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1 Derivation of Variational Lower Bound

To learn a probabilistic model pθ(g|x) parameterized by θ, we optimize it by maximizing its
variational lower bound. Here g denotes grasp configuration, and x is a partially observed
point cloud. Assume that the real posterior pθ(z|x, g) is defined within the deep lantent vari-
ation model framework according to the Bayes formula: pθ(z|x, g) = pθ(g|z,x)pθ(z|x)

pθ(g|x) , where
pθ(g|x) =

∫
pθ(g|z, x)pθ(z|x)dz is the so-called model evidence. Based on Jensen Inequality, we

can derive the variational lower bound with an approximate posterior of the latent variable qφ(z|x,g)
step by step with the following:

log pθ(g|x) = log

∫
pθ(g, z|x)dz

= log

∫
pθ(g|z,x)p(z|x)dz

= log

∫
pθ(g|z,x)

qφ(z|x,g)
qφ(z|x,g)

pθ(z|x)dz

≥
∫
qφ(z|x,g) log [

pθ(g|z,x)
qφ(z|x,g)

pθ(z|x)]dz

=

∫
qφ(z|x,g) log pθ(g|z,x)dz−∫
qφ(z|x,g) log

qφ(z|x,g)
pθ(z|x)

dz

= Eqφ(z|x,g)[log pθ(g|z,x)]−KL(qφ(z|x,g)||pθ(z|x)).

(1)

Here pθ(g|z,x) represents our Grasp Flow, qφ(z|x,g) for Variational Network, and pθ(z|x) for
Prior Flow. In practice, we add a hyper-parameter β for the second KL-divergence term to control
the trade-off between the information stored in the latent and the regularization induced by the
structure of the prior. Concisely speaking, a high β will enable the model learn more shape-aware
lantents but may be less informative for grasp prediction and vice versus. Therefore, a proper value
is to be tuned for achieving a balance according to the specific task.

2 Data Generation Pipeline

2.1 Training, Evaluation and Testing Objects

For the data generation, we collect 89 graspable objects filtered from KIT datasets according to
their graspability. We split 89 KIT [1] objects into a training set containing 77 objects, shown in
Figure 1, and a test set of 12 objects as “similar” objects (Baking Soda, Bath Detergent, Broccoli
Soup, Cough Drops, Curry, Fizzy Tablets, Instant Sauce, Nut Candy, Potato Dumpling, Spray Flask,
Tomato Soup, Yellow SaltCube). We further include 9 YCB objects with distinct geometric shapes
to the training set as “novel” objects (Bowl, Baseball, Power Drill, Plastic Pear, Plastic Banana,
Mug, Clamp, Toy Airplane parts), illustrated in Figure 2.

2.2 Heuristic grasp planner

We derive the heuristic grasp planner from [2]. Here is a more detailed explanation. The heuristic
grasp planner samples the grasp poses based on the normal of each object point cloud. We extend
the target point cloud in the normal direction with a random value between 4.5 and 11.5 cm. Then,
we add translation noise of±1cm in 3D space. To improve the data generation efficiency, the y-axis
of the palm pose is aligned with the more extended object side and oriented upwards. Afterward, we
add rotation noise of ±0.7 rad around the x-direction and ±0.35 rad around y- and z- directions.

To efficiently sample the 15-dof joint configuration, we apply eigengrasps from Ciocarlie [3] to
sample a valuable subspace. Ciocarlie’s work was inspired by the Neuroscience community, which
showed that the joint DoFs of human hands during real-world grasping trials were primarily not
operating independently but coordinated. More than 80 % of the variation in the data could be ex-
plained by the two first components of the principal component analysis (PCA). These components
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Figure 1: The training objects from KIT dataset for data generation

Figure 2: The testing objects of 12 KIT dataset as “similar” and 9 YCB objects as “novel”.
were termed eigengrasps, as almost any grasp joint configuration can be synthesized as a linear
combination of a few eigengrasps. Thus, we design four eigengrasps e1, e2, e3, e4 ∈ R15.

θ =

4∑
i=1

kiei (2)

The full joint configuration θ is computed through sampling the coefficients ki ∈ [0, 1].
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2.3 Grasp data generation pipeline

The data generation pipeline is similar with [2]. First, we randomly spawn an object in front of
the robot. Then, a point cloud is recorded by the simulated camera. Afterward, we generate grasp
samples based on heuristic grasp planner explained in Section 2.2, which are further filtered by
Moveit in terms of reachability and collision. The robot then will execute the sampled grasp and
attempt to lift it, where the grasp success is labeled automatically. This process is repeated for all
objects with multiple random poses.

Since the grasp distribution is only object-dependent, the model should predict the same grasp dis-
tribution given different partial views of the same object. Therefore, we apply a data augmentation
strategy by randomly spawning every object with 50 different initial poses to increase the dataset
capacity by 50 times. In total, we generated a dataset of around 180k grasps, of which 30k resulted
in success.

2.4 Experiment setup

Figure 3 shows our simulation setup. We use a Panda robot model with the DLR-HIT II hand as the
end-effector. A simulated Realsense D415 camera is used to capture the point cloud. Afterward, the
scene point cloud is captured by a Realsense D415 camera and then segmented with plane removal
from RANSAC [4] to obtain the segmented object point cloud. The Basis Point Set (BPS)-encoded
point cloud, after being segmented with plane removal, is fed as input to different models to grasp
synthesis and ranking. Grasping success is defined as the ability for the DLR-HIT Hand II to lift the
object 20 cm above its resting position without slippage.

The top grasp with the highest score is subsequently selected for execution. We conduct up to
20 trials per object in our simulation experiments. To facilitate a fair comparison for the grasp
generator without a grasp evaluator, we evaluate the grasp samplers in simulation by executing the
top 20 grasps instead of the single top-most one.

We choose the 12 test objects from the KIT dataset for the experiments in simulation. Each test
object is spawned in simulation 20 times in random positions and random yaw-angle orientations.
After recording each point cloud, we segment the object from the ground plane via RANSAC [4].
We combine the segmented object point cloud with random samples from the base distribution of
FFHFlow model, namely a univariate Gaussian {z}100 ∼ N (0, I) to generate 100 grasps per object.
Afterward, Grasp Evaluator will rank all the generated grasps with predicted success probability.
The grasp with the highest score will be executed. Therefore, we include grasp failures, which
happen during the grasp execution phase, but exclude the failures where the robot collides with the
object on the way to reach the grasp pose.

Figure 3: The simulation setup in Gazebo and the real world setup

The real-world setup is also demonstrated in Figure 3. For each method, we perform 80 grasps
with 8 YCB objects [5] in the real world with a free workspace, and 20 grasps with 4 objects in
a constrained workspace. Since our method is robot-independent, we choose Diana’s robot arm,
which is kinematically similar to the Franka robot, for real-world experiments.
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2.5 Implementation Details

We first pre-process the input point cloud with BPS encoding [6], which is reported to work similarly
well with PointNet++ [7] but with less compute. This reduces the overall computation and decrease
the inference time. Afterwards the point cloud features are extracted with fully-connected residual
block (FC Resblock) and are further conditioned on the flow model. We use a similar architecture for
the point cloud feature extractor, variational inference network, and grasp evaluator, i.e., a network
with multiple fully-connected residual blocks. We use skip connections from each input to each
fully-connected residual block (FC ResBlock) or fully-connected (FC) layer. The core building
block of both models is the FC ResBlock, which consists of two parallel paths from input to output.
One path consists of a single FC layer, the other path has two FC layers. Each is followed by a layer
of batchnorm (BN).

Based on the normflows package [8], we implement the Grasp Flow (for both FFHFlow-cnf and
FFHFlow-lvm) and Prior Flow (only in FFHFlow-lvm) with an 8-layered conditional Glow [9]
where each layer has a 4-layered Multi-Layer Perceptron (MLP) for predicting the parameters of
the affine operation. Both models are trained with a learning rate of 1e−4 and a mini-batch size of
64 for 16 epochs or 20k iterations. The objective in Equation (1) is then optimized with a linearly
increased β from 1e−7 to 1e−1 in each iteration based on the AdamW optimizer [10] for FFHFlow-
lvm. We also use Monte Carlo sampling to approximate the expectation operation in Equation (1).
The number of samples is empirically set to 1. Moreover, during evaluation, we apply a positive
offset of 0.2 rad on predicted joint configurations to ensure a more stable grasp.

2.6 Metric: Coverage

Coverage (Cov): It measures the fraction of grasps in the ground truth grasp set Ggt that is matched
to at least one grasp in the generated set Ggen:

Cov(Ggen,Ggt) =
|{argminGgt d(ggen,ggt)|ggen ∈ Ggen}|

|Ggt|
(3)

For each grasp in the generated set Ggen, its nearest neighbor based on L2 distance in the ground
truth set Ggt is marked as a match. Coverage (Cov) can be used to quantify the diversity of the
generated grasp set with the ground truth set as reference.

3 Additional Experimental Results

Table 1: Results Comparison on Cov and Run-time

Methods (w/o eval) Cov ↑ Run-time ↓

FFHNet [2] 22.5%± 1.6% 30ms
FFHNet-prior 24.4%± 1.0% 31ms
FFHFlow-cnf 30.0%± 0.2% 70ms
FFHFlow-lvm 30.3%± 0.3% 130ms

FFHFlow-lvm-light 29.9%± 0.4% 60ms

3.1 Per-object Simulation and Real-world Results

We also include all the per-object simulation results in Table. 2 and Table. 3. We also include per-
object results for real-world experiment with unconfined workspace in Table. 4 and with confined
workspace in Table.5. Note that in Table.4, Chips Can have no results since they are too large for
our hand to grasp.
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Table 2: Per-object Success Rate Comparison for Similar Objects in Simulation

Objects

Methods Baking
Soda

Bath
Detergent

Broccoli
Soup

Cough
Drops Curry Fizzy

Tablets
Instant
Sauce

Nut
Candy

Potato
Dumpling

Spray
Flask

Tomato
Soup

Yellow
SaltCube

Average
Succ Rate

Heuristic 6/20 2/20 4/20 4/20 8/20 8/20 2/20 4/20 3/20 2/20 3/20 4/20 20.9%

cVAE [2] 19/20 19/20 19/20 18/20 19/20 20/20 15/20 12/20 16/20 19/20 13/20 14/20 84.6%

GAN [11] 16/20 15/20 17/19 18/19 19/20 15/19 18/20 14/20 13/20 19/19 20/20 19/20 86.0%

Diffusion [12] 19/20 14/20 16/20 18/19 18/20 19/20 16/20 17/20 20/20 17/19 19/20 18/20 88.2%

FFHFlow-cnf 19/20 18/20 17/20 17/20 17/20 20/20 15/20 15/20 17/20 18/20 15/20 17/20 85.4%

FFHFlow-lvm 20/20 19/20 19/20 19/20 19/20 20/20 20/20 18/20 18/20 20/20 17/20 18/20 94.6%

Table 3: Per-object Success Rate Comparison for Novel Objects in Simulation

Objects

Methods Power
Drill Baseball Bowl Mug Pear Banana Extra Large

Clamp
C Toy

Airplane
B Toy

Airplane
Average

Succ Rate

Heuristic 3/20 2/20 4/20 9/20 3/20 3/20 0/20 8/20 0/20 17.8%

cVAE [2] 12/20 16/20 3/10 13/20 12/20 5/20 5/20 19/20 4/20 52.4%

GAN [11] 15/18 17/20 7/12 7/12 14/20 1/20 1/20 11/20 7/20 49.4%

Diffusion [12] 12/19 15/20 7/17 13/20 16/20 10/20 0/20 15/20 3/20 51.7%

FFHFlow-cnf 13/20 14/20 2/17 15/20 8/20 1/20 1/20 9/20 2/20 36.7%

FFHFlow-lvm 13/18 13/20 2/11 14/20 18/20 6/20 3/20 15/20 5/20 52.7%

3.2 Uncertainty-aware Grasp Evaluation

Uncertainty Quantification: For the experiment conducted for Figure 4, we collect an evaluation
set and generate 100 grasp candidates for each partial view. For each grasp, we obtain the likelihoods
of Grasp Flow and Prior Flow, as well as the evaluator scores. To assess the quality of the generated
grasps, we utilize the Flexible Collision Library (FCL) to predict collisions for each grasp and
Gazebo to evaluate the grasp stability of the remaining non-collided grasps. The x-axis represents
the percentage of top-ranked values retained, ranging from 100% to 10%, while the y-axis shows
the failure rate.

In Figure 4, we observe a clear negative correlation between the grasp evaluator score and the failure
rate due to collision. In contrast, Prior Flow and Grasp Flow demonstrate the ability to reduce colli-
sion. among which Prior Flow exhibits the strongest correlation with the collision rate, highlighting
its potential for capturing shape awareness. In the bottom plot, both the evaluator score and Grasp
Flow likelihoods exhibit a strong correlation with grasp stability. The grasp evaluator outperforms
Grasp Flow as it was specifically trained to distinguish positive grasps from negative ones. However,
the Prior Flow, representing the object-level shape uncertainty, is less relevant to grasp stability.

Table 6: ε in Introspective Grasp Evaluation
Additive

Coefficients (ε) 0.0 0.01 0.1 0.5 1.0

Similar 90.5% 94.6% 90.6% 78.6% 63.0%
Novel 50.9% 52.7% 50.9% 34.3% 25.3%

Ablation Study: We conduct an ablation study
presented in Table 6 to understand the trade-off
between increasing grasp quality (grasp evalua-
tor) and lowering view-level shape uncertainty
(Grasp Flow), namely the optimal value of the
additive coefficient (ε). By increasing the im-
pact of lowering ε, we can see the performance
first increases and drops. The optimal value is 0.01, indicating the major contribution to grasp
success from the grasp evaluator.

Table 4: Per-object Success Rate Comparison for Objects in Real-World Unconfined Workspace

Objects

Methods Sugar
Box Apple Tomate

Soup Can
Pudding

Box Mug Mustard
Bottle

Chips
Can Baseball Foam

Brick
Average

Succ Rate

cVAE [2] 9/10 2/10 6/10 10/10 3/10 6/10 - 4/10 10/10 62.5%

FFHFlow-cnf 4/10 4/10 8/10 9/10 7/10 4/10 - 5/10 10/10 63.75%

FFHFlow-lvm 8/10 6/10 8/10 10/10 6/10 7/10 - 8/10 9/10 77.5%
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Table 5: Per-object Success Rate Comparison for Objects in Real-World Confined Workspace

Objects

Methods Foam
Brick

Pudding
Box Baseball

Tomato
Soup
Can

Average
Succ Rate

cVAE [2] 0/5 0/5 0/5 2/5 10.0%

FFHFlow-lvm 4/5 3/5 3/5 3/5 65.0%

Figure 4: Number of collided (Top) and unstable (bottom) grasps filtered with an increasing
threshold (higher the better). Likelihoods from Grasp Flow (Blue) achieves a more optimal balance
between grasp stability and collision.

3.3 Point Cloud Latent Feature Visualization

In this subsection, we compare the point cloud latent feature visualization from three models, namely
FFHFlow-cnf, FFHFlow-lvm and FFHNet [2] in Figure 5.

Though FFHFlow-cnf has achieved encouraging improvements in terms of diversity and accu-
racy when compared to the Conditional Variational Autoencoder(cVAE)-based approach, we found
FFHFlow-cnf less generalizable with limited performance gain. We attribute this problem to the
inadequate expressivity of the latent feature, especially when the model needs to understand the
complicated relationships between the grasps and the partially observed point clouds of different
objects. For example, from our empirical observation, the latent features are assumed to be capa-
ble of extracting two-level hierarchical grasp-relevant information such as object shape or category
from the partially seen object point clouds. (1) object level summarizes the grasp-related clues of
different objects, such as a box and a bottle; (2) instance level subsumes the grasp-associated details
of an instance of the same object but captured from different viewpoints.

We note that for FFHFlow-cnf, we generate the feature visualization with different random seeds
to the one in the paper. Nevertheless, both exhibit similar behaviors, further confirming the under-
performance of FFHFlow-cnf in extracting geometrically meaningful features.

3.4 Experiments of Grasping in Cluttered Scenarios

A diverse grasp generator further enables its application for grasping objects in clutter. We propose
our grasping pipeline for cluttered unknown objects leveraging Large Language Models (LLMs)
and Vision Language Models (VLMs). We first prompt ChatGPT 4o [13] to obtain object names
shown on the table and further feed these namse to Grounded SAM [14] to segment out objects. The
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(a) FFHFlow-lvm

(b) FFHFlow-cnf (c) cVAE

Figure 5: Point Cloud Feature Visualization based on t-SNE from (a) FFHFlow-lvm, (b)
FFHFlow-cnf and cVAE in [2]. We illustrate t-SNE features on all 12 KIT test objects used in
the simulation. The objects in (a) with similar shapes are closer on the feature space, especially the
four boxes on the left bottom part, demonstrating the geometric meaningfulness of the latent fea-
tures. The cVAE-based approach depicts the least meaningful feature visualization, where the latent
samples are drawn from an input-independent prior.
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nearest objects will be chosen to be grasped first. We randomly add one obstacle to each different
scene to increase the clutterness, to further mimic the household scenarios, show in Figure 6. We
convert partial point cloud to meshes and further filter out collisions between environment and the
robotic hand using Flexible Collision Library (FCL) [15].

Figure 6: The cluttered scenes contain four unknown objects with additionally unknown obstacles,
namely the flower vase and the drawer.
We conducted the grasping experiment for 4 cluttered scenes, each with 4 different objects. We
evaluate the cluttered grasping performance with success rate (SR) and clearance rate (CR) in
manuscript. The success rate is measured by successful grasps out of all grasp attempts, and the
clearance rate is measured by the number of times robots can clear the scene.

FFHFlow-lvm outperforms FFHNet [2] with 7.8% in terms of success rate with a better clearance
rate. We observe several failures from FFHNet [2] where a less diverse grasp generator fails to
generate valid grasps for occluded objects, especially the blue bowl under the flower vase and the
foam brick close to the drill, where the top grasps will be filtered by collision. We further illustrate
the influence of diverse grasp distribution in cluttered scenes in Figure 7.

3.5 Visualization of Predicted Grasp Palm Poses and Joints

To show the enhanced diversity, we first compare the grasp palm pose distribution of different ap-
proaches shown in Figure 14. By comparing horizontally, we can inspect that our flow-based vari-
ational approach, FFHFlow-lvm can model the target multi-modal distribution with higher fidelity.
Meanwhile, FFHFlow-cnf achieves similar results as FFHFlow-lvm, especially for box-like objects,
but still generates relatively flattened top grasps for cylinder-like objects, such as 2,3,5 rows in 14.
In contrast, the cVAE-based approach can only predict less diverse grasps due to the mode-collapse
problem.

On the other hand, we also visualized the grasps of the full hand, including both the palm poses and
hand joint configurations for grasping in clutter in Figure 8 and in Figure 10, single objects in the
real-world in Figure 9, from FFHFlow-lvm. By inspecting these figures, we can see the dexterity in
the predicted hand joints. Moreover, when comparing the grasps from FFHFlow-lvm and FFHNet
in Figure 8, we can see the diversity of the hand, including the palm and the finger joints, are greater
for FFHFlow-lvm.

3.6 Failure analysis for Simulation and Real-world Experiments

In the simulation experiment, as shown in Figure 12, FFHFlow-lvm causes 2 failures (15.4%) from
unstable grasp palm pose, 9 failures (69.2%) from wrong joint configurations, and 2 failures (15.4%)
from collisions between the hand and the target object. Failures resulting from joint configurations
depict grasps where fingers often are not close enough to apply sufficient force in simulation. This
kind of failure normally doesn’t exist in real-world experiments. Because the hand impedance con-
troller tends to close the finger more if it’s not in contact. However, since this controller cannot be
simulated, we replace it with a positional controller. Meanwhile, FFHFlow-cnf causes 6 failures
from grasp poses, 8 from joint configurations, and 4 from collision. We observe that FFHFlow-
cnf tends to fail more often because of wrong-predicted grasp poses and collisions. This reason
holds for the baseline FFHNet [2] as well (13 failures from grasp poses, 13 from joint configura-
tions, and 7 from collision).
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predicted
grasps

after 
collision
filtering

predicted
grasps

after 
collision
filtering

no grasp left

FFHNet FFHFlow

Figure 7: The grasp distribution generated by FFHNet [2] and FFHFlow-lvm before and after
collision filtering. A less diverse grasp distribution restricts its application to cluttered scenes.

In the real-world experiments, by analyzing the errors in Figure 11, when compared to FFHFlow-
cnf and FFHNet [2], FFHFlow-lvm has much fewer failures from unstable grasp pose and a similar
number of those from collisions. This trend verifies the superior generalization ability of FFHFlow-
lvm. On the other hand, for the objects with a low success rate, FFHFlow-cnf tends to grasp the
corner from a tilted angle instead of the body for the sugar box (40%). FFHNet [2] failed a lot for
metal mugs (30%) due to its bias toward top grasps that are harder than side grasps. Apple (30% on
average) has the lowest success rate for all models because of its slippery surface, which is often the
reason for unstable grasp pose.

3.7 Ablation Study for FFHFlow-cnf

To conduct a fair comparison between FFHFlow-cnf and FFHFlow-lvm , we increase the size of
FFHFlow-cnf, namely doubling the layers of the flow. In Table 7, even with a two-times larger size,
we can only observe slight improvement, which highlights the inherent limitation on the expressive-
ness in the latent space of FFHFlow-cnf.
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FFHFlow FFHNet

Figure 8: Comparion on visualization of top 5 scored grasps in the cluttered scene in real-world
experiments. FFHFlow demonstrates the ability to generate grasps with better diversity.
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Figure 9: Exemplar screenshots of grasps in real-world experiments.

Figure 10: Exemplar grasp visualization in real-world experiments.

12



FFHFlow-lvm

FFHFlow-cnf

FFHNet

0% 25% 50% 75%

Unstable grasp pose Collision Successful grasps

Figure 11: Failure Analysis for the Real-world Experiment

FFHFlow-lvm

FFHFlow-cnf

FFHNet

0% 25% 50% 75% 100%

Unstable grasp pose Wrong joint conf Collision Successful grasps

Figure 12: Failure Analysis for the Simulation Experiment

Table 7: Ablation Study for FFHFlow-cnf

Objects

Methods (size) Baking
Soda

Bath
Detergent

Broccoli
Soup

Cough
Drops Curry Fizzy

Tablets
Instant
Sauce

Nut
Candy

Potato
Dumpling

Spray
Flask

Tomato
Soup

Yellow
SaltCube

Average
Succ Rate

FFHFlow-cnf (8 layers) 95.0% 100.0% 95.0% 90.0% 100.0% 80.0% 95.0% 85.0% 100.0% 100.0% 70.0% 70.0% 92.5%

FFHFlow-cnf (16 layers) 95.0% 90.0% 95.0% 95.0% 100.0% 95.0% 90.0% 90.0% 95.0% 95.0% 90.0% 85.0% 92.9%

3.8 Ablation Study of FFHFlow-lvm

The question of ”What are the critical factors in the proposed models that influence the performance
most?” is of particular interest for better understanding the proposed models, in particular FFHFlow-
lvm for its complexity. From the results of an ablation study in Table 8, we can draw the messages
that positional encoding pre-processing, adding conditional base distribution only to grasp flow
generator can help alleviate over-fitting and improve the generalization performance. Here positional
encoding is applied on Euler angles (3D) to obtain 60D, compared to the baseline of using 6D
rotation representation [16], originally already used in FFHNet [2].

The potential reason for the benefit of positional encoding can be the better capability of expressing
high-frequency information from low-dimensional data such as 3-d angel vectors in our case [17].
Moreover, the size ratio of two flows in the model seems to influence the training stability. When the
model has two different number of layers assigned to the grasp and prior flow, the coverage is much
lower and the simulation evaluation failed due to some feasible predicted values from the model.

Evaluating Predicted Finger Joints To investigate how much the predicted finger joints matter,
we conduct an ablation study on comparing the success rate of grasping with and without the pre-
dicted joints in simulation. In case of grasping without predicted joints, we set the corresponding
joints with 0.2 rad to approximate a power grasp for each object. In Table 9, we can observe a clear
drop when grasping without the predicted joints for both methods, confirming their positive effects
for precise grasp synthesis. Moreover, the increase brought by FFHFlow-lvm (9.6%) is significantly
higher than that of the cVAE approach [2] (1.6%). Such improvement can demonstrate the overall
benefits of our proposed models for not only the predicted palm poses but also the predicted joints.
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Table 8: Ablation study of FFHFlow-lvm on Cov and Success rate

Ablated Models (w/o eval) Cov ↑ Succ Rate ↑

FFHFlow-lvm 30.2% 94.6%
6D (w/o-positional-encoding) 30.1% 92.3%

both-flows-cond-base 30.4% 89.8%
both-flows-w/o-cond-base 30.7% 88.2%

grasp-flow-4-layers 28.8% -
both-flows-4-layers 30.2% 93.3%

Table 9: Predicted Joints Evaluation

Objects

Methods Baking
Soda

Bath
Detergent

Broccoli
Soup

Cough
Drops Curry Fizzy

Tablets
Instant
Sauce

Nut
Candy

Potato
Dumpling

Spray
Flask

Tomato
Soup

Yellow
SaltCube

Average
Succ Rate

FFHNet [2] w/o Joints 95.0% 95.0% 95.0% 90.0% 95.0% 100.0% 75.0% 60.0% 80.0% 95.0% 65.0% 70.0% 84.6%

FFHNet [2] 90.0% 95.0% 100.0% 95.0% 95.0% 95.0% 100.0% 65.0% 85.0% 90.0% 65.0% 60.0% 86.2%

FFHFlow-lvm w/o Joints 90.0% 70.0% 100.0% 90% 100.0% 90.0% 85.0% 85.0% 85.0% 75.0% 65.0% 85.0% 85.0%

FFHFlow-lvm 95.0% 95.0% 95.0% 100.0% 95.0% 95.0% 100.0% 85.0% 100.0% 90.0% 100.0% 85.0% 94.6%

3.9 Influence of Point Cloud Noises to FFHFlow-lvm

We add random gaussian noise to the point cloud in simulation and feed it to FFHFlow-lvm. The
results in Table 10 demonstrate its negative influence of noises on success rate. We observed a
roughly linear performance drop between 0mm to 5mm and then the performance drops dramatically
from 5mm with 75.3% to 10mm with 29.9%. Given a real world point cloud in Table 10, it’s noise
level is estimated to be between 0 and 1 mm. Therefore we can expect a performance drop of around
3 − 4% given same level of noise from real world, ignoring all other sim2real gap. Other sim2real
gap for point cloud could be missing pixels from physical camera and imperfect segmentation mask.

To better minimize the negative influence of noise or improve the robustness against noise, we could
in principle train the model with the simulated noised point cloud.
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Table 10: Success Rate Drop vs Point Cloud Noise

Gaussian Noise

Standard deviation 0 mm 1mm 2mm 3mm 5mm 10mm

FFHFlow-lvm 94.6% 91.2% 88.3% 83.3% 75.3% 29.9%

(a) Original
point cloud

(b) 1mm noise (c) 2mm noise (d) 3mm noise (e) 5mm noise (f) 10mm noise(g) Real world
point cloud

Figure 13: Visualization of Point Cloud applied with different magnitude of Gaussian Noise.
We apply noise generated from a zero mean and a parameterized standard deviation Gaussian distri-
bution to original point cloud. The added standard deviation is in a range from 1mm till 10mm. We
can see the point cloud gets more fuzzy and almost not recognizable after 5mm. Compared to (g)
real world point cloud, we can estimate its noise level is between 0-1 mm standard deviation.
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(a) cVAE (b) FFHFlow-cnf (c) FFHFlow-lvm (d) Ground truth

Figure 14: Visualization of grasp pose distributions from (a) cVAE in [2], (b) FFHFlow-cnf, and
(c) FFHFlow-lvm and (d) ground truth.
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