
Published as a conference paper at ICLR 2024

UNBIASED WATERMARK FOR LARGE LANGUAGE
MODELS

Zhengmian Hu1, Lichang Chen1, Xidong Wu2, Yihan Wu1, Hongyang Zhang3, Heng Huang1

1Department of Computer Science, University of Maryland, College Park, MD 20742, USA
2Department of ECE, University of Pittsburgh, Pittsburgh, PA 15261, USA
3School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
huzhengmian@gmail.com,boblichangchen@gmail.com,xidong wu@outlook.com,
ywu42@umd.edu,hongyang.zhang@uwaterloo.ca,henghuanghh@gmail.com

ABSTRACT

The recent advancements in large language models (LLMs) have sparked a grow-
ing apprehension regarding the potential misuse. One approach to mitigating this
risk is to incorporate watermarking techniques into LLMs, allowing for the track-
ing and attribution of model outputs. This study examines a crucial aspect of wa-
termarking: how significantly watermarks impact the quality of model-generated
outputs. Previous studies have suggested a trade-off between watermark strength
and output quality. However, our research demonstrates that it is possible to in-
tegrate watermarks without affecting the output probability distribution with ap-
propriate implementation. We refer to this type of watermark as an unbiased
watermark. This has significant implications for the use of LLMs, as it becomes
impossible for users to discern whether a service provider has incorporated water-
marks or not. Furthermore, the presence of watermarks does not compromise the
performance of the model in downstream tasks, ensuring that the overall utility
of the language model is preserved. Our findings contribute to the ongoing dis-
cussion around responsible AI development, suggesting that unbiased watermarks
can serve as an effective means of tracking and attributing model outputs without
sacrificing output quality.

1 INTRODUCTION
In recent years, large language models (LLMs) (Google, 2023; OpenAI, 2023a;b) have become an
indispensable tool for a wide range of tasks, including text generation (Iyer et al., 2022; Chung et al.,
2022), translation (Bojar et al., 2017; Barrault et al., 2019), summarization (Liu & Lapata, 2019),
etc. With the escalating misuse of LLMs, such as plagiarism, tracking the usage of text generated
by machines has become increasingly important. One viable method to monitor the usage of LLMs
is watermarking (Gu et al., 2022; Kirchenbauer et al., 2023; Venugopal et al., 2011), which embeds
imperceptible information within the generated text, thereby allowing for efficient detection and
tracking of the model’s potential abuse.

Watermarking techniques can serve multiple purposes, such as embedding ownership information
within the generated text to protect the intellectual property rights of the model. It can also help
mitigate potential harm caused by LLMs by monitoring where the model is being used and whether
it is being misused or abused.

A good watermarking method should not adversely affect the normal usage of the language model
or degrade the quality of the generated text. However, a prevailing belief holds that there is an
inevitable trade-off between the strength of the watermark and the quality of the output text. For
instance, recent work by Kirchenbauer et al. (2023) introduced a method that augmented the logits
of a randomly selected set of ”green” tokens. By tuning the “magnitude of logits adjustment”, they
demonstrated a trade-off between watermark strength and text quality.

Our primary contribution is to challenge this conventional wisdom. We show that with the right im-
plementation, watermarking can be accomplished without affecting the output quality. We refer to
this particular type of watermark as an unbiased watermark. We approach the problem of output
quality degradation from the perspective of watermark detection. We posit that if the watermark

1

Published as a conference paper at ICLR 2024

causes a decline in output quality, there should be a method to guess the presence of the watermark
based on the quality. Conversely, if the watermark cannot be detected, it implies that the output
quality remains unaffected. Specifically, we provide a proof that with a suitable implementation,
watermarking does not affect the output probability distribution. This has significant implications,
as users who do not have the private key are unable to discern whether a service provider has applied
watermarking to the model. Furthermore, the addition of watermarking does not affect the perfor-
mance of the generated text in any downstream tasks. Our main contributions can be summarized
as follows:
• We introduce unbiased watermark, an innovative family of watermark methods that guarantee the

non-degradation of text quality. In addition, we offer a comprehensive framework that facilitates
the design and detection of unbiased watermarks.

• We propose two innovative and practical watermarking techniques known as δ-reweight and γ-
reweight. Through extensive experimentation, we demonstrate that these techniques preserve
output quality in machine translation and text summarization tasks.

• We develop an advanced maximin variant of the original log-likelihood ratio test for watermark
detection. This novel detection method comes with theoretical guarantees, specifically an upper
bound on type I error, thus enhancing the reliability of watermark detection in language models.

2 PRELIMINARY

In this section, we delve into the problem of watermarking in the context of LLMs. We begin by
setting up the problem and defining essential concepts.
Problem Modeling: We first introduce several notations to formalize the problem. Let Σ denote
the vocabulary set, which is the set of all possible tokens an LLM can generate in a single step. We
then define the set Σ∗ as the collection of all possible strings of any length, including those of length
zero.

An LLM generates a sequence of tokens conditioned on a given context. In a single step, the prob-
ability of generating the next token xn+1 ∈ Σ given the current context, x1, x2, ..., xn, can be de-
noted as PM (xn+1 | x1, x2, ..., xn). The LLM operates in an autoregressive fashion, which means
the joint probability of generating multiple tokens xn+1, . . . , xn+m can be written as:

PM (xn+1, . . . , xn+m | x1, x2, ..., xn) =

m∏
i=1

PM (xn+i | x1, x2, ..., xn, xn+1, . . . , xn+i−1).

For simplicity, we use the following notation: PM (xn+1:n+m | x1:n), where xn+1:n+m =
(xn+1, . . . , xn+m) ∈ Σ∗.

In the context of watermarking, we introduce a service provider that holds a private key k from the
key space K. The key k ∈ K is chosen at random from the prior distribution PK(k). The water-
marked output of the LLM follows distribution PM,w(xn+1 | x1, x2, ..., xn; k), which is conditioned
on both the key k and the context x1:n. Similarly, we use the notation PM,w(xn+1:n+m | x1:n; k)
for the probability of generating a sequence of tokens in a watermarked model.

Objective. Our goal is to devise a watermarking scheme that: a) is efficiently detectable by the
service provider; b) can’t be detected by users and does not negatively impact the quality of the
output.

The reason we focus on the detection of watermarks by users is that it is closely related to the output
quality. If the watermark causes a degradation in the output quality, there should exist a method
to infer the presence of the watermark by examining the quality. Conversely, if the watermark is
undetectable, it implies that it does not impact the output quality.

From a statistical testing perspective, a watermark is considered strictly undetectable if the proba-
bility distributions of the watermarked and non-watermarked outputs are identical. To capture this
notion, we define several desirable properties of watermarking schemes.
Definition 1 (n-shot-undetectable). For a fixed input sequence a ∈ Σ∗, we say that watermarked
LLM and key prior pair (PM,w, PK) is n-shot-undetectable compared to original LLM PM if

n∏
i=1

PM (xi | a) =
∑
k∈K

PK(k)

n∏
i=1

PM,w(x
i | a; k), for any n number of strings xi ∈ Σ∗.

2

Published as a conference paper at ICLR 2024

Definition 2 (downstream-invariant). We say the watermarked LLM and key prior pair (PM,w, PK)
are invariant compared to original LLM PM on downstream tasks iff

Ex∼PM,w(·|a;k),k∼PK
[f(x)] = Ex∼PM (·|a)[f(x)],

for any strings x,a ∈ Σ∗, and for any metric f : Σ∗ → R.

Note that the one-shot-undetectable property implies the downstream invariant property, as identical
distributions yield identical expectations for any function. Interestingly, this implication does not
require the n-shot-undetectable property for n > 1, which means a watermarking scheme that is
one-shot-undetectable can still maintain the output quality for downstream tasks even if the user
might discern the existence of the watermark through multiple generation requests.

In summary, we have outlined the preliminary concepts and objectives for developing a watermark-
ing scheme for LLMs. We highlight the desired properties of n-shot-undetectability and downstream
invariance, as they provide a rigorous theoretical guarantee of quality preservation and integrity in
the deployment of watermark schema. In Section 4, we will present a watermark framework that is
provably n-shot-undetectable for any given integer n ≥ 1.

3 WARM UP: UNDETECTABILITY IN A SIMPLIFIED TOY ENVIRONMENT

In this subsection, we aim to prove the feasibility of undetectability in a highly simplified toy en-
vironment. This preliminary analysis serves as a foundation for understanding the more complex
scenarios that follow.

Settings. Consider a service provider that offers a random number generation service. The service
outputs a uniformly distributed random number in the set {0, 1}. The clean generation process can
be represented as PM (x) = 1/2, ∀x ∈ {0, 1}. We assume that the key k belongs to the set {0, 1}
and is selected with equal probability. With the watermark added, the probability of the new output
can be expressed as: PM,w(x | k) = δk(x).

Recall that the one-shot-undetectable property can be represented as PM (x) =
∑

k∈K PM,w(x |
k)PK(k). Suppose that a user can only make a single request to the service. If the user is unaware
of the key, the user will be unable to distinguish whether the received result is watermarked or not.
Therefore, in this simplified scenario, the undetectability of the watermark is achieved.

However, there is a considerable gap between this toy example and the practical implementation of
watermarking in LLMs. Firstly, the symbol set Σ in LLMs is far more complex than the binary set
{0, 1}, and the probability distribution is not uniform. Besides, the generation process in LLMs is
autoregressive, which means that more than one symbol are generated iteratively. Furthermore, the
toy example does not satisfy the n-shot-undetectable property for n > 1.

Despite these differences, this simple example provides essential insights that help in understanding
the following sections where we address these challenges. The underlying principles of undetectabil-
ity remain constant, while their application becomes more intricate in a more complex environment.

4 WATERMARKING WITH UNBIASED REWEIGHTING

In this section, we build upon the intuition from the previous section and extend the approach to
LLMs’ generation. The section is structured as follows: Section 4.1 introduces a fundamental math-
ematical tool for addressing the reweighting problem in general discrete probability distributions.
Section 4.2 applies the reweighting technique to LLMs. Section 4.3 presents the final framework.

4.1 DISTRIBUTION REWEIGHTING

In its most general form, we consider a random watermark code E and a reweight function RE :
∆Σ → ∆Σ, which depends on the random watermark code E. The set of all possible probability
distributions on the symbol set Σ is denoted as ∆Σ, which forms a simplex.
Definition 3. A reweighting function is a tuple (E , PE , R) where E is called the watermark code
space, PE is a probability distribution on space E , and R is a function R : E × ∆Σ → ∆Σ.
For a specific watermark code E ∈ E , we denote the partially evaluated reweighting function as
RE : ∆Σ → ∆Σ.
Definition 4. Given a random watermark code E and a reweighting function RE : ∆Σ → ∆Σ, we
say that R is an unbiased reweighting function if and only if for all P ∈ ∆Σ, EE [RE(P)] = P .

3

Published as a conference paper at ICLR 2024

4.1.1 EXISTING REWEIGHTING METHODS

Kirchenbauer et al. (2023) essentially comprise two reweighting methods in their work, but neither
of them satisfies the unbiased property.

Both methods have E as the set of mappings f : Σ → {red, green}, such that f maps half of the
tokens in Σ to ‘red’ and the other half to ‘green’, and PE as a uniform distribution. Therefore, the
random watermark code E assigns each symbol to either red or green. The “Hard Red List” method
sets the probability of all red symbols to zero and renormalizes the probabilities of the remaining
vocabulary. The second method is “Soft Red List” blocking, where they randomly select the same
“Red List” as the first method and decrease the corresponding probability for red symbols by adding
a constant δ to the logits of the green symbols, then apply softmax to obtain the final probabilities.

4.1.2 UNBIASED REWEIGHTING METHODS

In this section, we present two reweighting methods that satisfy the unbiased property.
δ-reweight: Let the watermark code space E be the interval [0, 1], and let PE be the uniform proba-
bility on E . Leveraging Inverse Transform Sampling1 (Devroye, 1986), we can sample from distribu-
tion P ∈ ∆Σ using a uniformly distributed random number in [0, 1]. Therefore, we have a mapping
samplingP : E → Σ. The δ-reweight just returns a delta distribution RE(P) = δsamplingP (E).

It is important to note that while the reweighted distribution for each individual random event E
is a delta distribution, the mean output token probabilities remain the original distribution P when
considering the randomness of E.
γ-reweight: Let the watermark code space E be the set of all bijective function between vocabu-
laries set Σ and a set of indices [|Σ|] = {1, . . . , |Σ|}, where |Σ| is the size of vocabularies set Σ.
Essentially, any watermark code E is an indexing function for vocabularies set Σ, and is also equiv-
alent to a total order on Σ. Let PE be the uniform probability on E , it is easy to sample a watermark
code E by randomly shuffling the symbol list.

Assume the original distribution is PT (t) ∈ ∆Σ,∀t ∈ Σ. Given the watermark code E : Σ→ [|Σ|],
we construct auxiliary functions FI(i) =

∑
t∈Σ 1(E(t) ≤ i)PT (t), FS(s) = max(2s − 1, 0),

FI′(i) = FS(FI(i)). The γ-reweight yields new distribution PT ′(t) = FI′(E(t))− FI′(E(t)− 1).

... “ but” ... “ized” ...

E

Reweight

“ized”

0 1
Figure 1: Illustration of δ-reweight.

... “ but” ... “ized” ...

... “ized” ... “ but” ...

0 1/2 1

Shuffle

Reweight

“ized” ... “ but” ...

0 1
Figure 2: Illustration of γ-reweight.

We provide illustrations of the δ-reweight and γ-reweight methods in Figures 1 and 2. Each block
represents a token, and the width represents the probability of that token, so the total length is 1 The
left panel shows the δ-reweight method, where each individual random watermark code E ∈ [0, 1]
uniformly sampled from interval [0, 1] corresponds to a specific token according to the horizontal
axis, and the reweighted distribution is just a δ distribution on that token, such that the selected
token has 1 probability, and all other vocabulary tokens have a probability of 0. The right panel
demonstrates the γ-reweight method. First, the symbol set is shuffled. Then, the left half of the
regions are rejected, and the remaining regions are amplified with a factor of 2.

Both methods are unbiased1 when considering the randomness of the watermark code E. For δ-
reweight, we can see that by noticing that the probability of returning a δ distribution on a token is

1Detailed definition and rigorous proof can be found in Appendix B

4

Published as a conference paper at ICLR 2024

just the original probability on that token, therefore the weighted average of all delta distributions is
still the original probability. In the case of γ-reweight, although certain regions are rejected and the
other regions are amplified, every token has the same probability to be in the rejected or amplified
region, thus ensuring the unbiased property.

4.2 REWEIGHTING FOR AUTOREGRESSIVE MODEL

The reweighting methods presented in the previous section can be applied to single token-generation
directly. Given a prefix x1:n, the probability distribution for generating a new token without a
watermark is denoted as PM (·|x1:n) ∈ ∆Σ. For a random watermark code E, we sample from a
new distribution PM,w(·|x1:n) = RE(PM (·|x1:n)) ∈ ∆Σ. If the reweighting function is unbiased,
we have EE [RE(PM (·|x1:n))] = PM (·|x1:n). This ensures that, for an individual unaware of
the watermark code, it is impossible to determine whether a new token is sampled directly from
PM (·|x1:n) or from PM,w(·|x1:n;E) for a random watermark E. However, if the watermark code
is known, one can perform statistical hypothesis testing to determine the likelihood of a token being
sampled from either distribution.

The main challenge now is constructing the watermark code E. Since the LLM generation task is
autoregressive, multiple reweighting steps are required, with each step needing a watermark code
Ei for reweighting the distribution of token xi.

4.2.1 INDEPENDENCE OF WATERMARK CODES

It is crucial that Ei values are independent to ensure the unbiased nature of the entire sequence,
rather than just the single-token generation process.
Theorem 5. Given an unbiased reweighting function (E , PE , R), if Ei values are i.i.d. with the
distribution PE , we have: EE1,...,En

[PM,w(x1:n|a1:m)] = PM (x1:n|a1:m).

If the Ei values are not independent, we cannot guarantee that the generation probability of the
entire sequence remains unbiased. As an extreme example, consider a case where all Ei values
are identical. Referring to the random bit example in the previous section, assume that the correct
distribution is a sequence where each token is a random 0 or 1 with equal probability. Identical Ei

values would result in identical token outputs, ultimately producing sequences consisting solely of
0’s or 1’s, which is clearly biased.

4.2.2 CONTEXT CODE

To construct a large number of independent watermark codes Ei during watermarking and to know
the used Ei values during watermark detection, we follow an approach similar to Kirchenbauer et al.
(2023) by combining the information from the prefix and a secret key to construct Ei.

For a single token generation process, given a prefix x1, x2, ..., xn, we consider an abstract context
code space C and an abstract context code generation function cc : Σ∗ → C. Based on the prefix,
we construct the context code cn+1 = cc(x1, x2, ..., xn). Specific examples include using the entire
prefix cn+1 = (x1, x2, ..., xn), and using the m most recent prefixes cn+1 = (xn−m+1, ..., xn). Our
comprehensive framework accommodates diverse context code generation approaches, particularly
those that integrate error-correcting mechanisms to augment watermark resilience in the face of text
manipulation attacks. Nevertheless, we refrain from delving into these strategies within the confines
of this paper and consider it a subject for subsequent investigation.

The final watermark code is defined as Ei = Ê(ci, k), using a watermark code generation function
Ê : C ×K → E .
Definition 6. Given an unbiased reweighting function (E , PE , R) and a context code space C, an
unbiased watermark code generation function is a tuple (E , PE , R, C,K, PK , Ê) that satisfies:

1. Unbiasedness: Ek∼PK
[RÊ(c,k)(P)] = P,∀P ∈ ∆Σ,∀c ∈ C.

2. Independence: For any n distinct c1, . . . , cn ∈ C, the values RÊ(ci,k)
(P) are mutually

independent.
Theorem 7. For any unbiased reweighting function and context code space, an unbiased watermark
code generation function always exists.
In practice, pseudorandom numbers can be used to implement the unbiased watermark code genera-
tion function in the above theorem. Specifically, the hash value hash(c, k) can be used as a random

5

Published as a conference paper at ICLR 2024

seed to sample E from PE as an implementation of E = Ê(c, k). In this paper, we employ SHA-256
for hash function and a 1024-bit random bitstring as the key k.

An unbiased watermark code generation function ensures that watermark codes Ei are independent
with each other if only their context codes are different. During the generation of a sequence,
context codes may be repeated, although this is a rare event in practice. If ci and cj are equal,
then Ei and Ej are also equal, violating the independence of Ei. A simple workaround is to skip
reweighting for a token when encountering a previously used context code. In other words, we set
PM,w(·|a1:m,x1:i−1) = PM (·|a1:m,x1:i−1) if the context code has appeared before.

4.3 FRAMEWORK

Algorithm 1 Watermarking framework

1: Input: key for watermark k ∈ K, prompt a1:m ∈ Σ∗, generate length n ∈ N, initial code
history cch ∈ 2C , context code function cc : Σ∗ → C, watermark code generation function
Ê : C ×K → E , and reweighting function R : E ×∆Σ → ∆Σ.

2: for t = 1, . . . , n do
3: Pi ← PM (· | a1:m,x1:i−1) ▷ original distribution
4: ci ← cc(· | a1:m,x1:i−1) ▷ context code
5: if ci ∈ cch then
6: Qi ← Pi ▷ skip the reweighting
7: else
8: cch← cch ∪ {ci} ▷ record history
9: Ei ← Ê(ci, k) ▷ watermark code

10: Qi ← REi
(Pi) ▷ reweighted distribution

11: Sample the next token xi using distribution Qi

12: return x1:n

Integrating the tools discussed earlier, we present a general framework for watermarking here. The
algorithm for this framework is outlined in Algorithm 1.

We note that our abstract framework requires the specification of two key components in order to be
practically implemented: the unbiased reweight function RE and the context code function cc.

5 STATISTICAL HYPOTHESIS TESTING FOR WATERMARK DETECTION

In the previous section, we discussed the process of adding a watermark to a text based on a secret
key k and a given prompt a1:m. The watermark-embedded text can be sampled from the distribution
PM,w(x1:n|a1:m; k). In this section, we focus on the watermark detection task, which is the inverse
problem of watermark embedding.

Given a text x1:n, the goal of watermark detection is to infer whether it is more likely to be generated
from the unmarked distribution PM (x1:n|a1:m) or the marked distribution PM,w(x1:n|a1:m; k).
This problem can be formulated as a statistical hypothesis test between two competing hypotheses:
H0, which posits that x1:n follows the unmarked distribution, and H1, which posits that x1:n follows
the marked distribution.

5.1 SCORE-BASED TESING

We focus on a particular kind of score-based testing, which assigns a score to each token in the text.
The score can be interpreted as the confidence that the token was generated by the watermark model
rather than the original model. Scores si can be computed based on x1:i, in accordance with the
autoregressive manner of the generation process.

The total score S is given by S =
∑n

i=1 si. A threshold Ŝ is set such that if S < Ŝ, the null hypoth-
esis H0 is accepted, indicating insufficient evidence to conclude that the text contains a watermark.
Otherwise, the null hypothesis is rejected. There are two types of error probabilities associated with
this decision process: type I error, which is the probability of incorrectly rejecting the null hypoth-
esis under H0, denoted as PH0

(S ≥ Ŝ), and type II error, which is the probability of incorrectly
accepting the null hypothesis under H1, denoted as PH1(S < Ŝ).

6

Published as a conference paper at ICLR 2024

To derive theoretical results, we require the scores to have a specific property: under the null hypoth-
esis H0, the exponential momentum of si is bounded, conditioned on the preceding context x1,i−1.
This requirement leads to an upper bound on α, the type I error probability.

To derive theoretical results, we require that the scores have a particular property: the exponential
moment of si under H0 should be bounded, conditioned on the previous text x1,i−1. This require-
ment leads to an upper bound on the type I error rate.
Theorem 8. Given a probability space (Ω,A, P) and a Σ-valued stochastic process xi : 1 ≤ i ≤ n,
as well as an R-valued stochastic process si : 1 ≤ i ≤ n, let Fx

i := σ(xj | 1 ≤ j ≤ i) and Fs
i :=

σ(sj | 1 ≤ j ≤ i) be the corresponding filtrations, where σ(·) denotes the σ-algebra generated by
random variables. If Fs

i ⊆ Fx
i and E[exp(si)|Fx

i−1] ≤ 1, then P (
∑n

i=1 si ≥ t) ≤ e−t.

Therefore, to ensure that the type I error probability has an upper bound α, we can set the threshold
Ŝ as Ŝ = − log(α). In the following, we discuss two special scores.

5.2 LOG LIKELIHOOD RATIO (LLR) SCORE

According to the Neyman-Pearson lemma, the likelihood ratio test is the most powerful test among
all tests with the same type I error rate. Specifically, the log-likelihood ratio (LLR) score is defined
as si = log

PM,w(xi|a1:m,x1:i−1;k)
PM (xi|a1:m,x1:i−1)

, and the total score becomes S = log
PM,w(x1:n|a1:m;k)
PM (x1:n|a1:m) .

We now provide an optimization derivation of the above si to gain intuition and set the foundation
for the maximin variant of the LLR score in the next section. Let Pi = PM (·|a1:m,x1:i−1), Qi =
PM,w(·|a1:m,x1:i−1; k), and let si = Si(xi) ∈ R denote the score corresponding to different xi.
Note that Pi, Qi, and Si are all functions with signature Σ → R, therefore equivalent to vectors of
dimension |Σ|. We can define the inner product as ⟨Pi, Si⟩ =

∑
x∈Σ Pi(x)Si(x).

The requirement E[exp(si)|F x
i−1] ≤ 1 can be reformulated as ⟨Pi, exp(Si)⟩ ≤ 1, where the expo-

nential function is applied element-wise. Instead of minimizing the type II error directly, we aim to
maximize the average score under H1, i.e., ⟨Qi, Si⟩.
The optimization problem becomes maxSi

⟨Qi, Si⟩, s.t. ⟨Pi, exp(Si)⟩ ≤ 1. The optimal solution
is given by Si(x) = log Qi(x)

Pi(x)
, which recovers the optimal log likelihood ratio score.

5.3 MAXIMIN VARIANT OF LLR SCORE

One major limitation of the LLR score described in the previous section is that when Qi(x) = 0,
Si(x) = −∞. This means that as long as a single token does not come from the watermark model
PM,w, the score becomes negative infinity, making it impossible to reject the null hypothesis H0.

A more general reason for this issue is that the watermark model PM,w used in the detection process
may not exactly match the true distribution of the watermarked text. In practice, potential sources
of discrepancy include editing (e.g., a text sampled from PM,w may undergo some degree of editing
before being watermark detection) and imperfect estimation of the generation process (e.g., due to
lack of knowledge of the exact prompt and temperature used during generation).

To address this problem, we consider a perturbed generation distribution. Instead of the original
hypothesis H1, where x1:n follows the watermark distribution PM,w, we now assume that x1:n

follows a distribution P ′
M,w, which is similar to but not identical to PM,w. Specifically, during the

generation of each token, the total variation (TV) distance between Q′
i and Qi is bounded by d.

The corresponding new optimization problem is
max
Si

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩, s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

Intuitively, the optimal solution for Q′
i in the inner optimization decreases Q′

i(x) when Si(x) is large
and increases Q′

i(x) when Si(x) is small.

The computation of the maximin solution can be done efficiently in Õ(|Σ|) time and the specific
algorithm is shown in Appendix B.5.

It is important to note that the maximin variant of the LLR score is more robust than the standard
LLR score, as it yields higher scores when the text has undergone some degree of editing. However,
it is not specifically designed to defend against any attacks.

7

Published as a conference paper at ICLR 2024

(a) Text summarization

No Watermark
δ-reweight

γ-reweight

Soft(δ=
0.0)

Soft(δ=
1.0)

Soft(δ=
2.0)

2

4

6

8

10

P
er

p
le

x
it

y

(b) Machine translation

No Watermark
δ-reweight

γ-reweight

Soft(δ=
0.0)

Soft(δ=
1.0)

Soft(δ=
2.0)

19

20

21

22

23

B
L

E
U

Figure 3: Distribution of perplexity of output for TS and BLEU score for MT.

A hyperparameter d ∈ [0, 1] that represent the perturbation strength is introduced in the score. Intu-
itively, if the text to be detected has undergone more editing and deviates further from the distribution
PM,w, d should be larger. In practice, we recommend using grid search to select the best value of d.
Assuming there are A candidate values for d, corresponding to A different scores s(a)i (1 ≤ a ≤ A),
we can modify Theorem 8 as follows.

Theorem 9. Under the same conditions as Theorem 8, but with multiple scores s(a)i , we have

P

(
max

1≤a≤A

(
n∑

i=1

s
(a)
i

)
≥ t

)
≤ Ae−t.

Thus, when using grid search, the final threshold should be adjusted as Ŝ = − log(α) + log(A).
This ensures that the upper bound of the type I error is still α.

6 EXPERIMENTS

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq
models: text summarization (TS) and machine translation (MT). For the TS task, we use the BART-
large model (Liu et al., 2020) and the CNN-DM (Hermann et al., 2015) corpus as our testing dataset.
The MT task involves translating English to Romanian, for which we employ the Multilingual BART
(MBart) (Liu et al., 2020) model on the WMT’14 En-Ro corpus. For further details on the experi-
ment setup, please refer to Appendix E.

Table 1: Performance of different watermarking methods on TS and MT. We use F1 scores of
BERTScore and scale BERTScore and ROUGE-1 with a factor of 100.

Text summarization Machine translation
BERTScore ↑ ROUGE-1 ↑ Perplexity ↓ BERTScore ↑ BLEU ↑

No Watermark 32.70± 0.08 38.56± 0.09 5.024± 0.018 55.9± 0.3 21.8± 0.3
δ-reweight 32.71± 0.08 38.57± 0.09 5.022± 0.018 56.3± 0.3 21.7± 0.3
γ-reweight 32.69± 0.08 38.60± 0.09 5.019± 0.018 56.2± 0.3 21.8± 0.3
Soft(δ=0.0) 32.70± 0.08 38.56± 0.09 5.024± 0.018 55.9± 0.3 21.8± 0.3
Soft(δ=1.0) 32.35± 0.08 38.20± 0.09 5.313± 0.018 55.1± 0.3 21.0± 0.3
Soft(δ=2.0) 31.21± 0.08 37.17± 0.08 6.253± 0.022 53.8± 0.3 19.5± 0.3

Our primary focus is to compare the performance of our proposed unbiased watermarking methods
including the δ-reweight and γ-reweight, with the soft-red-list method presented by Kirchenbauer
et al. (2023). The watermark strength in the soft-red-list approach is controlled by a parameter δ.

The quality of output post-watermarking is presented in Table 1. We observed that the output qual-
ity remains unaffected by our unbiased watermark methods, both for the δ-reweight and γ-reweight,
irrespective of the task and metric. Conversely, the soft-red-list method, when δ = 0, does not in-
troduce any watermark and hence does not affect output quality. However, for δ > 0, it significantly
impairs the quality of output.

8

Published as a conference paper at ICLR 2024

Table 3: Text sampled from OPT-6.7B, with and without watermarks. For ”No watermark” (NW),
the score is computed based on δ-reweight. When watermarks are included, the corresponding
reweighting function is used for computing score. The optimal perturbation strengths d obtained by
grid search are 0.9, 0.0, 0.0 for three outputs respectively.

Prompt What is a watermark? What’s the purpose of it? score p-value2

NW Why don’t you want it on there? I’m confused..\nI think he meant to say logo,
since he wrote ”watermark”, so the first word must be a typo.\nYes! Exactly
typo. Sorry, English is not my native language.. Thanks for the explanation!

0.30 8.14

δ-RW \nIt is supposed to be watermarking the pictures that you took with your phone
i think. So, so you can share your pictures and not take credit for them.

75.9 1.2e−32

γ-RW \nA watermark is a small image or logo (often in square pixels) that is placed
over the larger, original image. It serves primarily to distinguish copyright or
ownership of large images (such as banners and logos) and, on rare occasion, to
identify small images (such as thumbnail images for blog posts and pictures).

32.9 5.7e−14

Figure 3 provides a more intuitive depiction of the score distributions. It is evident that our unbiased
watermark methods not only ensure that the mean performance remains unaffected but also that the
performance distribution is stable. Conversely, the soft-red-list method shows a notable performance
decrease.

Table 2: Mean and variance of score per token for
different reweighting methods and different tasks.

Text summarization Machine translation

δ-RW 0.8784± 1.4354 0.4192± 1.1361
γ-RW 0.2207± 0.3678 0.1056± 0.2916

In terms of watermark detection, we com-
pute score associated with each token. The
mean and variance of score per token for
TS and MT are presented in Table 2. As
a heuristic, if the sum of the scores for all
tokens in a sentence reaches 10, a p-value
of less than 0.0005 is ensured. If the sum
score hits 20, the p-value must be less than
3e−8.

Additionally, we provide an example of watermarking applied to a completion task in Table 3. It
visually demonstrates the score distribution across tokens: positive scores are represented in green,
and negative ones in red. The intensity of the color corresponds to the magnitude of the score, with
darker shades representing larger absolute values.

7 RELATED WORK

The idea of watermarking text has been widely explored by many researchers (Cox et al., 2007;
Kamaruddin et al., 2018; Podilchuk & Delp, 2001; Potdar et al., 2005; Atallah et al., 2001; Jalil &
Mirza, 2009; Stefan et al., 2000; Petitcolas et al., 1999), even before the advent of large language
models.

Recent advancements in generative models have opened new possibilities for directly generating
watermarked results. Two relevant prior works in this domain are by Kirchenbauer et al. (2023)
and Aaronson (2022). Various concurrent studies (Christ et al., 2023; Kuditipudi et al., 2023; Wang
et al., 2023b; Yoo et al., 2023b) have further enriched this domain. Due to space constraints, we
moved the in-depth analysis and other related work to Section A.

8 CONCLUSION

Overall, this paper provides a novel framework of watermarking for language models, demonstrat-
ing that it is possible to use watermark to protect intellectual property and monitor potential misuse
without compromising the quality of the generated text. This research serves as a valuable founda-
tion for future work in the field of watermarking for large language models.

2This is an upper bound computed based on Theorem 9. The upper bound could be larger than 1, but this
does not necessarily imply that the p-value exceeds 1.

9

Published as a conference paper at ICLR 2024

9 ETHICS STATEMENTS

Our unbiased watermark has removed major hurdles for large-scale application of watermarks. The
two primary obstacles previously were the potential for watermarks to degrade the quality of output
and the possibility for users to discern the presence of watermarks. Our method addresses both of
these issues thoroughly.

9.1 IMPACT ANALYSIS

Traceability and accountability Traceability refers to the ability to trace back the origin of a text.
Any watermarking method, including method in this paper, contribute to traceability. In an era of
misinformation and disinformation, this allows for holding providers accountable for the content
generated by their models.

Identifying model-generated texts Watermarking method can be used to distinguish which texts
are generated by the models. This prevents unnecessary training on the data generated by the models
themselves.

Ownership Watermarking method can help provide evidence in situations where a provider claims
ownership over a generated text (Sun et al., 2023).

Data privacy concerns The use of different watermarks, if applied discretionarily, could poten-
tially link generated text back to a specific user or request. This could be seen as a breach of users’
privacy, raising important data privacy concerns.

Manipulation and removal of watermarks The ongoing development of techniques to manip-
ulate or remove watermarks could lead to an “arms race” between providers attempting to secure
their watermarks and users trying to remove them.

9.2 ETHICAL CONSIDERATIONS

There are several ethical considerations in the pursuit of watermarking technology.

Consent Users have the right to be informed about the use of watermarks and should have the
option to opt-out.

Transparency Providers should be transparent about the use of watermarks, including informa-
tion on what is embedded within these watermarks and how it’s used. If the watermarks contain
identifying information, providers should clearly state who can access this information and take
appropriate measures to prevent potential misuse.

Fair use The application of our watermarking technique should not interfere with the legitimate
use of the service by users.

Our watermarking method does not degrade the quality of the output, ensuring the values of fair use
are upheld. However, it also introduces a potentially challenging issue.

Due to the undetectable nature of our technique, every user might have to assume that the service
they are using has been watermarked, as it cannot be disproved. This raises challenging questions
on how to ensure consent and transparency.

9.3 CONCLUSION

Our unbiased watermarking method brings improved traceability and attribution and ensures that fair
use is not compromised. However, it also poses significant challenges in data privacy, transparency,
and consent. Any implementation of this system needs to be done thoughtfully and ethically, with
clear communication to users about how it works and what it means for them.

10

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was partially supported by NSF IIS 2347592, 2347604, 2348159, 2348169, DBI 2405416,
CCF 2348306, CNS 2347617.

REFERENCES

Scott Aaronson. My ai safety lecture for ut effective altruism. November 2022. URL https:
//scottaaronson.blog/?p=6823.

Sahar Abdelnabi and Mario Fritz. Adversarial watermarking transformer: Towards tracing text
provenance with data hiding. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 121–
140. IEEE, 2021.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium, pp. 1615–1631, 2018.

Mikhail J Atallah, Victor Raskin, Michael Crogan, Christian Hempelmann, Florian Kerschbaum,
Dina Mohamed, and Sanket Naik. Natural language watermarking: Design, analysis, and a
proof-of-concept implementation. In Information Hiding: 4th International Workshop, IH 2001
Pittsburgh, PA, USA, April 25–27, 2001 Proceedings 4, pp. 185–200. Springer, 2001.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias
Müller, Santanu Pal, Matt Post, and Marcos Zampieri. Findings of the 2019 conference on ma-
chine translation (WMT19). In Proceedings of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pp. 1–61, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-5301.

Franziska Boenisch. A systematic review on model watermarking for neural networks. Frontiers in
big Data, 4:729663, 2021.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian
Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Raphael Rubino, Lucia Specia, and Marco Turchi. Findings of the 2017 con-
ference on machine translation (WMT17). In Proceedings of the Second Conference on Machine
Translation, pp. 169–214, Copenhagen, Denmark, September 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W17-4717.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters: Imper-
ceptible nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1987–2004.
IEEE, 2022.

Yuei-Lin Chiang, Lu-Ping Chang, Wen-Tai Hsieh, and Wen-Chih Chen. Natural language wa-
termarking using semantic substitution for chinese text. In Digital Watermarking: Second In-
ternational Workshop, IWDW 2003, Seoul, Korea, October 20-22, 2003. Revised Papers 2, pp.
129–140. Springer, 2004.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. arXiv
preprint arXiv:2306.09194, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermark-
ing and steganography. Morgan kaufmann, 2007.

Evan Crothers, Nathalie Japkowicz, and Herna Viktor. Machine generated text: A comprehensive
survey of threat models and detection methods. arXiv preprint arXiv:2210.07321, 2022.

11

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823

Published as a conference paper at ICLR 2024

Falcon Z Dai and Zheng Cai. Towards near-imperceptible steganographic text. arXiv preprint
arXiv:1907.06679, 2019.

Luc Devroye. Non-Uniform Random Variate Generation. Springer New York, 1986.

Tina Fang, Martin Jaggi, and Katerina Argyraki. Generating steganographic text with lstms. arXiv
preprint arXiv:1705.10742, 2017.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166, 2023.

Evgeniy Gabrilovich and Alex Gontmakher. The homograph attack. Communications of the ACM,
45(2):128, 2002.

Margherita Gambini, Tiziano Fagni, Fabrizio Falchi, and Maurizio Tesconi. On pushing deepfake
tweet detection capabilities to the limits. In 14th ACM Web Science Conference 2022, pp. 154–
163, 2022.

Riley Goodside. There are adversarial attacks for that proposal as well — in particular, generating
with emojis after words and then removing them before submitting defeats it.,. January 2023.
URL https://twitter.com/goodside/status/1610682909647671306.

Google. Palm-2-llm. https://blog.google/technology/ai/google-palm-2-ai-large-language-model/,
2023.

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. Watermarking
pre-trained language models with backdooring. arXiv preprint arXiv:2210.07543, 2022.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellec-
tual property of language generation apis with lexical watermark. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10758–10766, 2022a.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater:
Intellectual property protection on text generation apis via conditional watermarks. arXiv preprint
arXiv:2209.08773, 2022b.

James N Helfrich and Rick Neff. Dual canonicalization: An answer to the homograph attack. In
2012 eCrime Researchers Summit, pp. 1–10. IEEE, 2012.

Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information Process-
ing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 1693–1701, 2015.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection
of generated text is easiest when humans are fooled. arXiv preprint arXiv:1911.00650, 2019.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Dániel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Zunera Jalil and Anwar M Mirza. A review of digital watermarking techniques for text docu-
ments. In 2009 International Conference on Information and Multimedia Technology, pp. 230–
234. IEEE, 2009.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks VS Lakshmanan. Automatic detection of
machine generated text: A critical survey. arXiv preprint arXiv:2011.01314, 2020.

12

https://twitter.com/goodside/status/1610682909647671306

Published as a conference paper at ICLR 2024

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-
tangled watermarks as a defense against model extraction. In USENIX Security Symposium, pp.
1937–1954, 2021.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review
of text watermarking: theory, methods, and applications. IEEE Access, 6:8011–8028, 2018.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphras-
ing evades detectors of ai-generated text, but retrieval is an effective defense. arXiv preprint
arXiv:2303.13408, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove your model belongs to you:
A blind-watermark based framework to protect intellectual property of dnn. In Proceedings of the
35th Annual Computer Security Applications Conference, pp. 126–137, 2019.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3730–
3740, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1387.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis,
and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. Trans-
actions of the Association for Computational Linguistics, 8:726–742, 2020.

Hasan Mesut Meral, Bülent Sankur, A Sumru Özsoy, Tunga Güngör, and Emre Sevinç. Natural
language watermarking via morphosyntactic alterations. Computer Speech & Language, 23(1):
107–125, 2009.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2023a.

OpenAI. Gpt-4 technical report. arXiv, 2023b.

Luca Pajola and Mauro Conti. Fall of giants: How popular text-based mlaas fall against a simple
evasion attack. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
198–211. IEEE, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Fabien AP Petitcolas, Ross J Anderson, and Markus G Kuhn. Information hiding-a survey. Pro-
ceedings of the IEEE, 87(7):1062–1078, 1999.

Christine I Podilchuk and Edward J Delp. Digital watermarking: algorithms and applications. IEEE
signal processing Magazine, 18(4):33–46, 2001.

Vidyasagar M Potdar, Song Han, and Elizabeth Chang. A survey of digital image watermarking
techniques. In INDIN’05. 2005 3rd IEEE International Conference on Industrial Informatics,
2005., pp. 709–716. IEEE, 2005.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo Montesi. Fine-grain watermarking for intellec-
tual property protection. EURASIP Journal on Information Security, 2019:1–20, 2019.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

13

Published as a conference paper at ICLR 2024

M Hassan Shirali-Shahreza and Mohammad Shirali-Shahreza. A new synonym text steganogra-
phy. In 2008 international conference on intelligent information hiding and multimedia signal
processing, pp. 1524–1526. IEEE, 2008.

Katzenbeisser Stefan, A Petitcolas Fabien, et al. Information hiding techniques for steganography
and digital watermarking, 2000.

Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shouling Ji, Nenghai Yu, Deke Guo, and Li Liu.
Deep intellectual property: A survey. arXiv preprint arXiv:2304.14613, 2023.

Reuben Tan, Bryan A Plummer, and Kate Saenko. Detecting cross-modal inconsistency to defend
against neural fake news. arXiv preprint arXiv:2009.07698, 2020.

Ruixiang Tang, Yu-Neng Chuang, and Xia Hu. The science of detecting llm-generated texts. arXiv
preprint arXiv:2303.07205, 2023.

Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Donald Metzler, and Andrew Tomkins. Reverse
engineering configurations of neural text generation models. arXiv preprint arXiv:2004.06201,
2020.

Mercan Topkara, Cuneyt M Taskiran, and Edward J Delp III. Natural language watermarking. In
Security, Steganography, and Watermarking of Multimedia Contents VII, volume 5681, pp. 441–
452. SPIE, 2005.

Mercan Topkara, Giuseppe Riccardi, Dilek Hakkani-Tür, and Mikhail J Atallah. Natural language
watermarking: Challenges in building a practical system. In Security, Steganography, and Water-
marking of Multimedia Contents VIII, volume 6072, pp. 106–117. SPIE, 2006a.

Mercan Topkara, Umut Topkara, and Mikhail J Atallah. Words are not enough: sentence level nat-
ural language watermarking. In Proceedings of the 4th ACM international workshop on Contents
protection and security, pp. 37–46, 2006b.

Umut Topkara, Mercan Topkara, and Mikhail J Atallah. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text through synonym substitutions. In Proceed-
ings of the 8th workshop on Multimedia and security, pp. 164–174, 2006c.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frustratingly easy edit-based linguistic
steganography with a masked language model. arXiv preprint arXiv:2104.09833, 2021.

Ashish Venugopal, Jakob Uszkoreit, David Talbot, Franz Josef Och, and Juri Ganitkevitch. Water-
marking the outputs of structured prediction with an application in statistical machine translation.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 1363–1372, 2011.

Hong Wang, Xuan Luo, Weizhi Wang, and Xifeng Yan. Bot or human? detecting chatgpt imposters
with a single question. arXiv preprint arXiv:2305.06424, 2023a.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
Towards codable text watermarking for large language models. arXiv preprint arXiv:2307.15992,
2023b.

Alex Wilson and Andrew D Ker. Avoiding detection on twitter: embedding strategies for linguistic
steganography. Society of Photo-optical Instrumentation Engineers, 2016.

Alex Wilson, Phil Blunsom, and Andrew D Ker. Linguistic steganography on twitter: hierarchical
language modeling with manual interaction. In Media Watermarking, Security, and Forensics
2014, volume 9028, pp. 9–25. SPIE, 2014.

Alex Wilson, Phil Blunsom, and Andrew Ker. Detection of steganographic techniques on twitter. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp.
2564–2569, 2015.

14

Published as a conference paper at ICLR 2024

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Max Wolff and Stuart Wolff. Attacking neural text detectors. arXiv preprint arXiv:2002.11768,
2020.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Trac-
ing text provenance via context-aware lexical substitution. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 11613–11621, 2022.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun Kwak. Robust natural language watermarking
through invariant features. arXiv preprint arXiv:2305.01904, 2023a.

KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. Advancing beyond identification: Multi-bit water-
mark for language models. arXiv preprint arXiv:2308.00221, 2023b.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and Ian
Molloy. Protecting intellectual property of deep neural networks with watermarking. In Proceed-
ings of the 2018 on Asia Conference on Computer and Communications Security, pp. 159–172,
2018.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. Protecting language generation models via invisible
watermarking. arXiv preprint arXiv:2302.03162, 2023.

Zachary M Ziegler, Yuntian Deng, and Alexander M Rush. Neural linguistic steganography. arXiv
preprint arXiv:1909.01496, 2019.

A RELATED WORKS

A.1 TEXT WATERMARKING

The idea of watermarking text has been widely explored by many researchers (Cox et al., 2007;
Kamaruddin et al., 2018; Podilchuk & Delp, 2001; Potdar et al., 2005; Atallah et al., 2001; Jalil &
Mirza, 2009; Stefan et al., 2000; Petitcolas et al., 1999), even before the advent of large language
models. Several techniques involve editing existing text to add a watermark, such as changing
synonyms (Topkara et al., 2005; 2006c; Chiang et al., 2004; Venugopal et al., 2011; Yang et al.,
2022) or visually indistinguishable words (Rizzo et al., 2019), altering sentence structures (Topkara
et al., 2006b;a; Meral et al., 2009), and employing neural networks (He et al., 2022a;b; Yoo et al.,
2023a).

Recent advancements in generative models have opened new possibilities for directly generating
watermarked results. Two prior works in this domain are by Kirchenbauer et al. (2023) and Aaron-
son (2022). Kirchenbauer et al.’s pioneering work, which uses the previous context to generate
watermarked tokens, heavily influences our approach. However, their watermarking technique can
introduce bias to the output, leading to performance degradation. Our work addresses this limitation
by applying unbiased reweighting and recording context code history.

Aaronson (2022) have talked about using a pseudo-random cryptographic function for watermark-
ing, but the details are not disclosed, making it challenging to conduct a direct comparison. Aaron-
son’s “cryptographic pseudorandom function” could be a special case of reweighting function in
this paper. However, in his blog, there is no apparent structure akin to “context code history”,
a mechanism that plays a crucial role in our work to ensure n-shot-undetectability. Therefore, it
remains uncertain whether Aaronson’s technique could offer a similar theoretical guarantee of n-
shot-undetectability as ours. Additionally, it is not clear if their method provides an upper bound on
type I error, like Theorem 8.

15

Published as a conference paper at ICLR 2024

Several concurrent studies have explored methods to reduce the bias in watermarking. (Christ et al.,
2023) depends on computational power to ensure that an attacker cannot efficiently detect water-
marks. This approach presents a different trade-off from our work; while we rely on additional
watermark storage, we can strictly guarantee n-shot undetectability, regardless of the computational
resources available to the attacker. Later, Kuditipudi et al. (2023) builds a watermark based on a
watermark key sequence. However, when the generated content length exceeds the length of the
watermark key sequence, it may use the same key sequence, resulting in a compromise of strict
unbiasedness.

Additionally, there has been research focus on multi-bit watermarking such as Wang et al. (2023b)
and Yoo et al. (2023b).

A.2 ATTACKS ON WATERMARKS

Alongside the development of watermarking technologies, various methods to modify and remove
these watermarks and their countermeasures have also been explored. These include attacks based
on invisible characters and homoglyphs (Gabrilovich & Gontmakher, 2002; Helfrich & Neff, 2012;
Pajola & Conti, 2021; Boucher et al., 2022), generative attacks such as those that prompted the
model to change its output in a predictable and easily reversible way (Kirchenbauer et al., 2023), and
specific instances such as the emoji attack (Goodside, 2023), and paraphrasing attacks (Sadasivan
et al., 2023; Krishna et al., 2023).

A.3 STEGANOGRAPHY IN TEXT

Steganography hides information in text primarily for secret communication. It bears similarities to
watermarking in that it seeks to conceal information. However, while watermarking only needs to
detect the presence of a watermark, steganography must recover all embedded information. Many
approaches have tried to edit existing text, through rule-based transformations (Wilson et al., 2014;
2015; Wilson & Ker, 2016), synonym-based methods (Shirali-Shahreza & Shirali-Shahreza, 2008),
and more recently, neural network-based methods (Abdelnabi & Fritz, 2021; Ueoka et al., 2021).
Information can also be embedded directly during generation (Fang et al., 2017; Dai & Cai, 2019;
Ziegler et al., 2019).

A.4 WATERMARKING MODELS

Watermarking has also been applied to models themselves to protect intellectual property rights and
to guard against model stealing or extraction (Jia et al., 2021; Boenisch, 2021; Zhao et al., 2023).
The aim here is to gather evidence through inference services (Li et al., 2019; Zhang et al., 2018)
and can be accomplished by adding backdoors to models (Adi et al., 2018; Gu et al., 2017; 2022).
While they are similar to text watermarking in that they embed information without impacting fair
use, the focus is on tracing the model rather than the text.

A.5 DETECTING MACHINE-GENERATED TEXT

The objective of detecting machine-generated text lies in discerning whether a given text has been
produced by an algorithm or written by a human. Such detection is crucial to prevent misuse and a
substantial body of research has explored this area (Zellers et al., 2019; Ippolito et al., 2019; Crothers
et al., 2022; Jawahar et al., 2020; Tan et al., 2020; Tay et al., 2020; Tang et al., 2023; Wang et al.,
2023a). However, the task has become increasingly challenging due to the continual improvement in
language models and the advent of adversarial attacks (Gambini et al., 2022; Wolff & Wolff, 2020;
Sadasivan et al., 2023). The difference between this and text watermarking is that watermarking
is employed to differentiate whether a text is generated by a particular model or provider, yet the
detection of machine-generated text is not concerned with a specific model.

16

Published as a conference paper at ICLR 2024

B DETAILED DEFINITION AND ADDITIONAL PROOFS

B.1 DETAILED DEFINITION AND ADDITIONAL PROOFS FOR SECTION 4.1

Definition 10 (hard/soft-red-list reweighting (Kirchenbauer et al., 2023)). Given two hyper-
parameters 0 ≤ γ ≤ 1 and δ ≥ 0, let the watermark code space be E = {E ∈ {0, 1}Σ |∣∣E−1(1)

∣∣ = ⌊γ|Σ|⌋}, such that f maps γ-portion of the tokens in Σ to 1 (which interpreted as
“green”) and the other portion to 0 (which interpreted as “red”), and let PE to be the uniform
distribution on space E . For any watermark code E, and for any token distribution P ∈ ∆Σ,
the output distribution of the hard-red-list reweighting function on a token t ∈ Σ is defined by
RE(P)(t) = E(t)P (t)∑

t∈Σ E(t)P (t) assuming
∑

t∈Σ E(t)P (t) > 0. The soft-red-list reweighting function

is defined by RE(P)(t) = exp{logP (t)+δE(t)}∑
t∈Σ exp{logP (t)+δE(t)} , where δ > 0 is a fixed constant.

Theorem 11. Hard-red-list and soft-red-list reweighting functions are biased.

Proof. We first show the hard-red-list reweighting is biased. For γ = 0.5, consider Σ = {a, b},
P (a) = 0.9, P (b) = 0.1, we have

RE(P)(a) =
1

2
× P (a)

P (a)
+ 0× 0

P (b)
= 0.5 ̸= 0.9 = P (a).

We then show the soft-red-list reweighting is biased. For γ = 0.5, consider Σ = {a, b}, P (a) =
0.9, P (b) = 0.1, we have

RE(P)(a) =
1

2
× eδP (a)

eδP (a) + P (b)
+

1

2
× P (a)

P (a) + eδP (b)
.

It is easy to verify that for any δ > 0, we have RE(P)(a) < P (a).

Thus, hard/soft-red-list reweighting are both biased.

Definition 12 (δ-reweight). Let the watermark code space E be the interval [0, 1], and let E be
uniformly distributed on E . Given an arbitrary token distribution P ∈ ∆Σ, let B be a bijection
between Σ and [|Σ|], we construct a cumulative density function of P w.r.t. B by FP (t;B) =∑

t′∈Σ 1(B(t′) ≤ B(t))P (t′),∀t ∈ Σ. Then we can define a mapping samplingP : E → Σ,

samplingP (E) = B−1(I(E)),

where
I(E) = min

t
B(t) s.t. E ≤ FP (t;B),

The δ-reweight function is defined by RE(P) := δsamplingP (E).

Definition 13 (γ-reweight). Let the watermark code space E be the set of all bijective function
between vocabularies set Σ and a set of indices [|Σ|] = {1, . . . , |Σ|}, where |Σ| is the size of
vocabularies set Σ. Assume the original distribution is PT (t) ∈ ∆Σ,∀t ∈ Σ. Given the watermark
code E : Σ→ [|Σ|], we define

AE(i) := max

{
2

(∑
t∈Σ

1(E(t) ≤ i)PT (t)

)
− 1, 0

}
,

where 1(E(t) ≤ i) = 1 when E(t) ≤ i otherwise 1(E(t) ≤ i) = 0. We define PT ′(E)(t) :=
AE(E(t)) − AE(E(t) − 1). It’s easy to verify PT ′(E) is a distribution by ∀t ∈ Σ, PT ′(E)(t) ≥ 0
and

∑
t∈Σ PT ′(E)(t) = 1. Thus, γ-reweight function is defined by RE(PT) := PT ′(E).

Theorem 14. Both δ-reweight and γ-reweight are unbiased reweighting functions.

Proof. According to Definition 4, we need to show EE [RE(P)] = P for arbitrary P ∈ ∆Σ.

17

Published as a conference paper at ICLR 2024

For δ-reweight, we have RE(P) = δsamplingP (E) and E is uniformly distributed on [0, 1]. Thus, we
only need to show ∀t ∈ Σ, EE [δsamplingP (E)(t)] = P (t).

EE [δsamplingP (E)(t)] =

∫ 1

0

1(samplingP (e) = t) de,

=

∫ 1

0

1(I(e) = B(t)) de,

=

{
FP (t;B)− FP (B

−1(B(t)− 1);B) B(t) > 1

FP (t;B) B(t) = 1

= P (t).

(1)

For γ-reweight, we need to show ∀t ∈ Σ, EE [RE(PT)(t)] = PT (t)

EE [RE(PT)(t)] = EE [PT ′(E)(t)]

= EE [AE(E(t))−AE(E(t)− 1)].
(2)

Denoted by gE(i) = 2
(∑

t′∈Σ 1(E(t′) ≤ i)PT (t
′)
)
− 1. ∀E ∈ E , we consider the reserved order

Er of E, we have E(t) + Er(t) = n+ 1 and

gE(E(t))+gEr (Er(t)−1) = 2

(∑
t′∈Σ

[1(E(t′) ≤ E(t)) + 1(E(t′) ≥ E(t) + 1)]PT (t
′)

)
−2 = 0.

So we have

AE(E(t))−AE(E(t)− 1) +AEr (Er(t))−AEr (Er(t)− 1)

=max {gE(E(t)), 0} −max {gE(E(t)− 1), 0}+max {grE(Er(t)), 0} −max {grE(Er(t)− 1), 0}
=gE(E(t)))1(gE(E(t)) > 0)− gEr (Er(t)− 1)1(gEr (Er(t)− 1) > 0)+

gEr (Er(t))1(gEr (Er(t)) > 0)− gE(E(t)− 1)1(gE(E(t)− 1) > 0)

=gE(E(t)))1(gE(E(t)) > 0) + gE(E(t)))1(gE(E(t))) < 0)−
gE(E(t)− 1)1(gE(E(t)− 1) < 0)− gE(E(t)− 1)1(gE(E(t)− 1) > 0)

=gE(E(t)))− gE(E(t)− 1)

=2PT (t),
(3)

which yields

EE [RE(PT)](t) = EE [AE(E(t))−AE(E(t)− 1)].

=
1

2
(EE [AE(E(t))−AE(E(t)− 1)] + EEr [AEr (Er(t))−AEr (Er(t)− 1)]) .

=
1

2
EE [2PT (t)]

= PT (t).
(4)

B.2 ADDITIONAL PROOFS FOR SECTION 4.2

Proof of Theorem 5. We have

EE1,...,En [PM,w(x1:n|a1:m)]

=EE1,...,En−1
[EEn

[PM,w(x1:n|a1:m)]]

=EE1,...,En−1 [EEn [PM,w(xn|a1:m,x1:n−1)]PM,w(x1:n−1|a1:m)]

=EEn [PM,w(xn|a1:m,x1:n−1)]EE1,...,En−1 [PM,w(x1:n−1|a1:m)]

=PM (xn|a1:m,x1:n−1)EE1,...,En−1
[PM,w(x1:n−1|a1:m)],

18

Published as a conference paper at ICLR 2024

where the second last step uses the independence of the Ei values and the last step uses the unbi-
asedness of the reweighting function. Repeating the same argument for the remaining Ei values, we
obtain

EE1,...,En
[PM,w(x1:n|a1:m)] = PM (x1:n|a1:m).

Proof of Theorem 7. Given a watermark code space E and a watermark code distribution PE(e),
we construct a key space K = EC , where each key k is a function from the context code space
to the watermark code space. The random key probability density function is defined as PK(k) =∏

c∈C PE(k(c)).

This construction forms a particular instance of an unbiased watermark code generation function.

B.3 DETAILED THEORY FOR SECTION 4.3

Corollary 15. For every generation request by a user, Algorithm 1 can provide a generation result.
This generation service is n-shot undetectability for any n ∈ N+ if the unbiased watermark code
generation function is employed, and the context code history is continuously recorded. Specifically,
the context code history cch is updated after each invocation of Algorithm 1, and the resulting
context code history is used as the initial context code history for the next invocation.

On the other hand, if the context code history is reset after every generation task, the generation
service can only guarantee 1-shot undetectability.

Proof. The key design element in this service is the context code history. By maintaining the context
code history throughout the generation process, we can ensure that each time the reweighting is
performed, the context code is unique, i.e., it has not appeared in any previous generation tasks.
According to the properties of the unbiased watermark code generation function in Definition 6,
this guarantees that the watermark codes generated during each reweighting are independent of
previously generated watermark codes. As a result, the final distribution is unbiased, and n-shot
undetectability is achieved.

However, if the context code history is reset after every generation task, it is possible for two in-
vocations of Algorithm 1 to produce the same context code, leading to the same watermark code.
Consequently, n-shot undetectability cannot be guaranteed for n > 1, and the generation service
can only provide 1-shot undetectability.

A straightforward variant of the above approach exists in the form of a batch variant. If the batch
size is set to b and the context code history is reset after each batch, the system can ensure b-shot
undetectability.

B.4 PROOF OF TAILED BOUNDS IN SECTION 5

Proof of Theorem 8.

E

[
exp

(
n∑

i=1

si

)]
= E

[
exp

(
n−1∑
i=1

si

)
E[exp(sn)|Fx

n−1]

]

≤ E

[
exp

(
n−1∑
i=1

si

)]
≤ · · · ≤ 1,

where the abbreviation in the last step means applying similar inequalities multiple times.

By applying the Chernoff bound, we obtain the desired result.

Proof of Theorem 9. From Theorem 3, we know that

P

(
n∑

i=1

s
(a)
i ≥ t

)
≤ e−t.

19

Published as a conference paper at ICLR 2024

Thus,

P

(
max

1≤a≤A

(
n∑

i=1

s
(a)
i

)
≥ t

)
≤

∑
1≤a≤A

P

(
n∑

i=1

s
(a)
i ≥ t

)
≤ Ae−t.

B.5 DETAILS ON MAXIMIN VARIANT OF LLR SCORE

B.5.1 DERIVATION OF THE SOLUTION

Recall that we are dealing with the maximin problem given as:

max
Si

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

We can find a relaxation by replacing the constraint Q′
i ∈ ∆Σ with

∑
x∈Σ Q′

i(x) = 1 and no longer
requiring Q′

i(x) ≥ 0. Thus, we obtain the following inequality:

min
Q′

i∈∆Σ,TV (Q′
i,Qi)≤d

⟨Q′
i, Si⟩ ≥ min

Q′
i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩.

The new maximin problem becomes:

max
Si

min
Q′

i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

This relaxation is tight, meaning it does not affect the final maximin optimal solution. This is
because, even though the relaxed problem does not require Q′

i(x) ≥ 0, the maximin problem’s
optimal solution S∗

i and Q′
i
∗ must satisfy Q′

i
∗
(x) ≥ 0. Otherwise, S∗

i (x) could be further reduced,
implying that S∗

i (x) is not an optimal solution and leading to a contradiction.

The inner optimization of the relaxed problem can be solved directly:

min
Q′

i,
∑

x∈Σ Q′
i(x)=1,TV (Q′

i,Qi)≤d
⟨Q′

i, Si⟩ = ⟨Qi, Si⟩+ d
(
min
x

Si(x)−max
x

Si(x)
)
.

This leads to the new maximization optimization problem:

max
Si

⟨Qi, Si⟩+ d
(
min
x

Si(x)−max
x

Si(x)
)

s.t. ⟨Pi, exp(Si)⟩ ≤ 1.

We can find the KKT conditions for this optimization problem by rewriting it as follows:

max
Si

⟨Qi, Si⟩+ d(maxSi −minSi)

s.t. ⟨Pi, exp(Si)⟩ ≤ 1,

maxSi ≥ Si(x),

minSi ≤ Si(x).

Let the Lagrangian be

L =max
Si

⟨Qi, Si⟩+ d(minSi −maxSi)

+ λ(1− ⟨Pi, exp(Si)⟩)
+ ⟨u,maxSi − Si⟩
+ ⟨v, Si −minSi⟩.

20

Published as a conference paper at ICLR 2024

Then, the KKT conditions are:

∂L

∂Si(x)
= [Qi(x)− u(x) + v(x)]− λPi(x) exp(Si(x)) = 0,

∂L

∂maxSi
= −d+

∑
x∈Σ

u(x) = 0,

∂L

∂minSi
= d−

∑
x∈Σ

v(x) = 0,

λ(1− ⟨Pi, exp(Si)⟩) = 0,

⟨u,maxSi − Si⟩ = 0,

⟨v, Si −minSi⟩ = 0.

We can solve for the value of λ:∑
x∈Σ

∂L

∂Si(x)
= [1− d+ d]− λ

∑
x∈Σ

Pi(x) exp(Si(x)) = 0.

Note that λ cannot be 0, so the fourth KKT condition implies ⟨Pi, exp(Si)⟩ = 1. Consequently, the
above equation implies λ = 1.

The final solution is given by:

Si(x) = log
Qi(x)− u(x) + v(x)

Pi(x)
,

u(x) ̸= 0 iff Si(x) = max
x

Si(x),

v(x) ̸= 0 iff Si(x) = min
x

Si(x),∑
x∈Σ

u(x) =
∑
x∈Σ

v(x) = d.

B.5.2 COMPUTING THE SOLUTION

Let

Xmax = {x ∈ Σ | Si(x) = max
x

Si(x)},

Xmin = {x ∈ Σ | Si(x) = min
x

Si(x)}.

If x /∈ Xmax ∪Xmin, then we have

Si(x) = log
Qi(x)

Pi(x)
.

If x ∈ Xmax, then we have

max
x

Si(x) = Si(x) = log
Qi(x)− u(x) + v(x)

Pi(x)
.

Summing over all x ∈ Xmax, and noting that
∑

x∈Xmax
u(x) = d, we obtain:

max
x

Si(x) = log

∑
x∈Xmax

Qi(x)− d+
∑

x∈Xmax
v(x)∑

x∈Xmax
Pi(x)

.

Similarly,

min
x

Si(x) = log

∑
x∈Xmin

Qi(x)−
∑

x∈Xmin
u(x) + d∑

x∈Xmin
Pi(x)

.

When
∑

x∈Xmin
u(x) ̸= 0, it implies that there exists an x ∈ Xmin such that x ∈ Xmax, which

in turn implies that maxx Si(x) = Si(x) = minx Si(x). In this case, the score is trivial, with
Si(x) = 0 for all x ∈ Σ.

21

Published as a conference paper at ICLR 2024

Thus, the computation of the maximin solution reduces to finding Xmax and Xmin, which can be
computed in Õ(|Σ|) time. A pseudocode is shown in Algorithm 2.

Note that the provided pseudocode is not a real implementation but serves as a schematic representa-
tion of the algorithm. In our experimental implementation, we took into consideration the effective
precision of computer floating-point numbers. To ensure numerical stability and prevent NaNs, we
implemented the algorithm in log space. This makes the algorithm more complex, and additionally,
we designed the algorithm with grid search by reusing previous computation results for accelera-
tion. We also implemented such algorithm with tensor operator for efficient computation on GPU.
For more details, please refer to the source code.

Algorithm 2 Computation of maximin variant of LLR score

import numpy as np

def get_max_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
"""Get $\max_x \exp(S(x))$"""
indexes = sorted(range(len(P)), key=lambda i: Q[i] / P[i], reverse=True)

sum_Q = 0.0
sum_P = 0.0

def _lr():
nonlocal sum_Q, sum_P
if sum_Q <= d:

return 0.0
else:

return (sum_Q - d) / sum_P

lr = _lr()

for i in indexes:
if Q[i] / P[i] < lr:

break
sum_Q += Q[i]
sum_P += P[i]
lr = _lr()

return lr

def get_min_lr(P: np.ndarray, Q: np.ndarray, d: float) -> float:
"""Get $\min_x \exp(S(x))$"""
indexes = sorted(range(len(P)), key=lambda i: Q[i] / P[i])

sum_Q = 0.0
sum_P = 0.0

def _lr():
nonlocal sum_Q, sum_P
return (sum_Q + d) / sum_P

lr = _lr()

for i in indexes:
if Q[i] / P[i] > lr:

break
sum_Q += Q[i]
sum_P += P[i]
lr = _lr()

22

Published as a conference paper at ICLR 2024

return lr

def get_S(P: np.ndarray, Q: np.ndarray, d: float) -> np.ndarray:
max_lr = get_max_lr(P, Q, d)
min_lr = get_min_lr(P, Q, d)
lr = Q / P
if max_lr <= min_lr:

return np.zeros_like(p)
return np.log(np.clip(lr, min_lr, max_lr))

C ADDITIONAL DISCUSSION

Performance without context code history Despite that “context code history” is necessary to
ensure n-shot-undetectable, it’s possible to bypass this requirement, and always execute steps 9 and
10 in Algorithm 1. In many instances, this won’t significantly degrade the performance of down-
stream tasks, as the probability of context code collision is low. However, if one chooses to neglect
the context code history, they effectively waive the theoretical guarantee of n-shot-undetectability
and potentially expose themselves to corner cases that could notably undermine the task perfor-
mance. Moreover, users could specifically construct test cases that check for the existence of wa-
termarks. For instance, prompts like ”Generate a random bit (0 or 1):” or ”Generate a random bit
sequence, with five dots between every two digits:” would yield incorrect results in the absence of
context code history.

Computation of logits during detection The watermark detection methods in Sections 5.2
and 5.3 relies on the output probability distribution PM . Ideally, the PM used during detection
should be the same as the one during generation. However, this may not always be possible. Lan-
guage model logits depend on various parameters like the prompt, the temperature and sampling
policy used during generation, etc., which might not be accessible during watermark detection. For
instance, PM depends on the prompt, but during detection, we might only have the text to be exam-
ined and not the prompt from which it was generated.

In such circumstances, we can only resort to using another distribution P ′
M as an estimation of PM .

For instance, if the prompt is missing during detection, we can set the prompt to an empty string and
then calculate the language model probabilities. In a machine translation task, one could translate
the output back to the input language and use that as input. In practice, there’s likely to be a disparity
between P ′

M and PM , which could lead to a drop in score. We discuss in detail how the score is
affected by changes in logits in Appendix F.2.

Cost of likelihood computation The detection methods in Sections 5.2 and 5.3 require the output
probability distribution PM . This comes at a computational cost: it’s more computationally expen-
sive than red list-based methods proposed by Kirchenbauer et al. (2023), as it involves a language
model. However, the cost is much less than a generation, as it only requires a single forward pass.

On the other hand, our framework also supports likelihood-agnostic detection methods, which have
their own pros and cons. We present a detailed comparison of likelihood-based and likelihood-
agnostic methods and provide an example in Appendix D.

Perturbation of P The method in Section 5.3 introduces a variation of the log likelihood ratio
test where the watermarked distribution PM,w is perturbed, resulting in a new optimization problem.
Similarly, we could introduce a perturbation to the original distribution PM . Specifically, we would
adjust the original constraint of ⟨Pi, exp(Si)⟩ ≤ 1 to be ⟨P ′

i , exp(Si)⟩ ≤ 1,∀P ′
i , s.t.TV (Pi, P

′
i) ≤

d′, where TV (Pi, P
′
i) denotes the total variation distance between Pi and P ′

i and d′ is a small
positive number.

This new optimization problem can be solved using similar methods as those in Appendix B.5.2.
We have implemented this computation in our codebase. However, for the experiments in this paper,
we only used the case where d′ = 0.

23

Published as a conference paper at ICLR 2024

D LIKELIHOOD-AGNOSTIC WATERMARK SCORE

Our unbiased watermark can also be detected in a likelihood-agnostic way such that it does not rely
on a language model and its output logits to compute the score.

D.1 METHOD

D.1.1 REWEIGHTING FUNCTION

We use the same δ-reweighting as in Section 4.1.2, but with a different implementation. Instead
of using inverse sampling, we can also use Gumbel trick. Specifically, each watermark code is
a list of |Σ| number of independent and identically distributed standard Gumbel variables. The
watermark code space is E = RΣ. The probability density function of the watermark code is given
by PE(E) =

∏
a∈Σ e−E(a)+eE(a)

.

To sample a token using the Gumbel trick, we compute a∗ = argmaxa{logP (a) + E(a)}, and the
reweighted distribution becomes Q = δa∗ . Gumbel variables allow us to guess the likelihood of a
token coming from the watermark model without relying on logits, as tokens with larger Gumbel
variables are more likely to be picked by the watermark model.

D.1.2 SCORE DESIGN AND TAIL BOUND

Similar to Section 5, we calculate scores for each token, but without relying on the original and
reweighted distribution P and Q. Thus, the design of the likelihood-agnostic score has a certain
degree of arbitrariness, unlike the method in Sections 5.2 and 5.3 which was derived in a principled
way.

We choose the score to be si = ln 2− exp(−E(a∗)). One of the main concerns of this construction
is that it can yield a tail bound similar to Theorem 8.

Theorem 16. For n independent random variables Gi ∼ Gumbel(0, 1), if we define si = ln 2 −
exp(−Gi), we have E[exp(si)] ≤ 1 and P (

∑n
i=1 si ≤ t) ≤ e−t.

For a token with watermark, the average score is E[ln 2− exp(−Gi(a
∗))] = ln 2−

∑
a∈Σ P (a)2 =

ln 2− exp(−H2(P)), where H2(P) is the Rényi entropy of order 2. Therefore, the average score is
positive only when the entropy is high.

Note that Theorem 16 requires independence of si, unlike Theorem 8 where the si can be a ran-
dom process. In practice, the Gumbel variables depend on the watermark code, and the watermark
code might repeat, leading to dependencies between Gumbel variables and thus between scores. To
address this issue, for repeating context codes, we set the score to zero, ensuring that Theorem 16
remains applicable.

The detection process is as follows: given a text x1:n = (x1, . . . , xn), we obtain a series of context
codes (cc1, . . . , ccn) and watermark codes (E1, . . . , En). The final scores are computed as

si =

{
ln 2− exp(−Ei(xi)) if cci /∈ cc1, . . . , cci−1,

0 if cci ∈ cc1, . . . , cci−1.

D.2 COMPARISON BETWEEN LIKELIHOOD-BASED SCORE AND LIKELIHOOD-AGNOSTIC
SCORE

Compared to the likelihood-based score, the likelihood-agnostic score has some notable drawbacks.

As it does not rely on logits, it cannot distinguish between high and low entropy situations. In low
entropy cases, the likelihood-agnostic score still tends to have a large absolute value, even though it
does not provide any signal and only contributes noise, lowering the score. In extreme cases, when
the entropy is zero, the generation result is deterministic, and the ideal detection algorithm should
output a zero score, as there is no evidence for or against the presence of the watermark. However,
the likelihood-agnostic score would output a negative average score, giving a false indication that
the text was not generated by a model with watermark.

24

Published as a conference paper at ICLR 2024

Moreover, in cases where the original distribution PM is known, the likelihood-agnostic score is
much smaller than the log likelihood ratio based score. According to the Neyman-Pearson lemma,
the log likelihood ratio test is the most powerful statistical test, and its maximin variant also retains
this property to a certain degree, thus providing a higher score than likelihood-agnostic score.

On the other hand, the likelihood-agnostic score has a lower computational cost, as it does not
depend on the logits computed by a large language model. Furthermore, the fact that likelihood-
agnostic score is independent of logits from the language model makes it more appealing when the
original distribution PM is hard to estimate during detection.

E DETAILED EXPERIMENT SETUP

We evaluate the performance of our Unbiased Watermarks on two important applications of seq2seq
models: text summarization(TS) and machine translation(MT).

Text summarization. In the TS task, we adopt the test set of of CNN-DM (Hermann et al., 2015)
corpus, which consists of 11,490 examples. The model applied is BART-large, which contains 400
million parameters.

Machine translation. For the MT task, we employ the WMT’14 English (En) to Romanian (Ro)
dataset, which has a test set size of 1,999 examples. The Multilingual Bart (MBart) (Liu et al., 2020)
model and its official tokenizer is applied.

Watermark setup. We evaluate two reweighting functions in our experiment: δ-reweight and γ-
reweight. For context code generation, we employ the most recent five tokens as context code. For
example, if the current input to the decoder is (x1, x2, x3), the context code used in generating x4

would be (x1, x2, x3), considering only three tokens are available. Context code history is reset
before generating each batch, thereby making our method b-shot-undetectable given a batch size of
b. For the unbiased watermark code generation function, we use SHA-256 as the hash function and a
1024-bit random bitstring as the key k. The watermark code E is sampled from PE using hash(c, k)
as the random seed.

In addition, we compared our method with the soft-red-list watermarking method from Kirchenbauer
et al. (2023). Their method depends on two parameters δ, controlling the size of the change in
logits, and γ, which is the proportion of the green list in the total vocabulary. We test δ with three
values: 0.0, 1.0, 2.0, and fix γ to be 1

2 . It is important to clarify that the δ and γ in our δ-reweight
and γ-reweight are different from those in Kirchenbauer et al.’s method. In the latter, δ and γ are
hyperparameters, while in our method, δ-reweight and γ-reweight are names of two reweighting
strategies.

Watermark detection. We employ the maximin variant of LLR score for watermark detection. The
score depends on a perturbation strength d and is optimized by performing a grid search over the set
{0, 0.1, . . . , 0.9, 1.0}, which consists of 11 points. The optimal perturbation strength is the one that
yields the highest score sum.

Evaluation metrics. For the TS task, we employ the ROUGE score (Lin, 2004), which measures
the overlap in terms of n-grams to assess the effectiveness of the summary in capturing the essential
content from the reference summaries. For the MT task, we use the BLEU score (Papineni et al.,
2002) that emphasizes the lexical similarity between the machine-generated translations and the
human reference translations. We estimated the distribution and standard error of BLEU score based
on bootstrapping. In both tasks, we also apply BERTScore and Perplexity as auxiliary metrics.

Computational costs. Our experiments are carried out on a machine equipped with 2x AMD EPYC
7513 32-Core Processor and 8x A6000 GPUs. All experiments can be completed within 4 hours.

Implementation. The experiments are implemented based on the Huggingface library (Wolf et al.,
2019), a popular platform for developing and sharing models in the NLP community.

25

Published as a conference paper at ICLR 2024

F MORE EXPERIMENT

F.1 ADDING WATERMARK

Tables 4 and 5 shows more result under the same setup as Table 1.

Table 4: Additional result about the performance of different watermarking methods on TS. We
scale BERTScore and ROUGE with a factor of 100.

BERTScore.Precision ↑ BERTScore.Recall ↑ ROUGE-2 ↑ ROUGE-L ↑
No Watermark 0.3180± 0.0009 0.3361± 0.0010 0.1388± 0.0008 0.2445± 0.0008
δ-reweight 0.3180± 0.0009 0.3365± 0.0010 0.1392± 0.0008 0.2451± 0.0008
γ-reweight 0.3180± 0.0009 0.3360± 0.0010 0.1397± 0.0008 0.2451± 0.0008
Soft(δ=0.0) 0.3180± 0.0009 0.3361± 0.0010 0.1388± 0.0008 0.2445± 0.0008
Soft(δ=1.0) 0.3092± 0.0009 0.3382± 0.0009 0.1344± 0.0007 0.2400± 0.0007
Soft(δ=2.0) 0.2908± 0.0008 0.3339± 0.0009 0.1238± 0.0007 0.2293± 0.0007

GPTScore (Fu et al., 2023) is an LLM based auto evaluator. We utilize text-curie-001 for our evalu-
ations.

Table 5: Additional result about the performance of different watermarking methods on MT. We
scale BERTScore with a factor of 100.

BERTScore.Precision ↑ BERTScore.Recall ↑ Perplexity ↓ GPTScore ↓
No Watermark 0.546± 0.003 0.575± 0.003 2.31± 0.07 1.26± 0.01
δ-reweight 0.550± 0.003 0.579± 0.003 2.20± 0.05 1.25± 0.01
γ-reweight 0.549± 0.003 0.577± 0.003 2.24± 0.04 1.26± 0.01
Soft(δ=0.0) 0.546± 0.003 0.575± 0.003 2.31± 0.07 1.26± 0.01
Soft(δ=1.0) 0.537± 0.003 0.568± 0.003 2.43± 0.07 1.31± 0.01
Soft(δ=2.0) 0.523± 0.003 0.555± 0.003 2.81± 0.07 1.41± 0.01

F.2 SENSITIVITY OF SCORES

The detection methods in Sections 5.2 and 5.3 rely on the output logits of the language models,
which in turn depend on various factors such as the prompt, the temperature and sampling policy
used during the generation process, and the language model itself. In this section, we measure the
sensitivity of the scores to changes in these parameters.

Watermarked samples are generated from the distribution PM,w, which comes from reweighting of
the original distribution PM . However, during detection, we modify some parameters, including
temperature, sampling policy (top k), input, and model, resulting in a new probability distribution
P ′
M .

The following table demonstrates the decrease in scores under different changes, showing that when
P ′
M is not equal to PM , the scores decline. This implies that more tokens are required to accumulate

sufficient evidence to prove the existence of the watermark.

Table 6: Score per token when the estimated token distribution is computed from a different temper-
ature than the real token distribution.

Text summarization Machine translation
temperature δ-reweight γ-reweight δ-reweight γ-reweight

0.5 0.049± 0.407 0.133± 0.309 0.041± 0.303 0.084± 0.241
1.0 (groundtruth) 0.878± 1.435 0.220± 0.367 0.420± 1.135 0.105± 0.291
1.5 0.036± 0.498 0.166± 0.455 0.019± 0.324 0.088± 0.335

Comparing the two reweight functions, we find that when P ′
M is equal to PM , the δ-reweight always

yields a higher score than the γ-reweight. However, when P ′
M is different from PM , the scores

26

Published as a conference paper at ICLR 2024

Table 7: Score per token when the estimated token distribution is computed from a different top k
than the real token distribution.

Text summarization Machine translation
top k δ-reweight γ-reweight δ-reweight γ-reweight

20 0.520± 1.144 0.212± 0.362 0.274± 0.859 0.101± 0.284
50 (groundtruth) 0.878± 1.435 0.220± 0.367 0.420± 1.135 0.105± 0.291
100 0.582± 1.262 0.219± 0.369 0.288± 0.930 0.105± 0.292
No top k sampling 0.377± 1.124 0.216± 0.373 0.022± 0.349 0.097± 0.324

Table 8: Score per token when the estimated token distribution is computed with and without input.

Text summarization Machine translation
δ-reweight γ-reweight δ-reweight γ-reweight

with input (groundtruth) 0.8783± 1.4353 0.2206± 0.3677 0.4201± 1.1355 0.1058± 0.2916
without input 0.0108± 0.2170 0.0244± 0.2417 0.0096± 0.2004 0.0186± 0.1904

Table 9: Score per token when the estimated token distribution is computed from a different model
than the real token distribution.

Text summarization
model δ-reweight γ-reweight

“philschmid/bart-large-cnn-samsum” (groundtruth) 0.878± 1.435 0.220± 0.367
“facebook/bart-large-cnn” 0.041± 0.447 0.091± 0.412

obtained from the δ-reweight exhibit a significant drop, whereas the decline in scores for the γ-
reweight is always more gradual than that of the δ-reweight. This indicates that the γ-reweight is
less sensitive to the differences between P ′

M and PM .

F.3 LIKELIHOOD-AGNOSTIC SCORE

When applied to text summarization, which is a task with relatively high entropy, the likelihood-
agnostic score is positive on average but an order of magnitude lower than the likelihood-based
score. For machine translation, which is a low entropy task, the average score is negative, and thus
cannot be used to detect watermark in this case.

Table 10: Mean and variance of score per token for δ-reweight based on Gumbel trick on different
tasks.

Text summarization Machine translation

Maximin variant of LLR score 0.876± 1.444 0.429± 1.172
Likelihood-agnostic score 0.078± 0.776 −0.104± 0.891

F.4 VERIFYING DOWNSTREAM-INVARIANT PROPERTY OF WATERMARK FOR MORE MODELS

Table 11: Additional result with T5 for translation tasks and LLaMA 2 (Touvron et al., 2023) for
summarization and poem generation.

Task Text summarization Machine translation Poetry generation
Model Llama 2 T5 Llama2
Score ROUGE-1 ↑ BERTScore.Precision ↑ Perplexity ↓

No Watermark 0.3705± 0.0009 0.575± 0.003 2.73± 0.08
δ-reweight 0.3704± 0.0009 0.577± 0.003 2.71± 0.06
γ-reweight 0.3704± 0.0009 0.576± 0.003 2.71± 0.08
Soft(δ=0.0) 0.3705± 0.0009 0.575± 0.003 2.73± 0.08
Soft(δ=1.0) 0.3678± 0.0009 0.571± 0.003 3.04± 0.13
Soft(δ=2.0) 0.3610± 0.0009 0.560± 0.003 3.92± 0.16

27

Published as a conference paper at ICLR 2024

F.5 ROBUSTNESS OF WATERMARKS

In this section, we aim to evaluate the robustness of watermarking methods. To perform this as-
sessment, we first initialize 512 string prompts for open-ended text completion. For each of these
prompt, we use certain watermark method to generate 16 tokens sequentially. These generated
strings are modified and then analyzed to detect the presence of watermarks.

In order to test the resilience of the watermarks against noise and alterations, we introduce random
perturbation to generated text by replacing a ε portion of the tokens with random tokens. We start our
experiment with ε = 0.0, indicating no perturbation to the original strings, and gradually increase it
to ε = 0.5, where half of the tokens in each string are replaced with random tokens.

To quantify the robustness of the watermarks, we calculate a corresponding score for each level of
perturbation and measure the Area Under the Curve (AUC). For unbiased watermark methods, the
score is calculated using the method described in section Section 5.3. For soft red list methods, we
employ the z-score as defined in Kirchenbauer et al. (2023).

Table 12: AUC for different watermarking detection methods under different perturbation strength.

δ-reweight γ-reweight Soft(δ = 1.0) Soft(δ = 2.0)

ϵ = 0.0 0.9997± 0.0005 0.9936± 0.0016 0.8446± 0.0069 0.9705± 0.0030
ϵ = 0.1 0.9569± 0.0021 0.9297± 0.0030 0.7871± 0.0081 0.9239± 0.0070
ϵ = 0.2 0.8881± 0.0043 0.8391± 0.0018 0.7339± 0.0110 0.8680± 0.0088
ϵ = 0.3 0.8152± 0.0059 0.7574± 0.0054 0.6741± 0.0119 0.7956± 0.0110
ϵ = 0.4 0.7487± 0.0056 0.6942± 0.0107 0.6334± 0.0084 0.7312± 0.0121
ϵ = 0.5 0.6851± 0.0067 0.6502± 0.0068 0.5859± 0.0079 0.6561± 0.0124

Futhermore, we supplemented our research with an evaluation against a random deletion attack,
where about ϵ portion of tokens are deleted:

Table 13: AUC for different watermarking detection methods under different deletion portion.

δ-reweight γ-reweight Soft(δ = 1.0) Soft(δ = 2.0)

ϵ = 0.0 0.9997± 0.0005 0.9936± 0.0016 0.8446± 0.0069 0.9705± 0.0030
ϵ = 0.1 0.9674± 0.0026 0.9348± 0.0045 0.7895± 0.0044 0.9257± 0.0030
ϵ = 0.2 0.9107± 0.0061 0.8616± 0.0032 0.7377± 0.0079 0.8697± 0.0043
ϵ = 0.3 0.8319± 0.0056 0.7697± 0.0023 0.6903± 0.0074 0.8042± 0.0067
ϵ = 0.4 0.7634± 0.0011 0.7020± 0.0054 0.6387± 0.0026 0.7336± 0.0084
ϵ = 0.5 0.7032± 0.0044 0.6577± 0.0082 0.5894± 0.0075 0.6626± 0.0104

G LIMITATIONS

G.1 MAJOR LIMITATIONS

We note that our unbiased watermarking technique only works for generative processes with high
entropy. In an extreme case, when entropy is 0 and output of the original model is fixed, any
unbiased watermarking method will always yield the same result as the original model. As a result,
it is challenging to integrate our unbiased watermarking approach with beam search algorithms due
to their intrinsic deterministic nature.

G.2 MINOR LIMITATIONS

• Since our study is focused on unbiasedness, rather than robustness of watermark method, we
only test the robustness of the watermark for a single attacks, that is the random substitution
attack. There are numerous ways of watermark removal ranging from simple text insertion to
more sophisticated methods like paraphrasing attacks. These attacks have their own implication
on watermark robustness, but this topics is beyond the scope of this paper.

• Even though we have proposed a watermarking framework, there is considerable design space left
unexplored. Many reweighting functions and context codes may be applicable, but it is unclear

28

Published as a conference paper at ICLR 2024

which one is optimal in practice, particularly since we currently lack standard evaluation metrics.
We expect that continued research in this area could possibly shed more light on this subject.

• In Algorithm 1, the introduction of context code history strictly ensures n-shot-undetectable wa-
termarking at the expense of additional storage requirements, as the context code history from
past generation processes needs to be retained. This presents a trade-off between storage and
undetectability. For instance, if we store all context codes in the previous n generated outputs,
we can ensure n-shot-undetectability. However, the greater the value of n, the larger the required
storage space, though this does provide stronger undetectability. Generally, storage complexity
increases with O(n).

29

	Introduction
	Preliminary
	Warm up: undetectability in a simplified toy environment
	Watermarking with unbiased reweighting
	Distribution reweighting
	Existing reweighting methods
	Unbiased reweighting methods

	Reweighting for autoregressive model
	Independence of watermark codes
	Context code

	Framework

	Statistical hypothesis testing for watermark detection
	Score-based tesing
	Log likelihood ratio (LLR) score
	Maximin variant of LLR score

	Experiments
	Related work
	Conclusion
	Ethics statements
	Impact analysis
	Ethical considerations
	Conclusion

	Related works
	Text watermarking
	Attacks on watermarks
	Steganography in text
	Watermarking models
	Detecting machine-generated text

	Detailed definition and additional proofs
	Detailed definition and additional proofs for se:reweighting
	Additional proofs for se:context
	Detailed theory for se:framework
	Proof of tailed bounds in se:detect
	Details on maximin variant of LLR score
	Derivation of the solution
	Computing the solution

	Additional discussion
	Likelihood-agnostic watermark score
	Method
	Reweighting function
	Score design and tail bound

	Comparison between likelihood-based score and likelihood-agnostic score

	Detailed experiment setup
	More experiment
	Adding watermark
	Sensitivity of scores
	Likelihood-agnostic score
	Verifying downstream-invariant property of watermark for more models
	Robustness of watermarks

	Limitations
	Major Limitations
	Minor Limitations

