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A  SMISO

In this section, we will have a brief introduction to SMISO [1]. Assume we have a loss function of
the form

E f(w;n,e) a7

n,e

Similar to SAGA [6], SMISO maintains a parameter table W = {w!, ..., w™'} which stores the
parameter value the last time each data point was accessed. SMISO then maintains an average of
the value in the parameter table w;, = E, w;, where k denotes the ky, iteration. wy, will later be used
as the point for gradient evaluation. Given a randomly drawed sample n and €, SMISO would first
update the ny, entity in W using exponential average

Wit = (1 - a)wh + a(wp — YV f (@i ). (1%

Then, it updates wy, using running average

1 1
Why1 = W + Nw,,’jﬂ - Nw,,’j. (19)
If we expand the equation above, we get
W1 = Wy + Lo _ Lo (20)
N N
1
= Wy, + N [(1- Q)wk + a(my — YV (D €,n)) — wfb] 21
o
=i — 7 [YVF(0r; €,n) + wy; — ] 22)
o
= wx — 5 [V (i €,n) — (@ — wy)] (23)

In this case, ay/N is the effective step size. Notice that, if we are using a mini-batch of in-
dices/samples, denoted as B = {ny}, in which case multiple entities in the parameter table would be
updated in an iteration, then we would have

— — 1 k+1 1 k
Wps1 =W+ {wnb — —wk (24)
e N N
a|B
= Wy — % |:’}/E V f(wy; €,np) — E(wy — wr’fb)} 25)
ng np
a|Bly

in which case the effective step size would become =5 . Therefore, in order to compare SMISO
with other estimators using SGD under the same step size, we can first select a range of step sizes for
SMISO {~9,71, - - -} and test SGD with step sizes of

{OéIBIW7 a\B\vv )
N 0, N Lyeveg-

(26)

It is also worth mentioning that, it is not clear to us how to introduce momentum or adaptive step
size into SMISO, as we have to strictly follow the running mean update formula (Eq. (19)) to ensure
E, (), — wkF) = 0 for unbiasedness. Adding additional terms (e.g. momentum) or changing the
scale of the updates (e.g. normalizing the update by its norm) without careful design could break the
unbiasedness. However, studying such modifications is beyond the scope of our paper therefore we
only compare our methods with SMISO in its original form.
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B Derivation of variance for different estimators
In this section, we will show the full derivation for the trace of the variance of gcv, ginc and geombo-

B.1 Variance of g,

In this section, we will derive the trace for the cv estimator defined as

gcv(w; n, 6) = Vf(UJ, n, 6) + IE Vf(w, nvn) - Vf(w, n, 6)7 (27)

cev (win,€)

where f is an approximation function of f with closed-form expectation with respect to e.

To start with, we will apply the law of total variance

V[gev] = EV gev + VE gey. (28)

The first term can be computed as
EV gee = EV[V/(win,€) + EVf(winn) = Vf(w;n,e) (29)
:]EY[Vf(w;me) — Vf(w;n,e)], (30)

which follows since E,, V f (w;n,m) is a constant with respect to € and therefore does not affect the
variance.

The second term can be computed as

Y]];Igcv = YleE[Vf(w; n, €) —&—IEVf(w; n,n) — Vf(w;n,e)] 31)
=V E[Vf(win,e)] + Ig[lg Vf(win,m)] — @[Vf(w; n,e)] (32)
:YIeE[Vf(w;n,e)—&—Vf(w;n)—Vf(w;n)] (33)
= VE[Y f(usn ) 64
— V[V f(win)]. (35)

Then we can combine the two terms together to get

V]gev] = IE:Y[Vf(w; n,e) — Vf(w;n,e)] + Y[Vf(w; n)l (36)

B.2 Variance of g,

Here, we will derive the trace of the variance of the inc estimator defined as

Ginc(w;n, €) =V fr,(w;n,€) + IEVf(wm; m,e) — Vf(w"™;n,e). (37)

Cine (Win,e)
We can derive its variance by first applying the law of total variance

V[ginc] - IeEYginc + Yﬂggino (38)

The first term can be computed as
EV gine = EV[Vf(w;n, e) + EVf(w™; m, e) — Vf(w";n, €)] (39)
€ n € n m
=EV[Vf(w;n,e) — Vf(w";n,e)l, (40)
€

where the second line follows because E, V f (w™; m, €) is a constant with respect to n.
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The second term can be computed as

VE gine = VE[V fr(w;n, €) + EVf(w™m,¢) = Vf(w";n, e)] 1)
=V [EV/u(win,€) +EEV/(w"sm,e) ~ EVf(win,e)] 42)

=V [EIVfu(win, )] + EVF(w™sm. )~ EVf(u"in, )| 43)
:V]E[an(w n,e) (44)

— VIV o), 4s)

which then leads us to

Vlginc] = IEY[Vf(w; n,e) — Vf(wn, )]+ Y[Vf(w; €)]. (46)

B.3 Variance of g.ombo

In this section, we will derive the variance for the estimator g.ompbo defined as
gcombo(w; n, 6) = Vf(w; n, 6) + ﬂccv (w; n, 6) + (1 - ﬁ)cinc(uﬁ n, 6)7 (47)

Ceombo (W;N,€)

under the ideal assumption where we have f = f and w = w™,Vn. The variance can be derived
through

V[gcombo] = yn[vf(wv n, €) + ﬂccv(n; €) + (1 - B)Cinc(na 6)] (48)
= |Vstwine) + 8 (EVHwinm - Viwsne) ) + )

(- 5) (VES@rsm.e) - Vf(uin.e))

Then we replace f with f and w” with w based on our assumption,

V]gecombo] = eVn Vf(w;n,e)+ (Ir[? Vf(w;n,n) — Vf(w;n, €)> + (50)

(1-7) (VImEf(w;m,e) — Vf(w;n,e))}

= V |Vf(w;n,e) + B(Vf(w;n) = Vf(w;n,€)) + (1 = B) (f(w;€) — f(w;n,e€))

en | 1)
=V BV f(win) + (1 =BV F(w; 6)] (52)
— BV f(win)] + (1 - B VIV f(wse)). 53)

The last line follows because V f(w;n) is independent of V f (w; €).

C Step-size search range

For Australian and Sonar, we experiment with learning rates of

{7.5e—3,5e—3,2.5e—3, le—3, 5e—4, le—4,5e—5,2.5e—5, le—5}

For MNIST, PPCA and Tennis, we used
{le—1,5e—2,1e—2, 5e—3, le—3}

for naive, cv and dual, where the optimizer is Adam.

14
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When optimizing with SMISO, we set a = 0.9 and we perform grid search over the value of ~, for
MNIST with SMISO, we experiment with 7y in

{he—2,2.5e—2,1e—2,5e—3,2.5e—3, le—3, be—4, le—4, be—5, le—5}

For Tennis with SMISO, we experiment with -y in

{be—2,2.5e—2,1e—2,5e—3, le—3le—4,1le—5}

For PPCA with SMISO, we experiment with  in
{le—2,5e—3,1e—3,1le—4,1e—5,1e—6,1le—7}

D Generic optimization algorithm

In Alg. 1, we describe the end-to-end procedure of applying dual control variate in BBVI. The dual
control variate can also be applied in generic doubly-stochastic optimization problems as is shown in
Alg. 2.

Algorithm 2 Dual control variate for generic doubly-stochastic optimization problem

Require: Learning rate A, doubly-stochastic objective f(w; n, €), approximation f(w; n, €) where E. f(w;n, €)
is tractable.
Initialize the parameter wo, the parameter table W = {w',...,w™} and the running mean M =
Eem By V.f (wo; m, 7).
fork=1,2,--- do
Sample n and e.
Extract the value of w" from the table W.
Compute the base gradient g < V f(wg;n, €).
Compute the control variate ¢ < M — V f(w"; n, €). > Uses that M = Ep, By V. f(w™; m,n).
Update the running mean M <+ M + + (En V f(wr;n,m) — Eq Vf(w"; n,m))
Update the table w™ <— wy, and update the parameter wy4+1 < wi — A(g + ¢).
> Or use g + c as a gradient estimator in any stochastic optimization algorithm.
end for

E Additional experiment results

In this section, we compare naive, cv, and dual with SMISO using SGD. The step sizes for SMISO
are the same as the values shown in Sec. C. The step sizes for SGD are converted through Eq. (26)
correspondingly. Additionally, we compare their performance with the optimization results acquired
using Adam. The results are presented in Fig. 5 and Fig. 6. Overall, we notice that, with SGD, dual
still shows superior performance compared with SMISO. In addition, all estimators show performance
slower than that of Adam when optimized with SGD except for dual on Tennis.

Note that, when experimenting with PPCA using dual and SGD, we perform updates with naive
in the first three epochs to avoid diverging, as the dual shows a high gradient norm in the first few
epochs when SAGA is still warming up. This modification is not required when using Adam, as
Adam adaptively chooses the step size based on the gradient norm.

F Wall clock time v.s convergence

In this section, we provide the wall clock time v.s. convergence results. The results are presented in
Fig. 7. The results are identical to the results in the second column in Fig. 4 with the x-axis for each
estimator rescaled using the values from Table. 2.
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Figure 5: Comparision of different estimators on MNIST, PPCA, and Tennis under SGD and
Adam. The proposed dual combined with Adam shows the best performance on all tasks except
Tennis, in which dual with SGD demonstrates the best convergence. For other estimators, Adam
leads to better and faster convergence than SGD.
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Figure 6: Optimization results on MNIST, PPCA, and Tennis with SGD. Using SGD does not
affect the improvement of dual against naive and cv. In addition, we notice that dual still performs
better than SMISO under SGD, we suspect that this is because dual marginalizes € out explicitly
while SMISO approximates the expectation using exponential averaging.
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Figure 7: On large scale problems, the dual estimator allows faster convergence in terms of
wall-clock time. For example, on MNIST, it takes dual around 300 seconds to reach an ELBO of
—2.5e4 whereas the cv and the naive estimator would take around 600 seconds. On PPCA, dual

shows slower convergence in the beginning as SAGA is still warming up, however it is capable of
reaching much better results at the end of the optimization.
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