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Abstract

State of the art large language models are trained
using large amounts of tokens derived from raw
text using what is called a tokenizer. Crucially,
the tokenizer determines the (token) vocabulary a
model will use during inference as well as, in prin-
ciple, the (token) language. This is because, while
the token vocabulary may allow for different to-
kenizations of a string, the tokenizer always maps
the string to only one of these tokenizations—
the canonical tokenization. However, multiple
lines of empirical evidence suggest that large lan-
guage models do not always generate canonical
token sequences, and this comes with several neg-
ative consequences. In this work, we first show
that, to generate a canonical token sequence, a
model needs to generate (partial) canonical to-
ken sequences at each step of the autoregressive
generation process underpinning its functioning.
Building upon this theoretical result, we intro-
duce canonical sampling, a simple and efficient
sampling method that precludes a given model
from generating non-canonical token sequences.
Further, we also show that, in comparison with
standard sampling, the distribution of token se-
quences generated using canonical sampling is
provably closer to the true distribution of token
sequences used during training.

1. Introduction
One of the most distinctive characteristics of large language
models (LLMs) is that they are trained using large amounts
of text data from diverse sources, including websites, books,
scientific articles and code repositories (Naveed et al., 2024).
During the training process, a tokenizer breaks down the
text into sequences of tokens, which are the units that make
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up sentences and paragraphs, and the LLM learns to predict
the next token in a sequence based on the preceding tokens.

Importantly, since tokenizers typically utilize a determinis-
tic, rule-based mapping from text to token sequences (Gage,
1994; Sennrich et al., 2016; Kudo, 2018; Song et al., 2021),
each unique string is always mapped into one tokenization
referred to as the canonical tokenization (Geh et al., 2024).
Consequently, one may conclude that, at the end of the train-
ing process, LLMs will have learned to generate exclusively
canonical token sequences. However, there is empirical evi-
dence that this conclusion does not hold—LLMs do generate
both canonical and non-canonical token sequences (Cao &
Rimell, 2021; Chirkova et al., 2023; Geh et al., 2024; Vieira
et al., 2024; Giulianelli et al., 2024; Artola Velasco et al.,
2025).

In this work, we argue that the generation of non-canonical
token sequences is unlikely to bring performance benefits,
and it does actually have negative consequences. First, it
does not increase the expressiveness of a LLM since any
non-canonical token sequence can be mapped to a canonical
token sequence while preserving its string-level representa-
tion. However, they can be exploited to circumvent safety
guidelines because they are out-of-distribution samples (Geh
et al., 2025). Second, it can lead to a multiplicity of (plau-
sible) tokenizations of an output string, and this creates a
financial incentive for an LLM provider to strategize and
misreport the (number of) tokens a model used to generate
the output (Artola Velasco et al., 2025). Third, in the context
of LLM evaluation, it becomes (computationally) hard to
compute the perplexity of a given string (Cao & Rimell,
2021; Chirkova et al., 2023; Geh et al., 2024).

Motivated by the above observations, we develop a simple
and efficient sampling method that precludes an LLM from
generating non-canonical token sequences. Our method is
based on the following theoretical result, which may be
of independent interest: to generate a canonical token se-
quence, a model needs to generate (partial) canonical token
sequences at each step of the autoregressive generation pro-
cess underpinning its functioning. More specifically, build-
ing upon this result, our method utilizes the Gumbel-Max
trick to efficiently sample only from the subset of tokens
that can lead to (partial) canonical token sequences at each
step of the generation. Importantly, we are able to show that,
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in comparison with standard sampling, the distribution of
token sequences generated by canonical sampling is prov-
ably closer to the true distribution of token sequences used
during training.

Related work. The study of tokenization has a rich his-
tory in natural language processing (Palmer, 2000; Juraf-
sky & Martin, 2025). More recently, in the context of
LLMs, there has been a renewed interest in formalizing
tokenization and analyzing its properties (Gastaldi et al.,
2024; Phan et al., 2024; Rajaraman et al., 2025), with the
Byte-Pair Encoding (BPE) tokenization algorithm in par-
ticular receiving increased attention (Berglund & van der
Merwe, 2023; Zouhar et al., 2024; Kozma & Voderholzer,
2024). The impact of tokenization on LLMs has also been
studied empirically (Hou et al., 2023; Athiwaratkun et al.,
2024) in generation tasks involving foreign languages (Fu-
jii et al., 2023), translation (Domingo et al., 2019), arith-
metic (Singh & Strouse, 2024), mental health (Liu et al.,
2023), and privacy (Kharitonov et al., 2021; Petrov et al.,
2023), among others. Moreover, there have also been efforts
to design token-free LLMs that operate at the character or
byte level (Clark et al., 2022; Tay et al., 2022; Xue et al.,
2022; Yu et al., 2023; Wang et al., 2024), as well as stochas-
tic tokenizers (Kudo, 2018; Provilkov et al., 2020). However,
none of the above works has paid attention to the existence
and significance of non-canonical tokenizations.

Only very recently, there has been a paucity of work study-
ing the impact of non-canonical tokenizations on text per-
plexity calculations (Cao & Rimell, 2021; Chirkova et al.,
2023; Geh et al., 2024; Vieira et al., 2024; Giulianelli et al.,
2024), safety guidelines (Geh et al., 2025), and financial
incentives of LLM providers (Artola Velasco et al., 2025).
However, none of the above works has studied how to pre-
vent the generation of non-canonical token sequences, which
is the focus of our work. An exception is a very recent, in-
dependent work by Vieira et al. (2025) that also presents
methods to ensure LLMs generate only canonical token
sequences. However, their proposed sampling algorithm
requires computing the full subset of tokens that lead to (par-
tial) canonical token sequences at each step of the generation
process, which is computationally inefficient compared to
our approach that utilizes the Gumbel-Max trick. Addition-
ally, Vieira et al. (2025) only investigate tokenizers based
on the Byte-Pair Encoding tokenization algorithm, while we
also consider Unigram- and Wordpiece-based tokenizers.

2. Preliminaries
In this section, we first define and formally characterize (de-
terministic) tokenizers and canonical tokenizations. Then,
we briefly review the popular Byte-Pair Encoding (BPE)
tokenization algorithm (Gage, 1994; Sennrich et al., 2016).
Finally, we conclude with a description of the aspects of

LLM training and generation that are relevant for our work.

Tokenizers and canonical tokenizations. Tokenizers are
tools that operate on sequences of characters (i.e., strings)
and sequences of tokens, and can transform one type into
the other. Formally, let Σ be a finite set of characters and
Σ∗ be the set of all finite strings that can be created using
the characters in Σ. Similarly, let V be a finite set of tokens,
which we will refer to as the vocabulary, and V ∗ be the
set of all finite token sequences that can be created using
the tokens in V . Then, a tokenizer T is characterized by
a tuple T := (Σ, V,enc,dec), where enc : Σ∗ → V ∗ is
an encoder, which transforms strings to token sequences,
and dec : V ∗ → Σ∗ is a decoder, which transforms token
sequences to strings.

Let σ be a string and s ∈ V ∗ be a token sequence such
that dec(s) = σ, then, we will say that s is a (valid) to-
kenization of the string σ. Here, note that there may be
multiple tokenizations of a string σ, that is, there may exist
s, s′ ∈ V ∗ such that s ̸= s′ and dec(s) = dec(s′) = σ.
However, given a string σ, the encoder deterministically
picks a single tokenization enc(σ) among all tokenizations
of σ, which is often called the canonical tokenization (Geh
et al., 2024).

The BPE tokenization algorithm. There exist many to-
kenization algorithms to construct the set of characters Σ,
the set of tokens V , the encoder enc, and the decoder dec
characterizing a tokenizer T . Here, we focus on the BPE
tokenization algorithm (Gage, 1994; Sennrich et al., 2016),
since it is the algorithm used by most, if not all, state-of-
the-art LLMs.1 In a nutshell, the BPE algorithm aims to
create a tokenizer T with a set of tokens V corresponding
to character sequences that appear frequently in a training
set of strings C. To this end, it proceeds as follows.

In an initialization phase, the algorithm sets Σ to be the
set of all characters that appear at least once in C, V to be
the set of single-character tokens, that is, for each c ∈ Σ,
there exists one and only one t ∈ V such that dec(t) = c,
and S to be the set of single-character token sequences
s ∈ V ∗ representing all strings in C. After the initialization
phase, the algorithm proceeds iteratively for a predetermined
number of iterations. At each iteration, it looks for the pair
of tokens t, t′ ∈ V whose concatenation t p t′ appears most
frequently in the set of token sequences S, it creates a new
token t◦ t′, where the symbol ◦ denotes the merge operation
and dec(t ◦ t′) = dec(t) p dec(t′), and it adds the newly
created token to V . Then, for each token sequence s ∈ S , it
replaces all occurrences of t p t′ by t ◦ t′ one by one. Lastly,
it creates a merge rule rt,t′ , which specifies the replacement

1In Appendix B, we review Unigram (Kudo, 2018) and Word-
piece (Song et al., 2021), which are also well-known tokenization
algorithms.
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of t p t′ with t ◦ t′, and adds it to an ordered sequence of
merge rules R.

After termination, the algorithm defines the encoder enc
and decoder dec as follows. For any given token sequence
s ∈ V ∗, dec(s) transforms the sequence to a string one
token at a time, in order, using the token definitions. For
any given string σ ∈ Σ∗, enc(σ) first transforms the string
to a sequence of single-character tokens. Then, it merges
consecutive tokens from this sequence following the merge
rules from R, in order, until no merge rule is applicable, and
it returns the resulting sequence—the canonical sequence.2

LLM training and generation. During training, an LLM
learns to predict the next-token in canonical sequences of
tokens derived from raw text using a tokenizer. More for-
mally, given a (partial) token sequence s ∈ V ∗, the goal
is (typically) to minimize the (cross-entropy) loss between
the model’s predicted distribution ds ∈ ∆(V ) and the true
next-token distribution ps = P [T | S = s].

During generation, an LLM takes as input a prompt se-
quence sq ∈ V ∗ and responds with an output sequence
s ∈ V ∗, generated using an autoregressive process. At
each time step of the process, the LLM first takes as input
the concatenation of the prompt sequence sq and the (par-
tial) output sequence s, and generates a distribution over
tokens dsq ps ∈ ∆(V ). Then, it samples the next token t
from the distribution dsq ps and appends the token t to the
output sequence s. The process continues until a special
end-of-sequence token is sampled.

Importantly, since LLMs are trained on finite data, the sup-
port of the distribution dsq ps may differ from the respective
true distribution psq ps. As a result, it is possible for an
LLM to generate a non-canonical token sequence, even if
it has encountered no such sequences during training (Cao
& Rimell, 2021; Chirkova et al., 2023; Geh et al., 2024;
Vieira et al., 2024; Giulianelli et al., 2024; Geh et al., 2025;
Artola Velasco et al., 2025).

3. An Efficient Approach to Canonical
Autoregressive Generation

In this section, we start by showing that, for an output to-
ken sequence generated by an LLM to be canonical, the
partial token sequences generated at each step of the au-
toregressive generation must also be canonical. Building
upon this result, we then introduce canonical sampling, a
next-token sampling method that enables an LLM to gener-
ate only canonical token sequences, as well as an efficient
implementation of canonical sampling using the Gumbel-
Max trick (Huijben et al., 2022). Finally, we conclude by

2If t p t′ appears multiple times in a token sequence, the merge
rule rt,t′ is applied in order of appearance in the sequence.

showing that, in comparison with standard sampling, the
distribution of token sequences generated using canonical
sampling is provably closer to the true distribution of token
sequences used during training.

3.1. Subsequences of Canonical Token Sequences Must
Also Be Canonical

Our starting point is the following theorem, which tells us
that, if an LLM generates a non-canonical (partial) output
sequence at any step of the autoregressive generation pro-
cess, the output sequence is bound to remain non-canonical
in subsequent steps:3

Theorem 3.1. Let T = (Σ, V,enc,dec) be a BPE-based
tokenizer4 and s ∈ V ∗ a non-canonical token sequence
according to T . Then, for any token t ∈ V , s p t is also
non-canonical.

Proof sketch. We prove the theorem by contradiction. We
first assume that there exists a non-canonical sequence s
and a token t such that s p t is canonical. This implies
that, applying in order the merge rules of the tokenizer’s
merge rule sequence R, to the single-character token se-
quence corresponding to the string dec(s p t), results in the
token sequence s p t itself. We then show that the applied
merges can be split into two separate groups that would in-
dependently result in s and t starting from the corresponding
strings dec(s) and dec(t), respectively. Based on that, we
argue that, since s is non-canonical, there must exist a dif-
ferent, canonical tokenization s′ ̸= s of the string dec(s),
created by applying a different sequence of merge rules than
the one that resulted in s. The rest of the proof is based on
the observation that, since the merges that create the last
token t while transforming dec(s p t) into s p t are indepen-
dent of the merges that transform dec(s) into s, the string
dec(s) should have been tokenized following the merge
rules that result in s′, which contradicts the fact that s p t is
canonical.

The above theorem readily implies that an output token se-
quence generated by an LLM is canonical if and only if
the partial token sequences generated at each step of the
autoregressive generation process are canonical. This theo-
rem also provides a plausible explanation to the empirical
observation that the likelihood that an LLM generates non-
canonical output sequences increases with the length of the
sequence (Geh et al., 2024). This is because, since sampling
a “non-canonical token” once during the autoregressive pro-
cess is sufficient to render the output token sequence non-
canonical, it is natural that the chances of this to happen
increase with the number of sampled tokens.

3All proofs can be found in Appendix A.
4Our results generalize to Unigram- and Wordpiece-based tok-

enizers, which we discuss further in Appendix B.
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3.2. Canonical Sampling

At each step of the autoregressive generation process, canon-
ical sampling sets the probability of a subset of tokens to
zero—those that, when appended to a partial output se-
quence, would result in a non-canonical token sequence—
and redistributes their probability mass to the remaining
tokens proportionally to their original probability mass.

Formally, let ds denote the next-token distribution genera-
ted by the LLM given a partial output token sequence s and
let ds(t) denote the probability of sampling a token t from
this distribution. Given the partial output token sequence s,
an LLM using canonical sampling draws the next token in
the autoregressive generation process from a canonicalized
next-token distribution

d̃s(t) :=

{
ds(t)/Z if s p t is canonical
0 otherwise,

(1)

where Z =
∑

t∈V : spt is canonical ds(t) is a normalization con-
stant that ensures that d̃s is a valid probability distribution.
In that context, note that redistributing the probability mass
of tokens that would lead to non-canonical token sequences
proportionally to the original probabilities ds(t) is a natural
choice we make, inspired by other popular sampling meth-
ods used by LLMs, such as top-k and top-p sampling (Holtz-
man et al., 2019).

To compute the canonicalized next-token distribution d̃s
and sample from it directly, one would need to evaluate
whether the token sequence s p t is canonical for every
token t ∈ V , which can be computationally expensive,
especially since these evaluations are required at every step
of the autoregressive generation process. Fortunately, we
can efficiently sample from the canonicalized next-token
distribution d̃s using Algorithm 1.

Algorithm 1 starts by sampling a value ut ∼ Gumbel(0, 1)
from a Gumbel distribution for each token t ∈ V . Then,
it ranks the tokens in decreasing order with respect to the
perturbed log-probability log(ds(t))+ut. Finally, it returns
the token t with the largest value of log(ds(t)) + ut such
that s p t is canonical. Algorithm 1 relies on a property
of the Gumbel-Max trick (Maddison et al., 2014; Huijben
et al., 2022), which states that the argmax operation over
a constrained subset of categorical outcomes is equivalent
to sampling from a categorical distribution with zero prob-
ability for all outcomes outside the subset, and with the
probabilities of the outcomes in the subset scaled propor-
tionally to their original probabilities, as shown in Eq. 2
in Maddison et al. (2014). Hence, it readily holds that Al-
gorithm 1 returns a valid sample from the canonicalized
next-token distribution d̃s defined in Eq. 1, i.e.,

argmax
t∈V : spt is canonical

{log(ds(t)) + ut} ∼ d̃s.

Algorithm 1 Canonical Sampling with Gumbel-Max
Require: next-token distribution ds

ut ∼ Gumbel(0, 1) for all t ∈ V
for t ∈ V in decreasing order of log(ds(t)) + ut do

if s p t is canonical then
return t

end if
end for

Further, it is worth highlighting that, in contrast to com-
puting the canonicalized next-token distribution d̃s, which
requires evaluating the canonicity of |V | token sequences,
Algorithm 1 requires only a few evaluations of canonicity.
This is because, in practice, LLMs tend to generate mostly
canonical token sequences (Geh et al., 2024), hence, the
probabilities ds(t) generated by an LLM for tokens t that
lead to non-canonical sequences s p t are usually small.
More specifically, let ds(canonical) be the probability mass
on the subset of tokens that lead to canonical sequences,
i.e., ds(canonical) =

∑
t∈V : spt is canonical ds(t), then Algo-

rithm 1 requires, in expectation, fewer than 1/ds(canonical)
evaluations of canonicity before successfully sampling the
next token. That is because, unlike (independent) rejec-
tion sampling from ds, which would require in expectation
exactly 1/ds(canonical) evaluations of canonicity until a
token that leads to a canonical sequence is successfully
sampled, our approach never checks the same token twice,
which results in an increase in the success probability of
sampling a token that leads to a canonical sequence after
each failed attempt.5

3.3. Canonical Sampling Brings us Closer to the True
Distribution of Token Sequences

Let p denote the true distribution over token sequences
s ∈ V ∗ in the (token) language used during training, for
which note that it holds that p(s) = 0 for all sequences s that
are non-canonical. Moreover, let d denote the distribution
over token sequences that the LLM generates using stan-
dard sampling, and d̃ the distribution over token sequences
that the LLM generates using canonical sampling, that is,
sampling from the canonicalized next token distribution d̃s
given by Eq. 1 at each step of the autoregressive generation
process. Then, the following theorem shows that p is likely
to be closer to d̃ than d in terms of KL-divergence:

5The number of evaluations of canonicity in rejection sampling
is distributed according to a geometric distribution with success
probability ds(canonical) resulting in 1/ds(canonical) evaluations
in expectation until a successful sample.

4



Canonical Autoregressive Generation

Theorem 3.2. Let d be absolutely continuous6 with respect
to p. Moreover, assume that there exist s ∈ V ∗ and t1, t2 ∈
V such that s p t1 is non-canonical with d(s p t1) > 0 and
s p t2 is canonical with p(s p t2) > 0 and d(s p t2) > 0.
Then, it holds that

KL(p, d̃) < KL(p, d). (2)

In words, the two assumptions for the theorem to hold are
that (i) there must exist non-canonical token sequences with
positive probability of being generated under d so that their
probability mass can be redistributed, and (ii) there must
exist canonical token sequences with positive probability
under d and p so that the redistribution of probability mass
in d̃ is beneficial. To understand the intuition behind Theo-
rem 3.2, note that, by using canonical sampling (i.e., sam-
pling from d̃ instead of d), the probability that an LLM gen-
erates non-canonical token sequences becomes zero, and
the probability that it generates any other (canonical) token
sequence increases under d̃. Further, since only canonical
token sequences have positive probability under the true
distribution p, this redistribution of probability mass from
non-canonical token sequences to canonical ones can only
bring the distribution d̃ closer to the true distribution p com-
pared to d.

On the flip side, it is important to clarify that a similar prop-
erty does not necessarily hold for the respective distributions
over strings. That is, using canonical sampling, the distri-
bution of output strings, resulting from decoding the output
token sequences, is not guaranteed to be closer (in terms of
KL-divergence) to the true distribution of output strings used
during training. Formally, let pdec = Ps∼p(s)[dec(s)] be
the true distribution over strings, ddec = Ps∼d(s)[dec(s)]
be the distribution of strings induced by the distribution
of output token sequences d, and d̃dec = Ps∼d̃(s)[dec(s)]
be the distribution of strings induced by the distribution of
output token sequences d̃. Then, we can show that

KL(pdec, d̃dec) = KL(p, d̃) (3)

because there is a one-to-one mapping determined by the
encoder enc from any string to a canonical token sequence,
and only canonical token sequences have positive proba-
bility under p and d̃. In contrast, one cannot claim the
same for KL(pdec, ddec) and KL(p, d), as the same string
can have multiple tokenizations that have positive prob-
ability under d. Thus, Theorem 3.2 does not imply that
KL(pdec, d̃dec) < KL(pdec, ddec).

6Absolute continuity is required for the KL-divergence to be
well defined, i.e., we require that d(s) = 0 implies that p(s) = 0
for all s ∈ V ∗.

4. Discussion and Future Work
In this section, we mention aspects of our work that we
believe deserve additional consideration and discuss avenues
for future work.

Methodology. Our main theoretical result reveals that, for
BPE-, Unigram- and Wordpiece-based tokenizers, subse-
quences of canonical token sequences must also be canon-
ical. This is somehow surprising since these (determin-
istic) tokenizers use fundamentally different tokenization
techniques—BPE uses a rule based approach, Unigram max-
imizes the probability of the tokenization, and Wordpiece
greedily encodes the text to minimize the number of to-
kens. Consequently, it would be very interesting to better
understand what property a tokenizer needs to satisfy for
our main theoretical result to hold. In this context, it would
also be interesting to define relaxed notions of canonical
tokenization applicable to stochastic tokenizers and adapt
our main theoretical result to this type of tokenizers. Further,
it would be important to extend the formalization of canoni-
cal tokenization, and, consequently, our theoretical results
and sampling method, to account for the potential impact
of pre-tokenization, a process that partitions the input text
before the tokenization algorithm is applied separately to
each partition.

Under canonical sampling, we canonicalize the next-token
distribution by redistributing the probability mass of tokens
leading to non-canonical token sequences among the re-
maining tokens proportionally to their original probability
mass. We have shown that, in comparison with the original
next-token distribution, this particular canonicalized next-
token distribution leads to a distribution of output sequences
that is closer to the true distribution of token sequences.
However, there may be other canonicalized next-token dis-
tribution leading to a distribution of output sequences that
are even closer to the true distribution. In future work, it
would be worth to compare different canonicalized next-
token distributions, and investigate global strategies beyond
(next-token) sampling to optimally redistribute the probabil-
ity mass of non-canonical output token sequences.

Evaluation. As discussed at the end of Section 3.3, we
cannot establish whether Theorem 3.2, which focuses on
distributions of output token sequences, can be extended
meaningfully to distributions of output strings. This limita-
tion arises because the distribution of output strings inher-
ently marginalizes across all possible tokenizations of any
given string, creating a complex relationship between token-
and string-level probability distributions. Consequently,
the KL-divergence between the true distribution of strings
and the distribution of output strings induced by the origi-
nal next-token distribution remains theoretically intractable
when compared to the corresponding KL-divergence com-
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puted in token space. Given this theoretical gap, it would
be important to evaluate to which extent canonical sam-
pling offers practical performance benefits across different
state-of-the-art LLMs, particularly since users typically de-
rive value from the string that the output token sequence
represents, rather than the token sequence itself.

5. Conclusions
We have proposed canonical sampling, a simple and effi-
cient sampling method based on the Gumbel-Max trick that
ensures a given LLM generates canonical token sequences
at each step of the autoregressive generation process un-
derpinning its functioning. Further, we have shown that,
in comparison with standard sampling, the distribution of
token sequences generated using canonical sampling is prov-
ably closer to the true distribution of token sequences used
during training.
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A. Proof of Theorem 3.1
Here, we define some additional notation regarding the BPE tokenization algorithm and prove Theorem 3.1.

When tokenizing a string σ = c1 p · · · p cn, with ci ∈ Σ and n ∈ N, according to the BPE algorithm, we use the term
merge and write m = (rt,t′ , i, j) to refer to a single application of merge rule rt,t′ ∈ R on two consecutive tokens t p t′ that
correspond to the substring of characters ci p · · · p cj in σ. To tokenize σ, merges are performed following a unique merge
sequence M = (m1, . . . ,m|M |), where the merges are ordered m1 ≺ · · · ≺ m|M |, first by the order in which the merge
rule they refer to appears in R, and second by position of merged token pairs in the sequence. The notation m ≺ m′, for
m = (r, i, j),m′ = (r′, i′, j′) with r, r′ ∈ R, i, j, i′, j′ ∈ [n], means that either r appears before r′ in R, or r = r′ and
i < i′.

We now define an operator that, applied to a merge sequence M that tokenizes the string σ, specifies the subsequence of
merges that are applied to a certain substring of σ. Further, we define shift equivalence, referring to merge sequences whose
merges correspond to the exact same merge rule sequence applied to different positions in a string (shifted by a constant).

Definition A.1. Let s = t1 p · · · p t|s| ∈ V ∗ be a tokenization of σ = c1 p · · · p c|σ| ∈ Σ∗ obtained by applying merge
sequence M = (m1, . . . ,mn). For any continuous token subsequence s′ of s spanning the substring σ′ = cu p · · · p cv,
1 ≤ u < v ≤ |σ|, the operator [M ]s′ denotes the subsequence of merges in M such that m = (r, i, j) ∈ [M ]s′ if m ∈ M
and u ≤ i < j ≤ v.

Definition A.2. Two merge sequences M = (m1, . . . ,m|M |), M ′ = (m′
1, . . . ,m

′
|M ′|) are shift equivalent, denoted by

M
→≡ M ′, if |M | = |M ′| and there exists n ∈ Z such that for all i ∈ {1, . . . , |M |} with mi = (r, j, k), r ∈ R, k > j > 0,

it holds that m′
i = (r, j + n, k + n).

Before we prove Theorem 3.1, we show that the merge sequence that creates the tokenization s = s1 p · · · p sn from a string
σ, can be partitioned into n disjoint (non-continuous) subsequences of merges, that create the tokenizations s1, . . . , sn from
the corresponding substring of σ.

Lemma A.3. Let s ∈ V ∗ be a tokenization of σ = c1 p · · · p c|σ| ∈ Σ∗ obtained by applying merge sequence Ms. For any
partition s = s1 p · · · p sn, where si ∈ V ∗, i ∈ [n], n ∈ N, the following hold:

1. For each si ∈ s, there exists a merge sequence Msi such that applying Msi to the string dec(si) creates si and
[Ms]si

→≡ Msi .

2. For all si, sj ∈ s, i ̸= j, if m ∈ [Ms]si then m /∈ [Ms]sj and vice-versa,

3. For each merge m ∈ Ms there exists si ∈ s such that m ∈ [Ms]si .

Proof. 1. If si is a tokenization of a single character dec(si) = c, then [Ms]si is the empty sequence and the statement
holds trivially. Assume si is a tokenization of the substring cu p · · · p cv of σ, with v > u > 0, and [Ms]si =
(m1, . . . ,mn). By Definition A.1, all merges m = (r, j1, j2) ∈ Ms with u ≤ j1 < j2 ≤ v belong in [Ms]si , so these
merges tokenize cu p · · · p cv into si. Then, the merge sequence Msi = (m′

1, . . . ,m
′
n), where for all k ∈ [n] it holds

that mk = (r, j1, j2) and m′
k = (r, j1 − u, j2 − u), r ∈ R, contains the same merge rules in the same order, but with

indices shifted left by u. So if Msi is applied to the string dec(si) it will create si.

2. If [Ms]si or [Ms]sj are the empty sequence, meaning si or sj are a tokenization of only a single character in σ,
then the statement holds trivially. If si is a tokenization of the substring cu p · · · p cv and sj is a tokenization of
the substring cu′ p · · · p cv′ , since i ̸= j is must be that either u < v < u′ < v′ or u′ < v′ < u < v. But for
all m = (r, i1, i2) ∈ [Ms]si it holds that u ≤ i1 < i2 ≤ v, and for all m′ = (r′, j1, j2) ∈ [Ms]sj it holds that
u′ ≤ j1 < j2 ≤ v′. Intuitively, it is not possible for a merge to span two different subsequences si, sj in the partition
of s, because then (part of) si and sj would be merged.

3. Each merge m = (r, j, k) ∈ Ms, r ∈ R must have 1 ≤ j < k ≤ |σ|. Because the whole string σ is tokenized into s
and, by definition, the token merged by m cannot be part of two different subsequences in the partition, there must exist
si ∈ s that is a tokenization of a substring cu p · · · p cv of σ with u ≤ j < k ≤ v. So by Definition A.1, m ∈ [Ms]si .
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We can now prove Theorem 3.1, which we restate below.

Theorem 3.1. Let T = {Σ, V,enc,dec} be a BPE-based tokenizer and s ∈ V ∗ a non-canonical token sequence according
to T . Then, for any token t ∈ V , s p t is also non-canonical.

Proof. Assume that s p t is canonical. Then, there exists a unique merge sequence Mspt that creates it following the BPE
algorithm. From Lemma A.3, Mspt can be split into [Mspt]s and [Mspt]t, where [Mspt]s contains the merges that create s and
[Mspt]t contains the merges that create t. From Lemma A.3, there exists a merge sequence Ms that creates s when applied
to dec(s) and [Mspt]s

→≡ Ms. Because s is a prefix of s p t, the index shift is zero and we have that [Mspt]s = Ms.

Since s tokenized according to [Mspt]s = (m1, . . . ,mn) is non-canonical, there must exist a different, canonical tokenization
s′ ̸= s of the same character string, dec(s) = dec(s′). Let Ms′ = (m′

1, . . . ,m
′
n′) be the unique merge sequence that

creates s′ from dec(s) according to the BPE algorithm. Because Ms′ ̸= [Mspt]s, it must be that either there exists at least
one i, i ≤ min(n, n′), such that mi ̸= m′

i, or mi = m′
i for all i ∈ [min(n, n′)] but n ̸= n′.

We will first examine the first case. Let mi ∈ [Mspt]s and m′
i ∈ Ms′ be the first merges that are different between [Mspt]s

and Ms′ , meaning ∀j < i : mj = m′
j , for mj ∈ [Mspt]s, m′

j ∈ Ms′ . Because s′ is canonical and s is not, it must be that
m′

i ≺ mi. We will now compare Mspt, [Mspt]s and Ms′ . There are two sub-cases:

1. The first i merges in Mspt are the same as in [Mspt]s. This means that the first i−1 merges are the same as in Ms′ . Then,
merge mi being applied instead of m′

i ≺ mi on substring dec(s), implies that Mspt cannot be the merge sequence that
creates the canonical tokenization of dec(s p t) according to BPE.

2. The first i merges in Mspt are not the same as in [Mspt]s. This means that there exists at least one merge m ∈ Mspt
among the first i merges in Mspt such that m /∈ [Mspt]s. For any such merge m as m /∈ [Mspt]s, it must hold that
m ∈ [Mspt]t by Lemma A.3. So, in Mspt, merge mi is preceded by the first i − 1 merges of [Mspt]s and merge m.
By Lemma A.3, m does not affect the tokens that will create s, so the only merges in Mspt before mi that affect s
are the first i− 1 merges of [Mspt]s, which are the same as Ms′ . Then, as in case 1, merge mi being applied instead
of m′

i ≺ mi, implies that Mspt cannot be the merge sequence that creates the canonical tokenization of dec(s p t)
according to BPE.

We will now examine the case where mi = m′
i for all i ∈ [min(n, n′)], mi ∈ [Mspt]s, m′

i ∈ Ms′ but n ̸= n′. If n > n′,
then there exists at least one merge that can be applied on s′ after all merges of Ms′ are done, which means that s′ cannot be
canonical. If n′ > n, then there exists at least one merge that can be applied on s after all merges of [Mspt]s are done. This
merge can also be applied on s p t, which means that s p t cannot be canonical.

All cases lead to a contradiction, which implies that s p t is non-canonical.

B. Unigram- and Wordpiece-based Tokenizers
Here, we review the Unigram (Kudo, 2018) and Wordpiece (Song et al., 2021) tokenization algorithms, and prove that
appending any token to a non-canonical token sequence results in a sequence that is also non-canonical, according to
tokenizers based on these algorithms.

B.1. The Unigram tokenization algorithm

The Unigram algorithm aims to create a tokenizer T with a set of tokens V in order to minimize a loss when tokenizing a
training set of strings C. In the initialization phase, Σ is set to contain all the characters that appear at least once in C. Unlike
the BPE algorithm, which iteratively adds tokens to the vocabulary V , Unigram starts with a large vocabulary and removes
tokens from it until it reaches a predetermined size, specified by the LLM developer. This initial large vocabulary can be set
in multiple ways, such as applying the BPE algorithm on C with many iterations, or initializing it with tokens that decode to
the most frequently occuring substrings in C.

After the initial vocabulary has been set, the algorithm proceeds in iterations, each time computing a loss over the strings in
C and the current vocabulary, and removing a batch of tokens from the vocabulary (typically 10% or 20% of tokens) whose
removal minimizes this loss. In each iteration, every token t in the current vocabulary V is assigned a probability score
r(t) = freq(t)∑

t′∈V freq(t′) , where freq(t) denotes the number of times that the token t appears in all possible tokenizations
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of the strings in C. For each token t ∈ V , the loss over the training set is computed as
∑

σ∈C − log(rV \{t}(σ)), where
rV (σ) = maxs∈V ∗,dec(s)=σ r(s) denotes the probability score of the most likely tokenization of σ under vocabulary V ,
and the probability score of tokenization s = t1 p · · · p tn, with n ∈ N, is simply r(s) = r(t1) . . . r(tn). The tokens that
minimize this loss are removed from the vocabulary and the process repeats until the vocabulary reaches a predetermined
size.

After the vocabulary has been finalized, the encoder is set to tokenize a string σ ∈ Σ∗ by finding its most likely tokenization
under the final vocabulary V , i.e., enc(σ) = argmaxs∈V ∗,dec(s)=σ r(s), using the Viterbi algorithm (Viterbi, 1967), and
the decoder decodes all tokens in V the same way as in the original, large vocabulary.

Theorem B.1. Let T = (Σ, V,enc,dec) be a Unigram-based tokenizer and s ∈ V ∗ a non-canonical token sequence
according to T . Then, for any token t ∈ V , s p t is also non-canonical.

Proof. If s is non-canonical according to Unigram, then let s′ denote the canonical tokenization of the same character string,
dec(s) = dec(s′). Because s′ is canonical, it must be that r(s′) > r(s). It follows that r(s p t) = r(s)r(t) < r(s′)r(t) =
r(s′ p t), so s p t cannot be the canonical tokenization of dec(s p t).

B.2. The Wordpiece tokenization algorithm

The Wordpiece algorithm is similar to BPE, in the sense that it builds the token vocabulary by iteratively merging tokens.
However, the initialization phase, the merging criterion and the encoding function differ.

In the initialization phase, Σ is set to contain all characters that appear at least once in the training set of strings C. Then, for
each character c ∈ Σ that appears at least once in C, a single-character token t is added to V such that dec(t) = c, and S is
initialized as a set that contains all single-character token sequences s ∈ V ∗ that represent all strings in C. Interestingly,
Wordpiece transforms characters (and substrings) inside words differently than characters (and substrings) at the beginning
of words. Specifically, tokens representing characters (and substrings) inside words have a special prefix.

To build the vocabulary, Wordpiece proceeds iteratively by merging existing tokens and adding them to V until it reaches a
predetermined size, similarly to BPE. However, the criterion to select which pair of tokens to merge is different. If freq(s′)
denotes the number of times that sequence s′ ∈ V ∗ appears (as a subsequence) in the set of sequences S , Wordpiece looks
for the pair of tokens t, t′ ∈ V that maximizes the value of freq(tpt′)

freq(t)·freq(t′) . Then, a new token t ◦ t′ is added to V , where
dec(t ◦ t′) = dec(t) p dec(t′), and all occurences of t p t′ in each token sequence s ∈ S are replaced by t ◦ t′. With
this criterion, Wordpiece prefers to merge tokens whose concatenation appears commonly in S, but they are not common
individually.

After the above iterative process terminates, the algorithm defines the encoder and decoder functions as follows. For any
token sequence s = t1 p · · · p tn ∈ V ∗ with n ∈ N, the decoder returns dec(s) = dec(t1) p · · · p dec(tn) using the token
definitions. Any string σ = c1 p · · · p cm ∈ Σ∗, m ∈ N given to the encoder is tokenized greedily from left to right, each
time selecting the token in the vocabulary that represents the most characters starting from the beginning of the string.
Specifically, the first token in enc(σ) is the token t ∈ V such that dec(t) = c1 p · · · p ci, with i ≤ m, and ∄t′ ∈ V such
that dec(t′) = c1 p · · · p cj with i < j ≤ m. In the above selection, if c1 is inside a word, then t must contain the special
prefix. This process continues in the same manner with the remaining string ci+1 p · · · p cm.

Theorem B.2. Let T = (Σ, V,enc,dec) be a Wordpiece-based tokenizer and s ∈ V ∗ a non-canonical token sequence
according to T . Then, for any token t ∈ V , s p t is also non-canonical.

Proof. If s = t1 p · · · p tn is non-canonical according to Wordpiece, then let s′ = t′1 p · · · p t′n′ denote the canonical
tokenization of the same character string, dec(s) = dec(s′), n, n′ ∈ N. Because s′ ̸= s, there must exist at least
one i ≤ min(n, n′) such that ti ̸= t′i. It is impossible that ti = t′i for all i ∈ min(n, n′) but n ̸= n′, because then
dec(s) ̸= dec(s′), as one would be a prefix of the other. Let ti, t′i, with i ∈ min(n, n′) be the first different token between
s and s′, i.e., ∀j < i : tj = t′j but ti ̸= t′i. Since s′ is canonical, it must be that |t′i| > |ti|, where |t| = |dec(t)| represents
the size of token t based on how many characters in Σ it encodes. Because s is a prefix of s p t, the first i tokens are the
same, but s p t cannot be canonical because at (token) index i there exists t′i ∈ V that encodes more characters than ti,
|t′i| > |ti|.
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C. Proof of Theorem 3.2
Here, we provide the proof of Theorem 3.2, which we restate below.

Theorem 3.2. Let d be absolutely continuous with respect to p. Moreover, assume that there exist s ∈ V ∗ and t1, t2 ∈ V
such that s p t1 is non-canonical with d(s p t1) > 0 and s p t2 is canonical with p(s p t2) > 0 and d(s p t2) > 0. Then, it
holds that

KL(p, d̃) < KL(p, d). (4)

Proof. Assume there exists ŝ ∈ V ∗, t1, t2 ∈ V such that ŝ p t1 is non-canonical and d(ŝ p t1) > 0 and ŝ p t2 is canonical
and p(ŝ p t2) > 0 and d(ŝ p t2) > 0. Given any token sequence s ∈ V ∗, let ps = P [T |S = s] be the true next token
distribution and ds, d̃s be the next token distribution and canonicalized next token distribution given by the LLM. Then,
dŝ(t1 ) > 0. Then, we have that Z =

∑
t∈V : ŝpt is canonical dŝ(t) < 1. By definition of d̃ŝ, this implies that for all t ∈ V such

that d̃ŝ(t) > 0, we have that
d̃ŝ(t)

dŝ(t)
> 1 (5)

Note that, because ŝ is canonical (by Theorem 3.1) and d(ŝ) > 0, it implies that ŝ also has positive probability under d̃, i.e.,
d̃(ŝ) > 0. In particular, by definition of d̃ we know that d̃(ŝ)/d(ŝ) ≥ 1 and thus using Eq. 5 it follows that for any t such
that d̃ŝ(t) > 0, d̃(ŝ p t) > 0 and

d̃(ŝ p t)
d(ŝ p t)

=
d̃(ŝ)

d(ŝ)
· d̃ŝ(t)
dŝ(t)

> 1 (6)

We show that the difference in KL divergence of p from d and p from d̃ is greater than zero. First, consider that we can
rewrite the difference as follows

KL(p, d)− KL(p, d̃) =
∑
s∈V ∗

p(s) log

(
p(s)

d(s)

)
−
∑
s∈V ∗

p(s) log

(
p(s)

d̃(s)

)
=
∑
s∈V ∗

p(s)

[
log

(
p(s)

d(s)

)
− log

(
p(s)

d̃(s)

)]

=
∑
s∈V ∗

p(s) log

(
d̃(s)

d(s)

)
(7)

=
∑

s∈V ∗: d̃(s)>0

p(s) log

(
d̃(s)

d(s)

)
(8)

where the first equations follow from simple manipulations and Eq. 8 follows from the following argument. Whenever
d̃(s) = 0, it implies that either d(s) = 0 or that s is non-canonical. In both cases, it implies that p(s) = 0 (either by absolute
continuity or non-canonicity). Whenever p(s) and d̃(s) is zero, the contribution of the corresponding term in Eq. 7 is
interpreted as zero because limx→0+ x log x = 0.

We can break up Eq. 8 into two types of summand. For any s ̸= ŝ p t, t ∈ V and d̃(s) > 0, it readily follows from the
definition of d̃s that

p(s) ln

(
d̃(s)

d(s)

)
≥ p(s) ln(1) = 0

For any s = ŝ p t, t ∈ V and d̃(s) > 0 and p(s) > 0, it follows from Eq. 6 that

p(s) ln

(
d̃(s)

d(s)

)
> p(s) ln(1) = 0

Thus, we can conclude that as there exist t2 ∈ V such that p(ŝ p t2) > 0 and d̃(ŝ p t2) > 0,

KL(p, d)− KL(p, d̃) > 0.
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Canonical Autoregressive Generation

Proof of Equation 3

KL(pdec, d̃dec)

=
∑
σ∈Σ∗

pdec(dec(s) = σ) ln

(
pdec(dec(s) = σ)

d̃dec(dec(s) = σ)

)
=

∑
enc(σ),σ∈Σ∗

p(s = enc(σ)) ln

(
p(s = enc(σ))

d̃(s = enc(σ))

)

=
∑

s∈V ∗: s is canonical

p(s = s) ln

(
p(s = s)

d̃(s = s)

)
= KL(p, d̃)
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