
A SMISO362

In this section, we will have a brief introduction to SMISO [1]. Assume we have a loss function of363

the form364

E
n,✏

f(w; n, ✏) (17)

Similar to SAGA [6], SMISO maintains a parameter table W = {w1, . . . , wN} which stores the365

parameter value the last time each data point was accessed. SMISO then maintains an average of366

the value in the parameter table w̄k = En wn
k where k denotes the kth iteration. w̄k will later be used367

as the point for gradient evaluation. Given a randomly drawed sample n and ✏, SMISO would first368

update the nth entity in W using exponential average369

wk+1
n = (1� ↵)wk

n + ↵(w̄k � �rf(w̄k; ✏, n)). (18)

Then, it updates w̄k using running average370

w̄k+1 = w̄k +
1

N
wk+1

n � 1

N
wk

n. (19)

If we expand the equation above, we get371

w̄k+1 = w̄k +
1

N
wk+1

n � 1

N
wk

n (20)

= w̄k +
1

N

⇥
(1� ↵)wk

n + ↵(w̄k � �rf(w̄k; ✏, n))� wk
n

⇤
(21)

= w̄k � ↵

N

⇥
�rf(w̄k; ✏, n) + wk

n � w̄k

⇤
(22)

= w̄k � ↵

N

⇥
�rf(w̄k; ✏, n)� (w̄k � wk

n)
⇤

(23)

In this case, ↵�/N is the effective step size. Notice that, if we are using a mini-batch of in-372

dices/samples, denoted as B = {nb}, in which case multiple entities in the parameter table would be373

updated in an iteration, then we would have374

w̄k+1 = w̄k +
X

nb2B


1

N
wk+1

nb
� 1

N
wk

nb

�
(24)

= w̄k � ↵|B|
N


� E

nb
rf(w̄k; ✏, nb)� E

nb
(w̄k � wk

nb)

�
(25)

in which case the effective step size would become ↵|B|�
N . Therefore, in order to compare SMISO375

with other estimators using SGD under the same step size, we can first select a range of step sizes for376

SMISO {�0, �1, . . .} and test SGD with step sizes of377

{↵|B|�
N

�0,
↵|B|�
N

�1, . . .}. (26)

It is also worth mentioning that, it is not clear to us how to introduce momentum or adaptive step378

size into SMISO, as we have to strictly follow the running mean update formula (Eq. (19)) to ensure379

En(w̄k � wk
n ) = 0 for unbiasedness. Adding additional terms (e.g. momentum) or changing the380

scale of the updates (e.g. normalizing the update by its norm) without careful design could break the381

unbiasedness. However, studying such modifications is beyond the scope of our paper therefore we382

only compare our methods with SMISO in its original form.383
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B Derivation of variance for different estimators384

In this section, we will show the full derivation for the trace of the variance of gcv, ginc and gcombo.385

B.1 Variance of gcv386

In this section, we will derive the trace for the cv estimator defined as387

gcv(w;n, ✏) = rf(w;n, ✏) + E
⌘
rf̃(w;n,⌘)�rf̃(w;n, ✏)

| {z }
ccv(w;n,✏)

, (27)

where f̃ is an approximation function of f with closed-form expectation with respect to ✏.388

To start with, we will apply the law of total variance389

V[gcv] = E
n
V
✏
gcv + V

n
E
✏
gcv. (28)

The first term can be computed as390

E
n
V
✏
gcv = E

n
V
✏
[rf(w; n, ✏) + E

⌘
rf̃(w; n,⌘)�rf̃(w; n, ✏)] (29)

= E
n
V
✏
[rf(w; n, ✏)�rf̃(w; n, ✏)], (30)

which follows since E⌘ rf̃(w; n,⌘) is a constant with respect to ✏ and therefore does not affect the391

variance.392

The second term can be computed as393

V
n
E
✏
gcv = V

n
E
✏
[rf(w; n, ✏) + E

⌘
rf̃(w; n,⌘)�rf̃(w; n, ✏)] (31)

= V
n


E
✏
[rf(w; n, ✏)] + E

✏
[E
⌘
rf̃(w; n,⌘)]� E

✏
[rf̃(w; n, ✏)]

�
(32)

= V
n
E
✏
[rf(w; n, ✏) +rf̃(w; n)�rf̃(w; n)] (33)

= V
n
E
✏
[rf(w; n, ✏)] (34)

= V
n
[rf(w; n)]. (35)

Then we can combine the two terms together to get394

V[gcv] = E
n
V
✏
[rf(w;n, ✏)�rf̃(w; n, ✏)] + V

n
[rf(w; n)] (36)

B.2 Variance of ginc395

Here, we will derive the trace of the variance of the inc estimator defined as396

ginc(w;n, ✏) = rfn(w;n, ✏) + E
m
rf(wm;m, ✏)�rf(wn;n, ✏)

| {z }
cinc(w;n,✏)

. (37)

We can derive its variance by first applying the law of total variance397

V[ginc] = E
✏
V
n
ginc + V

✏
E
n
ginc. (38)

The first term can be computed as398

E
✏
V
n
ginc = E

✏
V
n
[rfn(w; n, ✏) + E

m
rf(wm;m, ✏)�rf(wn; n, ✏)] (39)

= E
✏
V
n
[rf(w; n, ✏)�rf(wn; n, ✏)], (40)

where the second line follows because Em rf(wm;m, ✏) is a constant with respect to n.399
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The second term can be computed as400

V
✏
E
n
ginc = V

✏
E
n
[rfn(w; n, ✏) + E

m
rf(wm;m, ✏)�rf(wn; n, ✏)] (41)

= V
✏

h
E
n
rfn(w; n, ✏) + E

n
E
m
rf(wm;m, ✏)� E

n
rf(wn; n, ✏)

i
(42)

= V
✏

h
E
n
[rfn(w; n, ✏)] + E

m
rf(wm;m, ✏)� E

n
rf(wn; n, ✏)

i
(43)

= V
✏
E
n
[rfn(w; n, ✏)] (44)

= V
✏
[rf(w; ✏)], (45)

which then leads us to401

V[ginc] = E
✏
V
n
[rf(w; n, ✏)�rf(wn; n, ✏)] + V

✏
[rf(w; ✏)]. (46)

B.3 Variance of gcombo402

In this section, we will derive the variance for the estimator gcombo defined as403

gcombo(w;n, ✏) = rf(w;n, ✏) + �ccv(w;n, ✏) + (1� �)cinc(w;n, ✏)| {z }
ccombo(w;n,✏)

, (47)

under the ideal assumption where we have f = f̃ and w = wn, 8n. The variance can be derived404

through405

V[gcombo] = V
✏,n

[rf(w; n, ✏) + �ccv(n, ✏) + (1� �)cinc(n, ✏)] (48)

= V
✏,n


rf(w; n, ✏) + �

✓
E
⌘
rf̃(w; n,⌘)�rf̃(w; n, ✏)

◆
+ (49)

(1� �)
⇣
rE

m
f(wm;m, ✏)�rf(wn; n, ✏)

⌘�

Then we replace f̃ with f and wn with w based on our assumption,406

V[gcombo] = V
✏,n


rf(w; n, ✏) + �

✓
E
⌘
rf(w; n,⌘)�rf(w; n, ✏)

◆
+ (50)

(1� �)
⇣
rE

m
f(w;m, ✏)�rf(w; n, ✏)

⌘�

= V
✏,n


rf(w; n, ✏) + � (rf(w; n)�rf(w; n, ✏)) + (1� �) (f(w; ✏)� f(w; n, ✏))

�

(51)

= V
✏,n

"
�rf(w; n) + (1� �)rf(w; ✏)

#
(52)

= �2
V
n
[rf(w; n)] + (1� �)2 V

✏
[rf(w; ✏)]. (53)

The last line follows because rf(w;n) is independent of rf(w; ✏).407

C Step-size search range408

For Australian and Sonar, we experiment with learning rates of

{7.5e�3, 5e�3, 2.5e�3, 1e�3, 5e�4, 1e�4, 5e�5, 2.5e�5, 1e�5}

For MNIST, PPCA and Tennis, we used

{1e�1, 5e�2, 1e�2, 5e�3, 1e�3}

for naive, cv and dual, where the optimizer is Adam.409
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When optimizing with SMISO, we set ↵ = 0.9 and we perform grid search over the value of �, for
MNIST with SMISO, we experiment with � in

{5e�2, 2.5e�2, 1e�2, 5e�3, 2.5e�3, 1e�3, 5e�4, 1e�4, 5e�5, 1e�5}

For Tennis with SMISO, we experiment with � in

{5e�2, 2.5e�2, 1e�2, 5e�3, 1e�31e�4, 1e�5}

For PPCA with SMISO, we experiment with � in

{1e�2, 5e�3, 1e�3, 1e�4, 1e�5, 1e�6, 1e�7}

D Generic optimization algorithm410

In Alg. 1, we describe the end-to-end procedure of applying dual control variate in BBVI. The dual411

control variate can also be applied in generic doubly-stochastic optimization problems as is shown in412

Alg. 2.413

Algorithm 2 Dual control variate for generic doubly-stochastic optimization problem

Require: Learning rate �, doubly-stochastic objective f(w;n, ✏), approximation f̃(w;n, ✏) where E✏ f̃(w;n, ✏)

is tractable.
Initialize the parameter w0, the parameter table W = {w1, . . . , wN} and the running mean M =

Em E⌘rf̃(w0;m, ⌘).
for k = 1, 2, · · · do

Sample n and ✏.
Extract the value of wn from the table W .
Compute the base gradient g  rf(wk;n, ✏).
Compute the control variate c M �rf̃(wn;n, ✏). . Uses that M = Em E⌘rf̃(wm;m, ⌘).
Update the running mean M  M + 1

N

�
E⌘rf̃(wk;n, ⌘)� E⌘rf̃(wn;n, ⌘)

�

Update the table wn  wk and update the parameter wk+1  wk � �(g + c).
. Or use g + c as a gradient estimator in any stochastic optimization algorithm.

end for

E Additional experiment results414

In this section, we compare naive, cv, and dual with SMISO using SGD. The step sizes for SMISO415

are the same as the values shown in Sec. C. The step sizes for SGD are converted through Eq. (26)416

correspondingly. Additionally, we compare their performance with the optimization results acquired417

using Adam. The results are presented in Fig. 5 and Fig. 6. Overall, we notice that, with SGD, dual418

still shows superior performance compared with SMISO. In addition, all estimators show performance419

slower than that of Adam when optimized with SGD except for dual on Tennis.420

Note that, when experimenting with PPCA using dual and SGD, we perform updates with naive421

in the first three epochs to avoid diverging, as the dual shows a high gradient norm in the first few422

epochs when SAGA is still warming up. This modification is not required when using Adam, as423

Adam adaptively chooses the step size based on the gradient norm.424

F Wall clock time v.s convergence425

In this section, we provide the wall clock time v.s. convergence results. The results are presented in426

Fig. 7. The results are identical to the results in the second column in Fig. 4 with the x-axis for each427

estimator rescaled using the values from Table. 2.428
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(a) MNIST

(b) PPCA

(c) Tennis

Figure 5: Comparision of different estimators on MNIST, PPCA, and Tennis under SGD and

Adam. The proposed dual combined with Adam shows the best performance on all tasks except
Tennis, in which dual with SGD demonstrates the best convergence. For other estimators, Adam
leads to better and faster convergence than SGD.
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(a) MNIST

(b) PPCA

(c) Tennis

Figure 6: Optimization results on MNIST, PPCA, and Tennis with SGD. Using SGD does not
affect the improvement of dual against naive and cv. In addition, we notice that dual still performs
better than SMISO under SGD, we suspect that this is because dual marginalizes ✏ out explicitly
while SMISO approximates the expectation using exponential averaging.
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Figure 7: On large scale problems, the dual estimator allows faster convergence in terms of

wall-clock time. For example, on MNIST, it takes dual around 300 seconds to reach an ELBO of
�2.5e4 whereas the cv and the naive estimator would take around 600 seconds. On PPCA, dual
shows slower convergence in the beginning as SAGA is still warming up, however it is capable of
reaching much better results at the end of the optimization.
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