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1 Implementation Details

In all of our experiments, the voxel size of the low resolution feature grid Gl and the high resolution
feature grid Gh is set to 0.32 and 0.16, respectively. The voxel size of the color feature grid Gc is the
same as the one in Gh. For the TSDF Gs, we use a resolution that produces a voxel size of 1

64 . All of
the feature vectors in the feature grids have the same dimension d = 32.

All MLP decoders have 5 fully-connected blocks, each of which produces a hidden feature dimension
of 32. For the pre-trained decoder fl and fh, we follow the same process and setting as NICE-
SLAM [21] during pre-training. Note that the input feature vectors of decoder fh consist of the
interpolated feature vectors from Gl and Gh. For the neural function fa, we use an MLP with 6
fully-connected layers, and a Softmax layer that can normalize the output weights α and β.

For experiments on Replica [10], we shoot K = 1000 rays for reconstruction and Kt = 200 rays
for camera tracking from each view. For experiments on ScanNet [1], we use K = 5000 for
reconstruction and Kt = 1000 for camera tracking from each view. During the optimizing process,
the learning rate for optimizing low frequency feature grid Gl is 1e − 1, for optimizing both low
and high frequency feature grid Gl and Gh is 5e − 3, and for optimizing Gl, Gh, and Gc jointly
is 5e − 3. The learning rate for tracking on Replica [10] and ScanNet [1] are set to 1e − 3 and
5e− 3, respectively. The learning rate for color decoder fc and neural function fa are set to 5e− 3
and 5e− 6, respectively. For optimizing scene geometry, we use 60 iterations on Replica [10] and
ScanNet [1]. For optimizing camera tracking, we use 10 iterations and 50 iterations on Replica [10]
and ScanNet [1], respectively.

For experiments in the context of SLAM, we will maintain two TSDF volumes T and Ttemp for the
streaming fusion. After the tracking procedure at time step t, the after-fusion stage first fuses the t-th
depth image into T that has fused all depth images in front using the estimated t-th camera pose.
Then, we make a copy of T and send it to Ttemp. The pre-fusion stage will fuse the t+ 1-th depth
image into Ttemp using the camera pose estimated based on constant speed assumption. After that,
Ttemp will be used in tracking procedure to get an updated t+ 1-th camera pose, with which T can
be updated by fusing the t+ 1-th depth image.

2 More Results

Beyond the average results in our paper, we report more detailed results in Tab. 1 and Tab. 2 on
Replica [10] and ScanNet [1]. We compare with the latest methods on each scene that we used in
evaluations in terms of the same metrics as the previous methods. We can see that our method predicts
more accurate geometry than the latest methods on most of scenes. In Tab. 1, we report our results
with estimated camera poses as “Ours” and also the results with GT camera poses as “Ours*”, where
all compared methods are reported with estimated camera poses except for vMAP [5]. Meanwhile,
we report our methods with GT camera poses in Tab. 2. The comparisons show that our method can
more effectively leverage depth priors to learn neural implicit from RGBD images.
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Table 1: Reconstruction Comparisons on Replica.

room-0 room-1 room-2 office-0 office-1 office-2 office-3 office-4 Avg.

COLMAP [9]

Depth L1 [cm] ↓ - - - - - - - - -
Acc. [cm] ↓ 3.87 27.29 5.41 5.21 12.69 4.28 5.29 5.45 8.69
Comp. [cm] ↓ 4.78 23.90 17.42 12.98 12.35 4.96 16.17 4.41 12.12
Comp. Ratio [< 5 cm%] ↑ 83.08 22.89 64.47 72.59 69.52 81.12 64.38 82.92 67.62

TSDF-Fusion [19]

Depth L1 [cm] ↓ 4.17 6.67 6.60 3.23 4.71 11.59 9.02 6.48 6.56
Acc. [cm] ↓ 1.63 1.49 1.37 1.23 1.02 2.11 2.01 1.65 1.56
Comp. [cm] ↓ 3.78 3.41 3.11 1.92 2.54 3.87 3.77 4.27 3.33
Comp. Ratio [< 5 cm%] ↑ 87.59 88.75 88.87 92.30 89.00 85.21 84.78 84.40 87.61

iMAP [11]

Depth L1 [cm] ↓ 5.70 4.93 6.94 6.43 7.41 14.23 8.68 6.80 7.64
Acc. [cm] ↓ 5.66 5.31 5.64 7.39 11.89 8.12 5.62 5.98 6.95
Comp. [cm] ↓ 5.20 5.16 5.04 4.35 5.00 6.33 5.47 6.10 5.33
Comp. Ratio [< 5 cm%] ↑ 67.67 66.41 69.27 71.97 71.58 58.31 65.95 61.64 66.60

DI-Fusion [4]

Depth L1 [cm] ↓ 6.66 96.82 36.09 7.36 5.05 13.73 11.41 9.55 23.33
Acc. [cm] ↓ 1.79 49.00 26.17 70.56 1.42 2.11 2.11 2.02 19.40
Comp. [cm] ↓ 3.57 39.40 17.35 3.58 2.20 4.83 4.71 5.84 10.19
Comp. Ratio [< 5 cm%] ↑ 87.77 32.01 45.61 87.17 91.85 80.13 78.94 80.21 72.96

NICE-SLAM [21]

Depth L1 [cm] ↓ 2.11 1.68 2.90 1.83 2.46 8.92 5.93 2.38 3.53
Acc. [cm] ↓ 2.73 2.58 2.65 2.26 2.50 3.82 3.50 2.77 2.85
Comp. [cm] ↓ 2.87 2.47 3.00 2.02 2.36 3.57 3.83 3.84 3.00
Comp. Ratio [< 5 cm%] ↑ 90.93 92.80 89.07 94.93 92.61 85.20 82.98 86.14 89.33

Vox-Fusion [16]

Depth L1 [cm] ↓ - - - - - - - - -
Acc. [cm] ↓ 2.53 1.69 3.33 2.20 2.21 2.72 4.16 2.48 2.67
Comp. [cm] ↓ 2.81 2.51 4.03 8.75 7.36 4.519 3.26 3.49 4.55
Comp. Ratio [< 5 cm%] ↑ 91.52 91.34 86.78 81.99 82.03 85.45 87.13 86.53 86.59

DROID-SLAM [12]

Depth L1 [cm] ↓ - - - - - - - - -
Acc. [cm] ↓ 12.18 8.35 3.26 3.01 2.39 5.66 4.49 4.65 5.50
Comp. [cm] ↓ 8.96 6.07 16.01 16.19 16.20 15.56 9.73 9.63 12.29
Comp. Ratio [< 5 cm%] ↑ 60.07 76.20 61.62 64.19 60.63 56.78 61.95 67.51 63.62

NICER-SLAM [20]

Depth L1 [cm] ↓ - - - - - - - - -
Acc. [cm] ↓ 2.53 3.93 3.40 5.49 3.45 4.02 3.34 3.03 3.65
Comp. [cm] ↓ 3.04 4.10 3.42 6.09 4.42 4.29 4.03 3.87 4.16
Comp. Ratio [< 5 cm%] ↑ 88.75 76.61 86.10 65.19 77.84 74.51 82.01 83.98 79.37

Ours

Depth L1 [cm] ↓ 1.44 1.90 2.75 1.43 2.03 7.73 4.81 1.99 3.01
Acc. [cm] ↓ 2.54 2.70 2.25 2.14 2.80 3.58 3.46 2.68 2.77
Comp. [cm] ↓ 2.41 2.26 2.46 1.76 1.94 2.56 2.93 3.27 2.45
Comp. Ratio [< 5 cm%] ↑ 93.22 94.75 93.02 96.04 94.77 91.89 90.17 88.46 92.79

vMAP [5]

Depth L1 [cm] ↓ - - - - - - - - -
Acc. [cm] ↓ 2.77 3.87 1.83 4.82 3.51 3.35 3.19 2.26 3.20
Comp. [cm] ↓ 1.99 1.81 2.00 3.65 2.14 2.45 2.49 2.56 2.39
Comp. Ratio [< 5 cm%] ↑ 97.10 96.59 95.72 87.53 85.08 94.70 93.65 93.56 92.99

Ours*

Depth L1 [cm] ↓ 1.05 0.91 1.54 0.91 1.37 8.21 5.52 1.25 2.60
Acc. [cm] ↓ 2.59 2.27 2.03 2.33 2.56 3.32 3.23 2.42 2.59
Comp. [cm] ↓ 2.41 1.89 2.00 1.49 1.78 2.51 3.08 3.09 2.28
Comp. Ratio [< 5 cm%] ↑ 93.45 94.87 94.51 96.88 94.55 92.10 90.78 89.88 93.38

One thing about the fairness that is worth mentioning in the comparisons is that we follow the SLAM
setting and regard the images as a view sequence and only use images that are in front of the current
view to infer the neural implicit although we know GT camera poses in Tab. 2. While other methods
including UNISURF [8], NeuS [15], VolSDF [17], MonoSDF [18], GO-Surf [13] can use all images
at the same time. The information difference makes our method not able to observe the whole scene
at the same time. But our attentive depth prior alleviates this demerit, which still leads us to produce
better results than the latest methods requiring all images to infer the implicit scene representations.

Additionally, for fair comparisons with MonoSDF [18], we also use GT depth maps to report their
results on ScanNet in Tab. 3 and Fig. 3. However, the improvement from GT depth maps is marginal,
which is still not as good as ours. We did intend to use the estimated depth images to produce our
results. However, we found each estimated depth image used by MonoSDF [18] needs a pair of
scale and shift parameters to get normalized, which aligns the estimated point cloud to the scene
surface. However, the scale and shift parameters are not consistent across different views, which
makes it hard to fuse the estimated depth images into a plausible TSDF, even if using GT camera
poses. Fig. 1 shows that the TSDF fails to represent a coarse structure of the scene, which can not be
used as a depth fusion prior in our method. Meanwhile, compared to FastSurf [6] that directly uses
the TSDF as supervision and can only work in multi- view reconstruction but not SLAM, we report
better results in Tab. 4 and Fig. 4.

We also report visual comparisons with data-driven or hole filling methods such as SG-NN [2] and
Filling Holes in Meshes [7] in Fig. 2 in the rebuttal. SG-NN fails to fill holes in the scene with
ceilings, and [7] produces severe artifacts in empty space due to its limited ability of perceiving the
context.
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Table 2: Reconstruction Comparisons on ScanNet.

Acc ↓ Comp ↓ Chamfer-L1 ↓ Prec ↑ Recall ↑ F-score ↑

scene 0050

COLMAP [9] 0.059 0.174 0.117 0.659 0.491 0.563
UNISURF [8] 0.485 0.102 0.294 0.258 0.432 0.323
NeuS [15] 0.130 0.115 0.123 0.441 0.406 0.423
VolSDF [17] 0.092 0.079 0.086 0.512 0.544 0.527
Manhattan-SDF [3] 0.058 0.059 0.059 0.707 0.642 0.673
NeuRIS [14] - - - - - -
MonoSDF [18] - - - - - -
GO-Surf [13] 0.056 0.024 0.040 0.911 0.919 0.915
NICE-SLAM [21] 0.030 0.053 0.041 0.930 0.816 0.869

Ours 0.030 0.043 0.037 0.958 0.898 0.927

scene 0084

COLMAP [9] 0.042 0.134 0.088 0.736 0.552 0.631
UNISURF [8] 0.638 0.247 0.762 0.189 0.326 0.239
NeuS [15] 0.255 0.360 0.308 0.128 0.084 0.101
VolSDF [17] 0.551 0.162 0.357 0.127 0.232 0.164
Manhattan-SDF [3] 0.055 0.053 0.054 0.639 0.621 0.630
NeuRIS [14] - - - - - -
MonoSDF [18] - - - - - -
GO-Surf [13] 0.073 0.017 0.045 0.931 0.981 0.955
NICE-SLAM [21] 0.031 0.020 0.025 0.945 0.929 0.937

Ours 0.039 0.014 0.026 0.924 0.963 0.943

scene 0580

COLMAP [9] 0.034 0.176 0.105 0.809 0.465 0.590
UNISURF [8] 0.376 0.116 0.246 0.218 0.399 0.282
NeuS [15] 0.161 0.215 0.188 0.413 0.327 0.365
VolSDF [17] 0.091 0.088 0.090 0.529 0.540 0.534
Manhattan-SDF [3] 0.104 0.062 0.153 0.616 0.650 0.632
NeuRIS [14] - - - - - -
MonoSDF [18] - - - - - -
GO-Surf [13] 0.057 0.024 0.040 0.911 0.920 0.915
NICE-SLAM [21] 0.032 0.031 0.032 0.939 0.888 0.913

Ours 0.041 0.035 0.038 0.824 0.875 0.849

scene 0616

COLMAP [9] 0.054 0.457 0.256 0.638 0.256 0.365
UNISURF [8] 0.716 0.193 0.455 0.183 0.293 0.225
NeuS [15] 0.171 0.142 0.157 0.269 0.284 0.276
VolSDF [17] 0.922 0.150 0.536 0.115 0.259 0.160
Manhattan-SDF [3] 0.072 0.098 0.085 0.521 0.431 0.472
NeuRIS [14] - - - - - -
MonoSDF [18] - - - - - -
GO-Surf [13] 0.026 0.023 0.025 0.939 0.894 0.916
NICE-SLAM [21] 0.026 0.076 0.051 0.935 0.764 0.841

Ours 0.026 0.063 0.045 0.945 0.840 0.889

Table 3: Reconstruction Comparisons with MonoSDF on ScanNet (scene 0050).

Acc ↓ Comp ↓ CD-L1 ↓ Prec ↑ Recall ↑ F-score ↑
Predict 0.041 0.054 0.048 0.722 0.621 0.667
GT 0.039 0.049 0.044 0.763 0.682 0.721

Ours 0.030 0.043 0.037 0.958 0.898 0.927
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Figure 1: Visualization of TSDF(estimated depth).

Ours

Ours Hole Filling

SGNN

Figure 2: Visual comparisons with hole filling methods.

(a) MonoSDF(Estimated Depth) (b) MonoSDF(GT Depth) (c) Ours

Figure 3: Visual comparisons of error maps (Red: Large) with MonoSDF.
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Table 4: Reconstruction Comparisons with FastSurf on ScanNet.

Scene ID Acc ↓ Comp ↓ CD-L1 ↓ Prec ↑ Recall ↑ F-score ↑

0002
FS25K 0.033 0.053 0.043 0.855 0.684 0.760
FS75K 0.033 0.057 0.046 0.819 0.655 0.728

Ours 0.033 0.026 0.029 0.889 0.875 0.882

0005
FS25K 0.098 0.056 0.077 0.654 0.658 0.656
FS75K 0.099 0.057 0.088 0.621 0.622 0.621

Ours 0.097 0.024 0.061 0.776 0.926 0.844

0050
FS25K 0.042 0.048 0.045 0.657 0.616 0.636
FS75K 0.042 0.048 0.045 0.670 0.625 0.647

Ours 0.030 0.043 0.037 0.958 0.898 0.927

(a) FastSURF (25k) (b) FastSURF (75k) (c) Ours

Scene 0002
Scene 0050

Figure 4: Visual comparisons of error maps (Red: Large) with FastSurf.

Table 5: Ablation Studies on Depth Priors.

NICE-SLAM [21] GT+w/o depth loss Ours GT+w/o depth loss NICE-SLAM [21] Ours

Depth L1 [cm] ↓ 38.11 12.82 2.11 1.44
Acc. [cm] ↓ 18.29 8.49 2.73 2.54
Comp. [cm] ↓ 11.13 3.48 2.87 2.41
Comp. Ratio [< 5 cm%] ↑ 41.47 91.35 90.93 93.22

3 More Ablation Studies

Figure 5: Demonstration of the effect of depth loss.

Beyond the ablation studies in our paper, we
report more ablation studies to highlight the ef-
fectiveness of using depth fusion priors. As a
more effective way of using depth priors than
rendering single depth images, we compare the
results with or without rendering depth images.
Specifically, we use NICE-SLAM [21] as a base-
line, and show its results with or without the
depth rendering loss during the mapping proce-
dure in Fig. 5. We use the GT camera poses to
ensure that inaccurate camera poses do not af-
fect the performance. We keep the experimental
setup the same as NICE-SLAM [21], but use
our attentive depth prior in our results.

Tab. 5 shows that our attentive depth prior can help network to leverage the depth information with or
without using depth rendering loss. Moreover, our attentive depth prior can play a more important
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Table 6: Ablation Studies on Attention Alternatives.

w/o mlp max Feature Ours

room0
Acc. ↓ 2.88 2.65 2.66 2.59
Comp. ↓ 2.74 2.47 2.46 2.41
Comp. Ratio ↑ 92.70 92.84 93.39 93.45

office0
Acc. ↓ 2.75 2.56 2.41 2.33
Comp. ↓ 2.03 1.88 1.69 1.49
Comp. Ratio ↑ 95.236 95.57 96.10 96.88

(a) Softmax without MLP (b) Occupancy 
with maximum weight

(c) Using features 
as additional conditions

(d) Ours

O
ffice0

R
oom

0

Figure 6: Visual comparison of error maps with different attention alternatives (Red: Large).

role to perceive the 3D structure if there is no depth rendering loss used. We also present a visual
comparison in Fig. 5 to show the reconstructions of NICE-SLAM [21] and ours without using
the depth rendering loss. We can see that our attentive depth priors can significantly improve the
reconstruction performance.

Beyond the ablation study about attentive alternatives introduced in main text, we also conduct
experiments to report more results with different conditions in Tab. 6 and Fig. 6. All these alternatives
degenerate the reconstruction accuracy. Specifically, we remove the MLP and just use a softmax to
normalize the two occupancy inputs in Fig. 6(a), use the occupancy with the maximum weight in
Fig. 6(b), and use more conditions as input including the features of points that are interpolated from
the low and high resolution feature grids in Fig. 6(c).

4 More Visualizations

We show more visualizations to present our learning procedure.

Reconstruction. First of all, we visualize the learning procedure for reconstruction. We visualize the
reconstructed meshes using the occupancy function f learned during training in Fig. 7. To highlight
our advantages over NICE-SLAM [21], we also show error maps on reconstructed meshes. We can
see that we can learn more accurate implicit functions than NICE-SLAM [21] with our attentive depth
fusion prior in different iterations. Please watch our video for more visualization of the reconstruction
process.

Attention. Then, we visualize the effect of our attention mechanism during our learning procedure.
With our attention mechanism, our neural network is able to select better geometry clues at different
locations for the learning of implicit representations. In Fig. 8, we visualize the attention weights for
the TSDF Gs on a cross section through a scene during training. The attention weights are learned
progressively to achieve a stable state so that we can render depth and RGB images that are similar to
the ground truth.

View Rendering. We compare the rendered RGB and depth images with NICE-SLAM [21] in Fig. 9.
The visual comparisons show that our attentive depth fusion prior can also improve the rendering
quality. This is also a merit for novel view synthesis.
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Figure 7: Visual comparisons of error maps (Red: Large) during surface reconstructions on Replica
and ScanNet.
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Figure 8: Visualization of attention (Red: Large) on the TSDF Gs during neural implicit inference on
Replica and ScanNet.

Figure 9: Visual comparisons of rendered images with NICE-SLAM.
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