ(t) = 1 and the L2-norm in the loss Eq. (8).

7
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5.1 BENCHMARK TARGETS

Gaussian mixture model (GMM): The target distribution for the GMM is defined as:

ρ(x) =
1

m

m∑
i=1

N (x;µi,Σi)

where m = 9, the covariance matrix σi = 0.3I , and the means (µi)
9
i=1 are positioned at the points

in {−5, 0, 5}2. This creates a mixture of nine 2D Gaussian components.

Double well (DW): A common challenge in molecular dynamics is sampling from the stationary
distribution of a Langevin dynamic system. In our case, we consider a d-dimensional double well
potential, characterized by the following (unnormalized) density:

ρ(x) = exp

(
−

m∑
i=1

(x2
i − δ)− 1

2

d∑
i=m+1

x2
i

)
.

Here, m ∈ N represents the number of double wells, and δ ∈ (0,∞) is a separation parameter
controlling the distance between the wells. The first m dimensions contribute to the double well
potential, while the remaining dimensions follow a simple Gaussian form.

Rings: The rings distribution is a two-dimensional mixture of concentric rings centered at the origin,
with each ring having a different radius. Each ring is modeled as a distribution concentrated around
a specific radius with some Gaussian perturbation. The density is

ρ(x) = exp

(
−min

i

1

2σ2
(∥x∥ − ri)

2

)
where ri is the radius of the i-th ring, σ is a parameter controlling the scale of the Gaussian pertur-
bation around each ring.

Image: We use a normalized grayscale image to create a two-dimensional probability density, fol-
lowing the setup from Wu et al. (2020).

5.2 DISCUSSION

Figure 3 presents a qualitative comparison of samples generated by CS, DIS, and DDS using one,
two, and three steps, across the GMM, rings, and image benchmarks.

One critical observation from Figure 3 is the clear limitation of DIS and DDS in generating high-
quality samples with a limited number of network function evaluations (NFEs), likely due to the
large step sizes in Euler-Maruyama integration, which introduce significant approximation errors.
As a result, DIS and DDS samples display poor mode coverage and lack the sharpness compared to
the ground truth distribution. Even with a single step, CS is able to capture the modes of the target
distribution, delivering sharper distributions and more accurate samples.

Figure 4 displays the Sinkhorn distance (Cuturi, 2013) between generated samples and the ground
truth distribution as a function of NFEs, ranging from 1 to 10. This plot corroborates the findings
from Figure 3, clearly demonstrating the superior performance of CS in both single-step and few-
step generation tasks. DDS and DIS exhibit significantly higher Sinkhorn distances, indicating that
these methods struggle to accurately approximate the target distribution when sampling with few
steps.

As the NFEs increase, the performance gap between DDS, DIS, and consistency samplers narrows,
suggesting that the advantage of CS diminishes when enough steps are taken. However, this im-
provement in DDS and DIS comes at the cost of increased computational resources, as they require
more NFEs to match the performance that CS achieves with fewer steps.

Table 1 presents the Sinkhorn distances between samples from the ground truth distributions and
the samples generated by DDS, DIS, and their CS counterparts. At NFE=200, both DDS and
DIS achieve low Sinkhorn distances across all datasets, which aligns with prior findings that given
enough function evaluations, both methods can closely match the ground truth distribution.
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Figure 4: Sinkhorn distanceW2
γ as a function of the number of network function evaluations (NFE)

for 2 dimensional tasks. The consistency samplers (CS) achieve lower Sinkhorn distances compared
to DDS and DIS in the few-step sampling regime

Table 1: Sinkhorn distances W2
γ between samples from the ground truth distribution and samples

from DDS, DIS, and their respective distilled consistency samplers (CS), with varying number of
network function evaluations (NFE). CS achieves results comparable to 200-step DIS and DDS
while being 100 to 200 times faster.

Method NFE GMM Rings Image DW shift (d=2) DW (d=100)
DDS 200 0.0205 0.0180 0.0162 0.0012 10.9340
DIS 200 0.0206 0.0178 0.0163 0.0012 10.9658

DDS 2 0.4012 0.5556 2.9546 0.4811 30.5513
DIS 2 0.3939 0.5827 2.0533 0.5388 20.7306
CS DDS 2 0.0347 0.0545 0.0240 0.0013 9.4402
CS DIS 2 0.0266 0.0593 0.0246 0.0014 10.5446

DDS 1 0.7494 1.8943 2.7958 2.5925 48.8016
DIS 1 0.7027 1.7942 2.6746 2.5026 34.0449
CS DDS 1 0.0593 0.0573 0.0239 0.0012 9.3640
CS DIS 1 0.0331 0.0641 0.0244 0.0017 12.8663

However, at NFE=1 and NFE=2, the performance of DDS and DIS degrades considerably, with
much higher Sinkhorn distances, especially for more complex datasets like rings and image. CS con-
sistently outperforms both DDS and DIS in these few-step generation tasks, exhibiting significantly
lower Sinkhorn distances. This is particularly evident in tasks like the double well distribution,
where CS is as good as its 200-steps teacher with only one or two steps.

In Table 2, we measure the Sinkhorn distance between samples generated by the pre-trained
diffusion-based samplers and their respective distillate consistency samplers. This experiment pro-
vides support for our theoretical analysis, demonstrating that the learned consistency sampler repli-
cates the behavior of the teacher model.

Table 2: Sinkhorn distances between samples generated by the 200-step pre-trained diffusion-based
samplers (DDS, DIS) and their corresponding 2-step distillated consistency samplers. The distilled
consistency samplers closely replicate the performance of the teachers.

Method GMM DW Rings Image
CS vs DDS 0.05725 0.00118 0.05747 0.02088
CS vs DIS 0.03310 0.00147 0.06585 0.02132

In summary, the results presented in both figures and Table 1 confirm that the consistency sampler
enables faster generation than existing diffusion-based samplers. Notably, CS achieves one-step
sampling, eliminating the need for iterative sampling.
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6 CONCLUSION

In this work, we introduce consistency samplers, a new class of samplers designed for sampling
from unnormalized distributions. Unlike most existing methods that require multiple iterative up-
dates, consistency samplers can generate high-quality samples in one step. Consistency samplers
amortize sampling from a pre-trained diffusion-based model by learning a direct mapping from any
point along the sampling trajectory to the target distribution. This mapping enables one-step sam-
pling from the target distribution, while retaining the flexibility to refine samples through multiple
denoising and noise addition steps, offering to trade computational cost for accuracy.

A key advantage of our method is that it does not require access to pre-collected datasets. Rather
than fully integrating the diffusion trajectories of a pre-trained diffusion-based sampler, our method
learns the single-step mapping directly from intermediate noisy samples, reducing the training time.

Our experiments demonstrate that consistency samplers perform well in both one-step and few-step
sampling tasks, achieving results comparable to diffusion-based samplers that require hundreds of
steps, while maintaining good sample quality.

Obtaining samples under limited computational budgets remains a significant challenge. We see
consistency samplers as a step toward more practical and efficient sampling, accelerating the appli-
cation of sampling methods in large-scale and resource-constrained machine learning and scientific
problems.

7 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and confirm that our experiments use only public datasets.
While our results are primarily based on synthetic data, we recognize the potential for misuse and
encourage responsible application of our methods on real-world data. We welcome any related
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A DETAILS ABOUT DIFFUSION-BASED SAMPLERS

In this section, we provide detailed derivations of the training objectives for the denoising diffusion
sampler (DDS) (Vargas et al., 2023) and the time-reversed diffusion sampler (DIS) (Berner et al.,
2024). This presentation closely follows the original formulations of DDS and DIS, as well as the
insightful unification presented by Richter & Berner (2024), which frames both approaches under the
unified perspective of measures on path spaces and time-reversals of controlled stochastic processes.

A.1 DENOISING DIFFUSION SAMPLER

The denoising diffusion sampler (DDS), introduced by Vargas et al. (2023), adopts the settings
µ(xt, t) = −βtxt and σ(t) = σ

√
2βt, which correspond to the variance preserving (VP) SDE as

described by Song et al. (2021b). In DDS, the control function uθ = σ(t)sθ is used, where sθ is a
neural network with parameters θ, designed to approximate the intractable score function in Eq. (2).

The objective of DDS is to solve the problem described by Eq. (3), where the divergence measure D
is the KL divergence. By applying the chain rule for the KL divergence, we can express the objective
as:

DKL (Pθ∥Pyv ) = DKL (pprior∥pyT
) + Ex0

[Pθ(·|x0)∥Pyv (·|x0)]

where Pθ denotes the path space measure of xuθ .

Next, using Girsanov’s theorem, the KL divergence over the path measures can be rewritten as:

DKL (Pθ∥Pyv ) = DKL (pprior∥pyT
) + σ2EPθ

[∫ T

0

βt∥sθ(xt, t)−∇ log pyT−t
(xt)∥2 dt

]
. (9)

However, the expectation in Eq. (9) still contains the intractable score function, making direct
optimization difficult.

To address this issue, DDS introduces a reference inference process yref that follows the same SDE,
but initialized from a Gaussian distribution pyref

0
= N (0, σ2I) instead of the target distribution

ptarget. This ensures that all marginals satisfy pyref
t
= N (0, σ2I), and in particular ∇ log pyref

t
(x) =

−x/σ2.

This allows the KL divergence between the path measures to be rewritten as:

DKL (Pθ∥Pyv ) = DKL (Pθ∥Pref) + Ex0

[
log

pyref
0
(x0)

py0(x0)

]
,

Where Pref denotes the path measure of yref.

The Radon-Nikodym derivative allows us to express the difference between the process Pθ and the
reference process Pref as:

log
dPθ

dPref
= σ2

∫ T

0

βt∥sθ(xt, t) + x/σ2∥2 dt+ σ

∫ T

0

√
2βt

(
sθ(xt, t) + x/σ2

)⊤
dw.

By combining the above expressions for the KL divergence and the Radon-Nikodym derivative, we
arrive at the following DDS loss function:

LDDS = EPθ

[
σ2

∫ T

0

βt∥sθ(xt, t) + x/σ2∥2 dt+ log
N (x0; 0, σ

2I)

ρ(x0)

]
(10)

This final objective enables DDS to avoid relying on the intractable score function by using the
reference process, simplifying the optimization problem.

A.2 TIME-REVERSED DIFFUSION SAMPLER

Using the representation of the Radon-Nikodym derivative, the time-reversed diffusion sampler
(Berner et al., 2024) directly considers minimizing the divergence DKL (Pxu∥Pyv ). In practice,
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the loss for DIS is formulated as:

LDIS = (Pxu∥Pyv ) = E

[∫ T

0

(
1

2
∥u(xu

t , t)∥2 − divµ(xu
t , t)

)
dt+ log

pprior(x0)

ρ(xu
T )

]
. (11)

See the verification Theorem 2.4 in Berner et al. (2024) and Proposition 2.3 on the likelihood of path
measures in Richter & Berner (2024).

B PROOF OF THEOREM 1

Theorem 1. Let fθ(xt, t) be a consistency sampler parameterized by θ, and let f(xt, t;u) denote
the consistency function of the PF ODE defined by the control u. Assume that fθ satisfies a Lipschitz
condition with constant L > 0, such that for all t ∈ [0, T ] and for all xt,yt,

∥fθ(xt, t)− fθ(yt, t)∥2 ≤ L∥xt − yt∥2.

Additionally, assume that for each step n ∈ {1, 2, . . . , N − 1}, the ODE solver called at tn has a
local error bounded by O((tn+1 − tn)

p+1) for some p ≥ 1.

If, additionally, L(θ,θ;u) = 0, then:

sup
n,xtn

∥fθ(xtn , tn)− f(xtn , tn;u)∥2 = O((∆t)p),

where ∆t := maxn∈{1,2,...,N−1} |tn+1 − tn|.

Proof. The proof is similar to the one presented by Song et al. (2023), with the key difference that
we must account for the global integration error introduced by the ODE solver.

If the ODE solver, when called at tn+1, has a local error uniformly bounded by O((tn− tn−1)
p+1),

then the cumulative error across all steps is approximately the sum of n + 1 local errors and is
bounded by O((∆t)p).

We are interested in en, the error between the learned consistency sampler and the consistency
function of the PF ODE defined by the control u at xtn ∼ ptn(xtn),

en := fθ(xtn , tn)− f(xtn , tn;u).

If L(θ,θ;u) = 0, we deduce that

λ(tn)d(fθ(x̂
u
tn+1

, tn+1), fθ(x̂
u
tn , tn)) = 0.

Since λ(tn) > 0, this implies:

fθ(x̂
u
tn+1

, tn+1) = fθ(x̂
u
tn , tn). (12)

We can derive a recurrence relation for en:

en
(i)
= fθ(xtn , tn)− fθ(x̂

u
tn , tn) + fθ(x̂

u
tn , tn)− f(xtn+1

, tn+1;u)

(ii)
= fθ(xtn , tn)− fθ(x̂

u
tn , tn) + fθ(x̂

u
tn+1

, tn+1)− f(xtn+1
, tn+1;u)

= fθ(xtn , tn)− fθ(x̂
u
tn , tn) + fθ(x̂

u
tn+1

, tn+1)− fθ(xtn+1
, tn+1)

+ fθ(xtn+1 , tn+1)− f(xtn+1 , tn+1;u)

= fθ(xtn , tn)− fθ(x̂
u
tn , tn) + fθ(x̂

u
tn+1

, tn+1)− fθ(xtn+1
, tn+1) + en+1

. . .

(iii)
= fθ(xtn , tn)− fθ(x̂

u
tn , tn) + fθ(xT , T )− fθ(x̂

u
T , T ) + eT .

Here, step (i) follows from the definition of the consistency function, step (ii) is due to Eq. (12),
and step (iii) leverages the telescoping nature of the sum.
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Furthermore, since fθ is parameterized such that fθ(xT , T ) = xT , we have

eT = fθ(xT , T )− f(xT , T ;u)

= xT − xT

= 0.

Finally, given that fθ is Lipschitz and considering the bound on the global error of the ODE solver:

∥en∥2 ≤ ∥eT ∥2 + L∥xtn − x̂u
tn∥2 + L∥xT − x̂u

T ∥2 = O((∆t)p).
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