
Published as a conference paper at ICLR 2025

ZERO-SHOT MODEL-BASED REINFORCEMENT LEARN-
ING USING LARGE LANGUAGE MODELS

Abdelhakim Benechehab†12, Youssef Attia El Hili1, Ambroise Odonnat13, Oussama Zekri‡4,
Albert Thomas1, Giuseppe Paolo1, Maurizio Filippone5, Ievgen Redko1, Balázs Kégl1
1 Huawei Noah’s Ark Lab, Paris, France
2 Department of Data Science, EURECOM
3 Inria, Univ. Rennes 2, CNRS, IRISA
4 ENS Paris-Saclay
5 Statistics Program, KAUST

ABSTRACT

The emerging zero-shot capabilities of Large Language Models (LLMs) have led
to their applications in areas extending well beyond natural language process-
ing tasks. In reinforcement learning, while LLMs have been extensively used in
text-based environments, their integration with continuous state spaces remains
understudied. In this paper, we investigate how pre-trained LLMs can be lever-
aged to predict in context the dynamics of continuous Markov decision processes.
We identify handling multivariate data and incorporating the control signal as key
challenges that limit the potential of LLMs’ deployment in this setup and propose
Disentangled In-Context Learning (DICL) to address them. We present proof-of-
concept applications in two reinforcement learning settings: model-based policy
evaluation and data-augmented off-policy reinforcement learning, supported by
theoretical analysis of the proposed methods. Our experiments further demon-
strate that our approach produces well-calibrated uncertainty estimates. We re-
lease the code at https://github.com/abenechehab/dicl.

Figure 1: The DICL Framework. DICL projects trajectories into a disentangled feature space
before performing zero-shot forecasting using a pre-trained LLM and in-context learning.

1 INTRODUCTION

The rise of large language models (LLMs) has significantly impacted the field of Natural Language
Processing (NLP). LLMs (Brown et al., 2020; Hugo Touvron & the Llama 2 team., 2023; Dubey &
the Llama 3 team., 2024), which are based on the transformer architecture (Vaswani et al., 2017),
have redefined tasks such as machine translation (Brown et al., 2020), sentiment analysis (Zhang
et al., 2023b), and question answering (Roberts et al., 2020; Pourkamali & Sharifi, 2024) by enabling
machines to understand and generate human-like text with remarkable fluency. One of the most in-
triguing aspects of LLMs is their emerging capabilities, particularly in-context learning (ICL) (von
Oswald et al., 2023). Through ICL, an LLM can learn to perform a new task simply by being pro-
vided examples of the task within its input context, without any gradient-based optimization. This

†Correspondence to abdelhakim.benechehab@gmail.com. ‡Work done while at Huawei Noah’s Ark Lab.

1

https://github.com/abenechehab/dicl
mailto:abdelhakim.benechehab@gmail.com

Published as a conference paper at ICLR 2025

phenomenon has been observed not only in text generation but also in tasks such as image classifi-
cation (Abdelhamed et al., 2024; Zheng et al., 2024) and even solving logic puzzles (Giadikiaroglou
et al., 2024), which is unexpected in the context of the standard statistical learning theory. To our
knowledge, ICL capabilities of pre-trained LLMs have been only scarcely explored in reinforce-
ment learning (Wang et al., 2023) despite the demonstrated success of the former in understanding
the behavior of deterministic and chaotic dynamical systems (Liu et al., 2024c).

In this paper, we show how ICL with pre-trained LLMs can improve the sample efficiency of Re-
inforcement Learning (RL), with two proof-of-concepts in policy evaluation and data-augmented
off-policy RL. Following the dynamical system perspective on ICL introduced in Li et al. (2023)
and experimentally studied in Liu et al. (2024c), we use the observed trajectories of a given agent to
predict its future state and reward in commonly used RL environments. To achieve this, we solve two
crucial challenges related to considering continuous state-space Markov Decision Processes (MDP):
1) incorporating the action information into the LLM’s context and 2) handling the interdependence
between the state-actions dimensions, as prior approaches were known to treat multivariate data’s
covariates independently. Our framework, DICL (Disentangled In-Context Learning), is summa-
rized in Fig. 1. The core idea of DICL is to apply a feature space transformation, denoted as φ,
which captures the interdependencies between state and action features in order to disentangle each
dimension. Subsequently, a Large Language Model (LLM) is employed to forecast each compo-
nent independently in a zero-shot manner through in-context learning. Finally, the predictions are
transformed back to the original trajectory space using the inverse transformation φ−1.

Our approach leads to several novel insights and contributions, which we summarize as follows:

1. Methodological. We develop a novel approach to integrate state dimension interdepen-
dence and action information into in-context trajectories. This approach, termed Disen-
tangled In-Context Learning (DICL), leads to a new methodology for applying ICL in RL
environments with continuous state spaces. We validate our proposed approach on tasks
involving proprioceptive control.

2. Theoretical. We theoretically analyze the policy evaluation algorithm resulting from multi-
branch rollouts with the LLM-based dynamics model, leading to a novel return bound.

3. Experimental. We show how the LLM’s MDP modeling ability can benefit two RL appli-
cations: policy evaluation and data-augmented offline RL. Furthermore, we show that the
LLM is a calibrated uncertainty estimator, a desirable property for MBRL algorithms.

Organization of the paper. The paper is structured as follows: Section 2 introduces the main
concepts from the literature used in our work (while a more detailed related work is deferred to
Appendix B). We then start our analysis in Section 3.1, by analyzing LLM’s attention matrices.
DICL is presented in Section 3.3, while Section 4 contains different applications of the proposed
method in RL, along with the corresponding theoretical analysis. Finally, Section 5 provides a short
discussion and future research directions triggered by our approach.

2 BACKGROUND KNOWLEDGE

Reinforcement Learning (RL). The standard framework of RL is the infinite-horizon Markov de-
cision process (MDP) M = ⟨S,A, P, r, µ0, γ⟩ where S represents the state space, A the action
space, P : S × A → S the (possibly stochastic) transition dynamics, r : S × A → R the reward
function, µ0 the initial state distribution, and γ ∈ [0, 1] the discount factor. The goal of RL is to
find, for each state s ∈ S , a distribution π(s) over the action space A, called the policy, that maxi-
mizes the expected sum of discounted rewards η(π) := Es0∼µ0,at∼π, st>0∼P t [

∑∞
t=0 γ

tr(st, at)].
Under a policy π, we define the state value function at s ∈ S as the expected sum of dis-
counted rewards, starting from the state s, and following the policy π afterwards until termination:
V π(s) = Eat∼π,st>0∼P t

[∑∞
t=0 γ

tr(st, at) | s0 = s
]
.

Model-based RL (MBRL). MBRL algorithms address the supervised learning problem of es-
timating the dynamics of the environment P̂ (and sometimes also the reward function r̂) from
data collected when interacting with the real system. The model’s loss function is typically the
log-likelihood L(D; P̂) = 1

N

∑N
i=1 log P̂ (s

i
t+1|sit, ait) or Mean Squared Error (MSE) for deter-

ministic models. The learned model can subsequently be used for policy search under the MDP

2

Published as a conference paper at ICLR 2025

a b c

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: LLM can perceive time patterns. The LLM (Llama 3-8B) is fed with 3 time series
presenting distinct patterns. (a) Rectangular pulse. (b) Rectangular signal with constant sub-parts.
(c) The fthigh dimension of HalfCheetah under an expert policy. Tokens belonging to constant slots
(or peaks) attend to all the similar ones that precede them, focusing more on their first occurrence.

M̂ = ⟨S,A, P̂ , r, µ0, γ⟩. This MDP shares the state and action spaces S,A, reward function r,
with the true environmentM, but learns the transition probability P̂ from the dataset D.

Large Language Models (LLMs). Within the field of Natural Language Processing, Large Lan-
guage Models (LLMs) have emerged as a powerful tool for understanding and generating human-
like text. An LLM is typically defined as a neural network model, often based on the trans-
former architecture (Vaswani et al., 2017), that is trained on a vast corpus of sequences, U =
{U1, U2, . . . , Ui, . . . , UN}, where each sequence Ui = (u1, u2, . . . , uj , . . . , uni) consists of tokens
uj from a vocabulary V . Decoder-only LLMs (Radford et al., 2019; Dubey & the Llama 3 team.,
2024) typically encode an autoregressive distribution, where the probability of each token is condi-
tioned only on the previous tokens in the sequence, expressed as pθ(Ui) =

∏ni

j=1 pθ(uj |u0:j−1). The

parameters θ are learned by maximizing the probability of the entire dataset, pθ(U) =
∏N
i=1 pθ(Ui).

Every LLM has an associated tokenizer, which breaks an input string into a sequence of tokens, each
belonging to V .

Algorithm 1 ICLθ (Liu et al., 2024b; Gruver et al., 2023b)
Input: Time series (xi)i≤t, LLM pθ, sub-vocabulary Vnum

1. Tokenize time series x̂t = “x11x
2
1 . . . x

k
1 , . . . ”

2. logits← pθ(x̂t)
3. {P (Xi+1|xi, . . . , x0)}i≤t ← softmax(logits(Vnum))
Return: {P (Xi+1|xi, . . . , x0)}i≤t

In-Context Learning (ICL). In or-
der to use trajectories as inputs in
ICL, we use the tokenization of
time series proposed in Gruver et al.
(2023b) and Jin et al. (2024). This
approach uses a subset of the LLM
vocabulary Vnum representing digits
to tokenize the time series (Algo-
rithm 1). Specifically, given an univarite time series, we rescale it into a specific range (Liu et al.,
2024b; Zekri et al.; Requeima et al., 2024), encode it with k digits, and concatenate each value to
build the LLM prompt:

[0.2513, 5.2387, 9.7889]︸ ︷︷ ︸
time series

→ [1.5, 5.16, 8.5]︸ ︷︷ ︸
rescaled

→ “150, 516, 850”︸ ︷︷ ︸
prompt

After the LLM forward pass, the logits corresponding to tokens in Vnum can be used to predict a
categorical distribution over the next value as demonstrated in Liu et al. (2024c), thereby enabling
uncertainty estimation.

3 ZERO-SHOT DYNAMICS LEARNING USING LARGE LANGUAGE MODELS

3.1 MOTIVATION

Before considering the multivariate trajectories of agents collected in RL environments, we first
want to verify whether a pre-trained LLM model is sensitive to the primitive univariate signals akin
to those encountered in them. For this, we investigate the attention mechanism of the Llama3 8B
model (Dubey & the Llama 3 team., 2024) when we feed it with different signals, including the

3

Published as a conference paper at ICLR 2025

periodic fthigh dimension from the HalfCheetah system (Brockman et al., 2016). By averaging the
attention matrices over the 32 heads for each of the 32 layers of the multi-head attention in Llama3,
we observed distinct patterns that provide insight into the model’s focus and behavior (Fig. 2 shows
selected attention layers for each signal). The attention matrices exhibit a diagonal pattern, indicative
of strong self-correlation among timestamps, and a subtriangular structure due to the causal masked
attention in decoder-only transformers.

Further examination of the attention matrices reveals a more intricate finding. Tokens within repeat-
ing patterns (e.g., signal peaks, constant parts) not only attend to past tokens within the same cycle
but also to those from previous occurrences of the same pattern, demonstrating a form of in-context
learning. The ability to detect and exploit repeating patterns within such signals is especially valu-
able in RL, where state transitions and action outcomes often exhibit cyclical or recurring dynamics,
particularly in continuous control tasks. However, applying this insight to RL presents two critical
challenges related to 1) the integration of actions into the forecasting process, and 2) handling of the
multivariate nature of RL problems. We now address these challenges by building on the insights
from the analysis presented above.

3.2 PROBLEM SETUP

Given an initial trajectory T = (s0, a0, r1, s1, a1, r2, s2, . . . , rT−1, sT−1) of length T , with st ∈ S,
at = π(st) ∈ A†, where the policy π is fixed for the whole trajectory, and rt ∈ R, we want to predict
future transitions: given (sT−1, aT−1) predict the next state and reward (sT , rT) and subsequent
transitions autoregressively. For simplicity we first omit the actions and the reward, focusing instead
on the multivariate sequence τπ = (s0, s1, . . . , sT) where we assume that the state dimensions are
independent. Later, we show how to relax the assumptions of omitting actions and rewards, as well
as state independence, which is crucial for applications in RL. The joint probability density function
of τπ can be written as:

{
P(τπ) = µ0(s0)

∏T
t=1 P

π(st|st−1)

where Pπ(st|st−1) =
∫
a∈A π(a|st−1)P (st|st−1, a) da .

(1)

rootz
rooty

bthigh
bshin
bfoot
fthigh
fshin
ffoot
rootx
rootz
rooty

bthigh
bshin
bfoot
fthigh
fshin
ffoot

t_bthigh
t_bshin
t_bfoot
t_fthigh
t_fshin
t_ffoot

HalfCheetah

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: The covariance matrix from
an expert dataset in the Halfcheetah en-
vironment indicates linear correlations
between state-action features.

Using the decoder-only nature of the in-context learner
defined in Section 2, we can apply Algorithm 1 to each
dimension of the state vector to infer the transition rule of
each visited state in τπ conditioned on its relative history:
for all j ∈ {1, . . . , ds},
{P̂π,jθ (sjt |s

j
t−1, . . . , s

j
1, s

j
0)}t≤T = ICLθ(τπ,j) (2)

where θ are the fixed parameters of the LLM used as
an in-context learner, and T its context length. Assum-
ing complete observability of the MDP state, the Marko-
vian property unveils an equivalence between the learned
transition rules and the corresponding Markovian ones:
P̂θ(st|st−1, . . . , s1, s0) = P̂θ(st|st−1).

This approach, that we name vICL (for vanilla ICL), thus
applies Algorithm 1 on each dimension of the state indi-
vidually, assuming their independence. Furthermore, the
action information is integrated-out (as depicted in Eq. (1)), which in theory, limits the application
scope of this method to quantities that only depend on a policy through the expectation over actions
(e.g., the value function V π(s)). We address these limitations in the next section.

On the zero-shot nature of DICL. Our use of the term ”zero-shot” aligns with the literature on
LLMs and time series (Gruver et al., 2023a), indicating that we do not perform any gradient up-
dates or fine-tuning of the pretrained LLM’s weights. Specifically, we adopt the dynamical sys-
tems formulation of ICL as studied in Li et al. (2023), where the query consists of the trajectory
”sj0, s

j
1, . . . , s

j
t−1” and the label is the subsequent value sjt .

†In practice, states and actions are real valued vectors spanning a space of dimensions respectively ds and
da: S = Rds , A = Rda

4

Published as a conference paper at ICLR 2025

rootz

rooty

bthigh

bshin
bfootfthigh

fshin

ffoot

rootx

rootz

rooty

bthigh
bshin bfoot

fthigh

fshin

ffoot

10 1
100

HalfCheetah

(a) Multi-step error.

~

~
(b) Predicted trajectories.

0

200

400

600

800

tim
e

(c) Time.
DICL-(s) DICL-(s, a)

Figure 4: PCA-based DICL achieves smaller multi-step error in less computational time. We
compare DICL-(s) and DICL-(s, a) using a number of components equal to half the number of
features, with the vanilla approach vICL and an MLP baseline. (Llama 3-8B).

3.3 STATE AND ACTION DIMENSION INTERDEPENDENCE

In this section we address the two limitations of vICL discussed in Section 3.2 by introducing Dis-
entangled In-Context Learning (DICL), a method that relaxes the assumption of state feature inde-
pendence and reintroduces the action by employing strategies that aim to map the state-action vector
to a latent space where the features are independent. We can then apply vICL, which operates under
the assumption of feature independence, to the latent representation. An added benefit of using such
a latent space is that it can potentially reduce the dimensionality, leading to a speed-up of the overall
approach.

While sophisticated approaches† like disentangled autoencoders could be considered for DICL, in
this work we employ Principal Component Analysis (PCA). In fact, the absence of pre-trained mod-
els for this type of representation learning requires training from scratch on a potentially large
dataset. This goes against our goal of leveraging the pre-trained knowledge of LLMs and ICL.
Instead, we find that PCA, which generates new linearly uncorrelated features and can reduce di-
mensionality, strikes a good balance between simplicity, tractability, and performance (Fig. 3 and
Fig. 4). Nonetheless, DICL is agnostic to this aspect and any transformation φ that can disentangle
features can be used in place of PCA. In the rest of the paper we present two variants of DICL:

• DICL-(s, a), which applies the rotation matrix of PCA to the feature space of states and
actions and then runs Algorithm 1 in the projection space of principal components;

• DICL-(s), which applies the same transformation solely to the trajectory of states. This is
useful in settings in which integrating the actions is not necessary, as when we only want
to estimate the value function V π(s).

3.4 AN ILLUSTRATIVE EXAMPLE

In this section, we aim to challenge our approach against the HalfCheetah system from the MuJoCo
Gym environment suite (Brockman et al., 2016; Todorov et al., 2012). All our experiments are
conducted using the Llama 3 series of models (Dubey & the Llama 3 team., 2024). Fig. 4a shows the
average MSE over a prediction horizon of h ∈ {1, . . . , 20} steps for each state dimension. Fig. 4b
shows predicted trajectories for selected state dimensions of the HalfCheetah system (the details of
the experiment, the metrics and the remaining state dimensions are deferred to Appendix F).

We first observe that the LLM-based dynamics forecasters exhibit a burn-in phase (≈ 70 steps in
Fig. 4b) that is necessary for the LLM to gather enough context. For multi-step prediction, Fig. 4a,
showing the average MSE over prediction horizons and trajectories, demonstrates that both versions
of DICL improve over the vanilla approach and the MLP baseline trained on the context data, in
almost all state dimensions. Indeed, we hypothesize that this improvement is especially brought by
the projection in a linearly uncorrelated space that PCA enables. Furthermore, we also leveraged the

†A more detailed discussion of alternative approaches to PCA is provided in Appendix C.

5

Published as a conference paper at ICLR 2025

dimensionality reduction feature by selecting a number of components c equal to half the number
of the original features ds + da (or ds in DICL-(s)). This results in a significant decrease in the
computational time of the method without loss of performance, as showcased by Fig. 4c.

LLaMA Metrics
MSE/10−2↓ KS/10−2↓

vICL
3.2-1B 384 ± 31 52 ± 7
3.2-3B 399 ± 40 54 ± 8
3.1-8B 380 ± 32 53 ± 7
3-8B 375 ± 30 53 ± 7
3.1-70B 392 ± 35 55 ± 7
DICL-(s)
3.2-1B 389 ± 38 50 ± 7
3.2-3B 404 ± 41 51 ± 7
3.1-8B 372 ± 44 50 ± 7
3-8B 370 ± 36 50 ± 7
3.1-70B 359 ± 33 54 ± 7
DICL-(s, a)
3.2-1B 449 ± 37 46 ± 5
3.2-3B 450 ± 47 48 ± 6
3.1-8B 412 ± 39 45 ± 6
3-8B 418 ± 46 46 ± 5
3.1-70B 428 ± 47 47 ± 5
baseline
MLP 406 ± 59 55 ± 3

Table 1: Comparison of different
LLMs. Results are average over 5
episodes from each one of 7 D4RL (Fu
et al., 2021) tasks. ↓ means lower the
better. The best average score is shown
in bold. We show the average score ±
the 95% Gaussian confidence interval.

LLMs comparison. In Table 1 we compare the perfor-
mance obtained by the baselines and DICL when using
different LLMs. Similarly to Fig. 4a, the scores are cal-
culated as the average over a given prediction horizon h
across all dimensions (refer to Appendix F for details on
the MSE, and Appendix G for details on the KS statistic).
Note that similarly to Fig. 4, we use PCA-based dimen-
sionality reduction for both DICL-(s, a) and DICL-(s) in
this experiment, reducing the original number of features
by half. Overall, we can see that DICL, especially the
DICL-(s, a) version, demonstrates improved calibration
compared to both vICL and the MLP baselines, thanks
to the disentangling effect of PCA. Moreover, DICL-
(s) with the 3.1-70B model achieves the lowest Mean
Squared Error (MSE) of 3.59. Nonetheless, DICL-(s, a)
exhibits the highest MSE across all models. This is likely
due to the additional error introduced by predicting ac-
tion information, thereby modeling both the dynamics
and the data-generating policy. This aspect differs from
the MLP baseline, which is provided with real actions at
test time (acting as an oracle), and from DICL-(s) and
vICL, which operate solely on states. We show the de-
tailed results of this ablation study in Appendix H. Notice
that we exclusively used LLMs based on the LLaMA se-
ries of models (Dubey & the Llama 3 team., 2024). This
was a strategic choice due to the LLaMA tokenizer, which
facilitates our framework by assigning a separate token to
each number between 0 and 999. For other LLMs, al-
gorithms have been suggested in the literature to extract
transition rules from their output logits. For example, the
Hierarchical Softmax algorithm (Liu et al., 2024b) could
be employed for this purpose.

4 USE-CASES IN REINFORCEMENT LEARNING

As explored in the preceding sections, LLMs can be used as accurate dynamics learners for propri-
oceptive control through in-context learning. We now state our main contributions in terms of the
integration of DICL into MBRL. First, we generalize the return bound of Model-Based Policy Op-
timization (MBPO) (Janner et al., 2019) to the more general case of multiple branches and use it to
analyze our method. Next, we leverage the LLM to augment the replay buffer of an off-policy RL al-
gorithm, leading to a more sample-efficient algorithm. In a second application, we apply our method
to predict the reward signal, resulting in a hybrid model-based policy evaluation technique. Finally,
we show that the LLM provides calibrated uncertainty estimates and conclude with a discussion of
our results.

4.1 THEORETICAL ANALYSIS: RETURN BOUND UNDER MULTI-BRANCH ROLLOUTS

When using a dynamics model in MBRL, one ideally seeks monotonic improvement guarantees,
ensuring that the optimal policy under the model is also optimal under the true dynamics, up to
some bound. Such guarantees generally depend on system parameters (e.g., the discount factor γ),
the prediction horizon k, and the model generalization error εm. As established in Janner et al.
(2019) and Frauenknecht et al. (2024), the framework for deriving these theoretical guarantees is the
one of branched model-based rollouts.

6

Published as a conference paper at ICLR 2025

A branched rollout return ηbranch[π] of a policy π is defined in Janner et al. (2019) as the return of
a rollout which begins under the true dynamics P and at some point in time switches to rolling out
under learned dynamics P̂ for k steps.

Figure 5: Multi-branch return. The
rollout following the true dynamics P
is shown in blue. The branched roll-
outs following LLM-based dynamics
P̂llm are in purple. Branched rollouts
can overlap, with the expectation over
the overlapping branches as the return.

For our LLM-based dynamics learner, we are interested
in studying a more general branching scheme that will be
later used to analyze the results of our data-augmented
off-policy algorithm. We begin by defining the multi-
branch rollout return.
Definition 4.1 (Multi-branch rollout return). The multi-
branch rollout return ηllm

p,k,T [π] of a policy π is defined
as the expected return over rollouts with the following
dynamics:

1. for t < T , where T is the minimal context
length, the rollout follows the true dynamics P .

2. for t ≥ T , with probability p, the rollout
switches to the LLM-based dynamics P̂llm for k
steps, otherwise the rollout continues with the
true dynamics P .

These different rollout realizations, referred to as
branches, can overlap, meaning that multiple LLM-based dynamics can run in parallel if multiple
branchings from the true dynamics occur within the k-step window (see Fig. 5).

With this definition, we now state our main theoretical result, consisting of a return bound between
the true return and the multi-branch rollout return.
Theorem 4.2 (Multi-branch return bound). Let T be the minimal length of the in-context trajecto-
ries, p ∈ [0, 1] the probability that a given state is a branching point. We assume that the reward is
bounded and that the expected total variation between the LLM-based model and the true dynamics
under a policy π is bounded at each timestep by maxt≥T Es∼P t,a∼π[DTV(P (.|s, a)||P̂llm(.|s, a))] ≤
εllm(T). Then under a multi-branched rollout scheme with a branch length of k, the return is
bounded as follows:

|η(π)− ηllm
p,k,T (π)| ≤ 2

γT

1− γ
rmaxk

2 p εllm(T) , (3)

where rmax = maxs∈S,a∈A r(s, a).

Theorem 4.2 generalizes the single-branch return presented in Janner et al. (2019), incorporating an
additional factor of the prediction horizon k due to the presence of multiple branches, and directly
accounting for the impact of the amount of LLM training data through the branching factor p. Addi-
tionally, the bound is inversely proportional to the minimal context length T , both through the power
in the discount factor γT and the error term εllm(T). Indeed, the term εllm(T) corresponds to the
generalization error of in-context learning. Several works in the literature studied it and showed that
it typically decreases in O(T−1/2) with T the length of the context trajectories (Zekri et al., 2024;
Zhang et al., 2023c; Li et al., 2023).

4.2 DATA-AUGMENTED OFF-POLICY REINFORCEMENT LEARNING

In this section, we show how DICL can be used for data augmentation in off-policy model-free
RL algorithms such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018). The idea is to augment
the replay buffer of the off-policy algorithm with transitions generated by DICL, using trajectories
already collected by previous policies. The goal is to improve sample-efficiency and accelerate
the learning curve, particularly in the early stages of learning as the LLM can generate accurate
transitions from a small trajectory. We name this application of our approach DICL-SAC.

As defined in Corrado & Hanna (2023), data-augmented off-policy RL involves perturbing previ-
ously observed transitions to generate new transitions, without further interaction with the environ-
ment. The generated transitions should ideally be diverse and feasible under the MDP dynamics to
enhance sample efficiency while ensuring that the optimal policy remains learnable.

7

Published as a conference paper at ICLR 2025

0.0 0.5 1.0
Step 1e4

1.5

1.0

0.5

0.0

Re
tu

rn

1e3 Pendulum

0.25 0.50 0.75 1.00
Step 1e5

0

2

4

6

Re
tu

rn

1e3 HalfCheetah

0.25 0.50 0.75 1.00
Step 1e5

0.0

0.5

1.0

1.5

Re
tu

rn

1e3 Hopper

DICL-SAC DICL-SAC DICL-SAC

Figure 6: Data-augmented off-policy RL. In the early stages of training DICL-SAC improves the
sample efficiency of SAC on three Gym control environments. Due to the intensive use of the LLM
within DICL-SAC, we conducted this experiment using the Llama 3.2-1B model.

Algorithm 2 DICL-SAC

1: Inputs: LLM-based dynamics learner (e.g. DICL-(s)),
batch size b, LLM data proportion α, minimal context
length T , and maximal context length Tmax

2: Initialize policy πϕ, critic Qψ , replay buffer R, and
LLM replay bufferRllm, and context size Tmax

3: for t = 1, . . . , N interactions do
4: New transition (st, at, rt, st+1) from πθ
5: Add (st, at, rt, st+1) toR
6: Store auxiliary action ãt ∼ πθ(.|st)
7: if Generate LLM data then
8: Sample trajectory T = (s0, . . . , sTmax) fromR
9: {ŝi+1}0≤i≤Tmax ∼ DICL-(s) (T)

10: Add {(si, ãi, ri, ŝi+1)}T≤i≤Tmax
toRllm

11: end if
12: if update SAC then
13: Sample batch B of size b fromR
14: Sample batch Bllm of size α ·b fromRllm
15: Update ϕ and ψ on B ∪ Bllm
16: end if
17: end for

Algorithm 2 (DICL-SAC) inte-
grates multiple components to
demonstrate a novel proof-of-
concept for improving the sample
efficiency of SAC using DICL
for data augmentation. Let T =
(s0, a0, r0, . . . , sTmax , aTmax , rTmax)
be a real trajectory collected
with a fixed policy πϕ, sampled
from the real transitions being
stored in a replay buffer R. We
generate synthetic transitions
(st, ãt, rt, ŝt+1)T≤t≤Tmax

; where
ŝt+1 is the next state generated by the
LLM model applied on the trajectory
of the states only, ãt is an action
sampled from the data collection
policy πϕ(.|st), and T is the minimal
context length. These transitions are
then stored in a separate replay buffer
Rllm. At a given update frequency,
DICL-SAC performs G gradient
updates using data sampled from R
and α% · G gradient updates using data sampled from Rllm. Other hyperparameters of our method
include the LLM-based method (vICL, DICL-(s) or DICL-(s, a)), how often we generate new LLM
data and the maximal context length Tmax (see Appendix D for the full list of hyperparameters).

Fig. 6 compares the return curves obtained by DICL-SAC against SAC in three control environ-
ments from the Gym library (Brockman et al., 2016). As anticipated with our data augmentation
approach, we observe that our algorithm improves the sample efficiency of SAC at the beginning
of training. This improvement is moderate but significant in the Pendulum and HalfCheetah envi-
ronments, while the return curves tend to be noisier in the Hopper environment. Furthermore, as
the proportion of LLM data α increases, the performance of the algorithm decreases (particularly
in HalfCheetah), as predicted by Theorem 4.2. Indeed, a larger proportion of LLM data correlates
with a higher probability of branching p, as more branching points will be sampled throughout the
training. Regarding the other parameters of our bound in Theorem 4.2, we set T = 1, meaning all
LLM-generated transitions are added toRllm, and k = 1 to minimize LLM inference time.

4.3 POLICY EVALUATION

In this section we show how DICL can be used for policy evaluation.

8

Published as a conference paper at ICLR 2025

System engineers are often presented with several policies to test on their systems. On the one hand,
off-policy evaluation (e.g., Uehara et al. (2022)) involves using historical data collected from a dif-
ferent policy to estimate the performance of a target policy without disrupting the system. However,
this approach is prone to issues such as distributional shift and high variance. On the other hand, on-
line evaluation provides a direct and unbiased comparison under real conditions. System engineers
often prefer online evaluation for a set of pre-selected policies because it offers real-time feedback
and ensures that deployment decisions are based on live data, closely reflecting the system’s true
performance in production. However, online evaluations can be time-consuming and may temporar-
ily impact system performance. To address this, we propose a hybrid approach using LLM dynamics
predictions obtained through ICL to reduce the time required for online evaluation: the initial phase
of policy evaluation is conducted as a standard online test, while the remainder is completed offline
using the dynamics predictions enabled by the LLM’s ICL capabilities.

0 200 400
k

0

10

20

30

40

V Vk
V

Hopper

DICL-(s) DICL-(s,a)vICL MLP

0 200 400
k

0

5

10

15

20

HalfCheetah

Figure 7: Policy evaluation with DICL. Relative
error on the predicted value over k = 500 steps,
with context length of T = 500. This experiment
is conducted using the Llama 3-8B model.

Fig. 7 illustrates the relative error in value ob-
tained by predicting the trajectory of rewards
for k steps, given a context length of T = 500.
When k ≤ 500, we complete the remaining
steps of the 1000-step episode using the ac-
tual rewards. For the two versions of DICL,
the reward vector is concatenated to the feature
space prior to applying PCA. In the Hopper en-
vironment, it is evident that predicting the re-
ward trajectory alone is a challenging task for
the vanilla method vICL. On the contrary, both
DICL-(s) and DICL-(s, a) effectively capture
some of the dependencies of the reward signal
on the states and actions, providing a more ro-
bust method for policy evaluation, and match-
ing the MLP baseline that has been trained on a
dataset of transitions sampled from the same policy. However, in HalfCheetah we observe that the
vanilla method largely improves upon both the baseline and DICL. We suspect that this is due to the
fact that the reward signal is strongly correlated with the ˙rootx dimension in HalfCheetah, which
proved to be harder to predict by our approach, as can be seen in Fig. 4a.

Note that the experimental setup that we follow here is closely related to the concept of Model-based
Value Expansion (Feinberg et al., 2018; Buckman et al., 2018), where we use the dynamics model
to improve the value estimates through an n-step expansion in an Actor Critic algorithm.

4.4 CALIBRATION OF THE LLM UNCERTAINTY ESTIMATES

An intriguing property observed in Fig. 4b is the confidence interval around the predictions. As
detailed in Algorithm 1, one can extract a full probability distribution for the next prediction given
the context, enabling uncertainty estimation in the LLM’s predictions. Notably, this uncertainty
is pronounced at the beginning when context is limited, around peaks, and in regions where the
average prediction exhibits large errors. We explore this phenomenon further in the next section by
evaluating the calibration of the LLM’s uncertainty estimates.

Calibration is known to be an important property of a dynamics model when used in reinforcement
learning (Malik et al., 2019). In this section, we aim to investigate whether the uncertainty esti-
mates derived from the LLM’s logits are well-calibrated. We achieve this by evaluating the quantile
calibration (Kuleshov et al., 2018) of the probability distributions obtained for each LLM-based
method.

Quantile calibration. For a regression problem with variable y ∈ Y = R, and a model that
outputs a cumulative distribution function (CDF) Fi over yi (where i indexes data points), quantile
calibration implies that yi (groundtruth) should fall within a p%-confidence interval p% of the time:

∑N
i=1 I{yi ≤ F

−1
i (p)}

N
→ p for all p ∈ [0, 1] as N →∞ (4)

9

Published as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
quant ile

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o

rt
io

n

HalfCheetah - bfoot

Naive
ks = 0.18

vICL
ks = 0.07

DICL-(s)
ks = 0.06

DICL-(s,a)
ks = 0.09

Figure 8: Quantile calibration reliability dia-
gram. The LLM (Llama 3 8B) uncertainty esti-
mates are well-calibrated. Vertical lines show the
Kolmogorov-Smirnov statistic for each fit.

where F−1
i : [0, 1] → Y denotes the quantile

function F−1
i (p) = inf{y : p ≤ Fi(y)} for all

p ∈ [0, 1], and N the number of samples.

LLMs are well-calibrated forecasters.
Fig. 8 shows the reliability diagram for the
bfoot dimension of the HalfCheetah system.
The overall conclusion is that, regardless of the
LLM-based sub-routine used to predict the next
state, the uncertainty estimates derived from
the LLM’s logits are well-calibrated in terms
of quantile calibration. Ideally, forecasters
should align with the diagonal in Fig. 8, which
the LLM approach nearly achieves. Further-
more, when comparing with a naive baseline
(the details are deferred to Appendix G), the
LLM-forecaster matches the baseline when it’s
already calibrated, and improves over it when
it’s not. To quantify a forecaster’s calibration
with a point statistic, we compute the Kolmogorov-Smirnov goodness-of-fit test Eq. (10), shown in
the legend of Fig. 8.

5 DISCUSSION

By introducing the DICL framework, our goal is to bridge the gap between MBRL and LLMs.
Our study raises multiple open questions and future research directions. Notably, the choice of
the feature transformation is crucial for improving performance in specific applications. We plan
to explore transformations that capture not only linear but also non-linear dependencies, such as
AutoEncoders, as discussed in Appendix C. Another possible direction is the integration of textual
context information into the LLM prompt. This approach has been shown to enhance the overall
pipeline for time series forecasting (Jin et al., 2024; Xue & Salim, 2023) and policy learning (Wang
et al., 2023).

Besides this, our algorithm DICL-SAC performs data augmentation by applying the LLM to gen-
erate next states Eq. (2). This operation requires a total of ds calls to the LLM (or c after the φ
transformation) to generate Tmax − T transitions, as the time steps can be batched. This approach
assumes a fixed policy in the context, allowing the LLM to implicitly learn Pπϕ using only the states.
Looking ahead, a future research direction is to explore how to apply DICL to MBRL by replacing
the dynamics model with an LLM. Naively applying DICL-(s, a) would require (Tmax−T)·ds calls
to the LLM, as transitions need to be predicted sequentially when actions change. This results in an
extremely computationally expensive method, making it infeasible for many applications. There-
fore, further research is needed to make this approach computationally efficient.

CONCLUSION

In this paper, we ask how we can leverage the emerging capabilities of Large Language Models to
benefit model-based reinforcement learning. We build on previous work that successfully conceptu-
alized in-context learning for univariate time series prediction, and provide a systematic methodol-
ogy to apply ICL to an MDP’s dynamics learning problem. Our methodology, based on a projection
of the data in a linearly uncorrelated representation space, proved to be efficient in capturing the
dynamics of typical proprioceptive control environments, in addition to being more computationally
efficient through dimensionality reduction.

To derive practical applications of our findings, we tackled two RL use-cases: data-augmented off-
policy RL, where our algorithm DICL-SAC improves the sample efficiency of SAC, and benefits
from a theoretical guarantee under the framework of model-based multi-branch rollouts. Our sec-
ond application, consisted in predicting the trajectory of rewards in order to perform hybrid online
and model-based policy evaluation. Finally, we showed that the LLM-based dynamics model also
provides well-calibrated uncertainty estimates.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

The authors extend their gratitude to Nicolas Boullé for insightful discussions on the initial con-
cepts of this project, as well as to the authors of the paper (Liu et al., 2024c) (Toni J.B. Liu,
Nicolas Boullé, Raphaël Sarfati, Christopher J. Earls) for providing access to their codebase. The
authors also appreciate the anonymous reviewers and meta-reviewers for their valuable time and
constructive feedback. This work was made possible thanks to open-source software, including
Python (Van Rossum & Drake Jr, 1995), PyTorch (Paszke et al., 2019), Scikit-learn (Pedregosa
et al., 2011), and CleanRL (Huang et al., 2022).

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we release the code at https://github.com/abenechehab/dicl. The
implementation details and hyperparameters are listed in Appendix D.

REFERENCES

Abdelrahman Abdelhamed, Mahmoud Afifi, and Alec Go. What do you see? enhancing zero-shot
image classification with multimodal large language models. arXiv preprint arXiv:2405.15668,
2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models, May 2023. URL http:
//arxiv.org/abs/2211.15661. arXiv:2211.15661 [cs].

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In International Con-
ference on Learning Representations, 2021.

Abdelhakim Benechehab, Albert Thomas, and Balázs Kégl. Deep autoregressive density
nets vs neural ensembles for model-based offline reinforcement learning. arXiv preprint
arXiv:2402.02858, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners, July 2020. URL
http://arxiv.org/abs/2005.14165. arXiv:2005.14165 [cs].

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
8234–8244, Red Hook, NY, USA, 2018. Curran Associates Inc.

Yuji Cao, Huan Zhao, Yuheng Cheng, Ting Shu, Yue Chen, Guolong Liu, Gaoqi Liang, Junhua
Zhao, Jinyue Yan, and Yun Li. Survey on large language model-enhanced reinforcement learning:
Concept, taxonomy, and methods, 2024. URL https://arxiv.org/abs/2404.00282.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2023. URL https://arxiv.org/abs/2302.02662.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models, 2022. URL https://arxiv.org/abs/2202.09481.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021. URL https://arxiv.org/abs/2106.01345.

11

https://github.com/abenechehab/dicl
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2404.00282
https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2202.09481
https://arxiv.org/abs/2106.01345

Published as a conference paper at ICLR 2025

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems 31, pp. 4754–4765. Curran Associates, Inc., 2018.

Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matthew Botvinick, Jane X. Wang, and Eric Schulz.
Meta-in-context learning in large language models, May 2023. URL http://arxiv.org/
abs/2305.12907. arXiv:2305.12907 [cs].

Nicholas E Corrado and Josiah P Hanna. Understanding when dynamics-invariant data augmenta-
tions benefit model-free reinforcement learning updates. arXiv preprint arXiv:2310.17786, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting, April 2024. URL http://arxiv.org/abs/2310.10688.
arXiv:2310.10688 [cs].

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on Machine Learning,
2011.

Andreas Draeger, Sebastian Engell, and Horst Ranke. Model predictive control using neural net-
works. IEEE Control Systems, 15:61–66, 1995. ISSN 1066033X. doi: 10.1109/37.466261.

Abhimanyu Dubey and the Llama 3 team. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning, 2018.
URL https://arxiv.org/abs/1803.00101.

Xueyang Feng, Zhi-Yuan Chen, Yujia Qin, Yankai Lin, Xu Chen, Zhiyuan Liu, and Ji-Rong Wen.
Large Language Model-based Human-Agent Collaboration for Complex Task Solving, February
2024. URL http://arxiv.org/abs/2402.12914. arXiv:2402.12914 [cs].

Bernd Frauenknecht, Artur Eisele, Devdutt Subhasish, Friedrich Solowjow, and Sebastian Trimpe.
Trust the model where it trusts itself – model-based actor-critic with uncertainty-aware rollout
adaption, 2024. URL https://arxiv.org/abs/2405.19014.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://openreview.net/forum?id=
px0-N3_KjA.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, International Confer-
ence on Machine Learning, 2016.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What Can Transformers Learn
In-Context? A Case Study of Simple Function Classes, August 2023. URL http://arxiv.
org/abs/2208.01066. arXiv:2208.01066 [cs].

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos Filandrianos, and Giorgos Stamou. Puzzle
solving using reasoning of large language models: A survey. arXiv preprint arXiv:2402.11291,
2024.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large Language Models Are
Zero-Shot Time Series Forecasters, October 2023a. URL http://arxiv.org/abs/2310.
07820. arXiv:2310.07820 [cs].

12

http://arxiv.org/abs/2305.12907
http://arxiv.org/abs/2305.12907
http://arxiv.org/abs/2310.10688
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1803.00101
http://arxiv.org/abs/2402.12914
https://arxiv.org/abs/2405.19014
https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=px0-N3_KjA
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2208.01066
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2310.07820

Published as a conference paper at ICLR 2025

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/forum?id=md68e8iZK1.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 2450–2462. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2555–2565, 2019.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. TabLLM: Few-shot Classification of Tabular Data with Large Language Models, March
2023. URL http://arxiv.org/abs/2210.10723. arXiv:2210.10723 [cs].

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=Sy2fzU9gl.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL http://jmlr.org/papers/v23/21-1342.html.

Louis Martin Hugo Touvron and the Llama 2 team. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline Reinforcement Learning as One Big
Sequence Modeling Problem, November 2021. URL http://arxiv.org/abs/2106.
02039. arXiv:2106.02039 [cs].

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models, 2024.

Shyam Sundar Kannan, Vishnunandan L. N. Venkatesh, and Byung-Cheol Min. SMART-LLM:
Smart Multi-Agent Robot Task Planning using Large Language Models, March 2024. URL
http://arxiv.org/abs/2309.10062. arXiv:2309.10062 [cs].

Balázs Kégl, Gabriel Hurtado, and Albert Thomas. Model-based micro-data reinforcement learn-
ing: what are the crucial model properties and which model to choose? In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
p5uylG94S68.

13

https://openreview.net/forum?id=md68e8iZK1
https://openreview.net/forum?id=0oabwyZbOu
http://arxiv.org/abs/2210.10723
https://openreview.net/forum?id=Sy2fzU9gl
http://jmlr.org/papers/v23/21-1342.html
http://arxiv.org/abs/2106.02039
http://arxiv.org/abs/2106.02039
http://arxiv.org/abs/2309.10062
https://openreview.net/forum?id=p5uylG94S68
https://openreview.net/forum?id=p5uylG94S68

Published as a conference paper at ICLR 2025

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
21810–21823. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising, 2019. URL https://arxiv.
org/abs/1802.05983.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2796–2804. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/kuleshov18a.html.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models, 2023. URL https://arxiv.org/abs/2303.00001.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta and David McAllester
(eds.), Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pp. 1–9, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v28/levine13.html.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 19565–19594. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/li23l.html.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as Policies: Language Model Programs for Embodied Control, May 2023.
URL http://arxiv.org/abs/2209.07753. arXiv:2209.07753 [cs].

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to Model the World with Language, May 2024. URL http://arxiv.org/abs/
2308.01399. arXiv:2308.01399 [cs].

Ruizhen Liu, Zhicong Chen, and Dazhi Zhong. Dromo: Distributionally robust offline model-based
policy optimization. 2021.

Shaoteng Liu, Haoqi Yuan, Minda Hu, Yanwei Li, Yukang Chen, Shu Liu, Zongqing Lu, and Jiaya
Jia. RL-GPT: Integrating Reinforcement Learning and Code-as-policy, February 2024a. URL
http://arxiv.org/abs/2402.19299. arXiv:2402.19299 [cs].

Toni J. B. Liu, Nicolas Boullé, Raphaël Sarfati, and Christopher J. Earls. LLMs learn governing
principles of dynamical systems, revealing an in-context neural scaling law, 2024b.

Toni J. B. Liu, Nicolas Boullé, Raphaël Sarfati, and Christopher J. Earls. LLMs learn governing
principles of dynamical systems, revealing an in-context neural scaling law, February 2024c.
URL http://arxiv.org/abs/2402.00795. arXiv:2402.00795 [cs].

14

https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://arxiv.org/abs/1802.05983
https://arxiv.org/abs/1802.05983
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://proceedings.mlr.press/v80/kuleshov18a.html
https://proceedings.mlr.press/v80/kuleshov18a.html
https://arxiv.org/abs/2303.00001
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://proceedings.mlr.press/v28/levine13.html
https://proceedings.mlr.press/v202/li23l.html
http://arxiv.org/abs/2209.07753
http://arxiv.org/abs/2308.01399
http://arxiv.org/abs/2308.01399
http://arxiv.org/abs/2402.19299
http://arxiv.org/abs/2402.00795

Published as a conference paper at ICLR 2025

Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool Fakoor.
TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models, October
2023. URL http://arxiv.org/abs/2310.05905. arXiv:2310.05905 [cs].

Runyu Ma, Jelle Luijkx, Zlatan Ajanovic, and Jens Kober. ExploRLLM: Guiding Exploration in
Reinforcement Learning with Large Language Models, March 2024. URL http://arxiv.
org/abs/2403.09583. arXiv:2403.09583 [cs].

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and Stefano Er-
mon. Calibrated Model-Based Deep Reinforcement Learning. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning Research, pp. 4314–4323. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.press/v97/malik19a.html.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
3hGNqpI4WS.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are Sample-Efficient World Mod-
els. September 2022. URL https://openreview.net/forum?id=vhFu1Acb0xb.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Eduardo Pignatelli, Johan Ferret, and Tim Rocktaschel. Assessing the Zero-Shot Capabilities of
LLMs for Action Evaluation in RL.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning.
In Conference on Robot Learning 2020, 2020. URL https://corlconf.github.io/
corl2020/paper_217/.

Rudra P. K. Poudel, Harit Pandya, Chao Zhang, and Roberto Cipolla. LanGWM: Lan-
guage Grounded World Model, November 2023. URL https://arxiv.org/abs/2311.
17593v1.

Nooshin Pourkamali and Shler Ebrahim Sharifi. Machine translation with large language models:
Prompt engineering for persian, english, and russian directions. arXiv preprint arXiv:2401.08429,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can Wikipedia Help Offline Reinforcement
Learning?, July 2022. URL http://arxiv.org/abs/2201.12122. arXiv:2201.12122
[cs].

James Requeima, John Bronskill, Dami Choi, Richard E. Turner, and David Duvenaud. LLM Pro-
cesses: Numerical Predictive Distributions Conditioned on Natural Language, May 2024. URL
http://arxiv.org/abs/2405.12856. arXiv:2405.12856 [cs, stat].

15

http://arxiv.org/abs/2310.05905
http://arxiv.org/abs/2403.09583
http://arxiv.org/abs/2403.09583
https://proceedings.mlr.press/v97/malik19a.html
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=vhFu1Acb0xb
https://corlconf.github.io/corl2020/paper_217/
https://corlconf.github.io/corl2020/paper_217/
https://arxiv.org/abs/2311.17593v1
https://arxiv.org/abs/2311.17593v1
http://arxiv.org/abs/2201.12122
http://arxiv.org/abs/2405.12856

Published as a conference paper at ICLR 2025

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 5418–5426, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.437. URL https://aclanthology.org/2020.
emnlp-main.437.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, and Huazhe Xu. Unleashing the Power of Pre-
trained Language Models for Offline Reinforcement Learning, November 2023. URL http:
//arxiv.org/abs/2310.20587. arXiv:2310.20587 [cs].

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2:160–163, 7 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL
https://dl.acm.org/doi/10.1145/122344.122377.

Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style planning
with linear function approximation and prioritized sweeping. Moore and Atkeson, 1992.

Albert Thomas, Abdelhakim Benechehab, Giuseppe Paolo, and Balázs Kégl. Fair model-based
reinforcement learning comparisons with explicit and consistent update frequency. In The
Third Blogpost Track at ICLR 2024, 2024. URL https://openreview.net/forum?id=
RhPNDzYWD6.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in rein-
forcement learning, 2022. URL https://arxiv.org/abs/2212.06355.

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From Words to Numbers:
Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples,
September 2024. URL http://arxiv.org/abs/2404.07544. arXiv:2404.07544 [cs].

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent, May 2023. URL http://arxiv.org/abs/2212.07677. arXiv:2212.07677 [cs].

Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil Sreenath. Prompt a Robot to Walk with
Large Language Models, November 2023. URL http://arxiv.org/abs/2309.09969.
arXiv:2309.09969 [cs, eess].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

16

https://aclanthology.org/2020.emnlp-main.437
https://aclanthology.org/2020.emnlp-main.437
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2310.20587
http://arxiv.org/abs/2310.20587
https://dl.acm.org/doi/10.1145/122344.122377
https://openreview.net/forum?id=RhPNDzYWD6
https://openreview.net/forum?id=RhPNDzYWD6
https://arxiv.org/abs/2212.06355
http://arxiv.org/abs/2404.07544
http://arxiv.org/abs/2212.07677
http://arxiv.org/abs/2309.09969
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Published as a conference paper at ICLR 2025

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M. Mitchell. Read and reap
the rewards: Learning to play atari with the help of instruction manuals, 2024. URL https:
//arxiv.org/abs/2302.04449.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context
Learning as Implicit Bayesian Inference, July 2022. URL http://arxiv.org/abs/2111.
02080. arXiv:2111.02080 [cs].

Hao Xue and Flora D. Salim. PromptCast: A New Prompt-based Learning Paradigm for
Time Series Forecasting, December 2023. URL http://arxiv.org/abs/2210.08964.
arXiv:2210.08964 [cs, math, stat].

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foundation
Models for Decision Making: Problems, Methods, and Opportunities, March 2023. URL http:
//arxiv.org/abs/2303.04129. arXiv:2303.04129 [cs].

Yu Yang and Pan Xu. Pre-trained Language Models Improve the Few-shot Prompt Ability
of Decision Transformer, August 2024. URL http://arxiv.org/abs/2408.01402.
arXiv:2408.01402 [cs].

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 14129–14142. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 28954–28967. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
f29a179746902e331572c483c45e5086-Paper.pdf.

Oussama Zekri, Abdelhakim Benechehab, and Ievgen Redko. Can llms predict the convergence of
stochastic gradient descent? In ICML 2024 Workshop on In-Context Learning.

Oussama Zekri, Ambroise Odonnat, Abdelhakim Benechehab, Linus Bleistein, Nicolas Boullé, and
Ievgen Redko. Large language models as markov chains. arXiv preprint arXiv:2410.02724, 2024.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory prun-
ing. 2021.

Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang,
Hongxia Yang, and Zhaoran Wang. How Can LLM Guide RL? A Value-Based Approach, Febru-
ary 2024. URL http://arxiv.org/abs/2402.16181. arXiv:2402.16181 [cs].

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. STORM: Efficient Stochastic
Transformer based World Models for Reinforcement Learning, October 2023a. URL https:
//arxiv.org/abs/2310.09615v1.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, and Lidong Bing. Sentiment analysis in
the era of large language models: A reality check, 2023b. URL https://arxiv.org/abs/
2305.15005.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization, 2023c. URL
https://arxiv.org/abs/2305.19420.

Zhaoheng Zheng, Jingmin Wei, Xuefeng Hu, Haidong Zhu, and Ram Nevatia. Large language mod-
els are good prompt learners for low-shot image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 28453–28462, 2024.

17

https://arxiv.org/abs/2302.04449
https://arxiv.org/abs/2302.04449
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2210.08964
http://arxiv.org/abs/2303.04129
http://arxiv.org/abs/2303.04129
http://arxiv.org/abs/2408.01402
https://proceedings.neurips.cc/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
http://arxiv.org/abs/2402.16181
https://arxiv.org/abs/2310.09615v1
https://arxiv.org/abs/2310.09615v1
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2305.15005
https://arxiv.org/abs/2305.19420

Published as a conference paper at ICLR 2025

Appendix
Outline. In Appendix A, we prove our main theoretical result (Theorem 4.2). We provide an
extended related work in Appendix B. Additional materials about the state and action dimensions
interdependence are given in Appendix C. The implementation details and hyperparameters of our
methods are given in Appendix D. Finally, we provide additional experiments about multi-step errors
(Appendix F), calibration (Appendix G), the impact of the data collecting policy on the prediction
error (Appendix E), and details about the ablation study on the choice of the LLM (Appendix H).

TABLE OF CONTENTS

A Theoretical analysis 19

A.1 Proof of Theorem 4.2 . 19

B Related Work 21

C State and action dimensions interdependence - additional materials 22

C.1 Principal Component Analysis (PCA) . 22

C.2 Independent Component Analysis (ICA) . 23

C.3 AutoEncoder-based approach . 23

C.4 Sensitivity Analysis . 24

D Algorithms 24

D.1 Soft-Actor Critic . 24

D.2 DICL-SAC . 25

E What is the impact of the policy on the prediction error? 26

F Multi-step prediction errors 26

G Calibration 27

H On the choice of the LLM 28

18

Published as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 4.2

We start by formally defining the LLM multi-branch return ηllm
p,k,T . To do so, we first denote At

the random event of starting a k-step LLM branch at timestep t and we denote Xt the associated
indicator random variable Xt = 1[At]. We assume that the (Xt)t≥T are independent. We then
define the random eventAkt that at least one of the k preceding timesteps has been branched, meaning
that the given timestep t belongs to at least one LLM branch among the k possible branches: Akt =⋃k−1
i=0 At−i. The LLM multi-branch return can then be written as follows:

ηllm
p,k,T (π) =

T−1∑
t=0

γtEst∼P t,at∼π
[
r(st, at)

]
︸ ︷︷ ︸

Burn-in phase to gather minimal context size T

+
∞∑
t=T

γtEXt−i∼b(p),1≤i≤k

[
1[Akt]

1∑k
i=1Xt−i

k∑
i=1

Xt−iEst∼P̂ i
t,llm,at∼π

[
r(st, at)

]
︸ ︷︷ ︸

average reward among the branches spanning timestep t

+ 1[Ākt]Est∼P t,at∼π
[
r(st, at)

]︸ ︷︷ ︸
When no branch is spanning timestep t

]
,

(5)

where P t = P (.|P t−1) with P 0 = µ0 the initial state distribution and P̂ it,llm = P̂ illm(.|P t−i).
Before continuing, we first need to establish the following lemma.
Lemma A.1. (Multi-step Error Bound, Lemma B.2 in Frauenknecht et al. (2024) and Janner et al.
(2019).) Let P and P̃ be two transition functions. Define the multi-step error at time step t, starting
from any initial state distribution µ0, as:

εt := DTV(P
t(·|µ0)∥P̃ t(·|µ0))

with P 0 = P̃ 0 = µ0.
Let the one-step error at time step t ≥ 1 be defined as:

ξt := Es∼P t−1(·|µ0)

[
DTV(P (·|s)∥P̃ (·|s))

]
,

and ξ0 = ε0 = 0.

Then, the multi-step error satisfies the following bound:

εt ≤
t∑
i=0

ξi.

Proof. Let t > 0. We start with the definition of the total variation distance:

εt = DTV(P
t(·|µ0)∥P̃ t(·|µ0))

=
1

2

∫
s′∈S

∣∣∣P t(s′|µ0)− P̃ t(s′|µ0)
∣∣∣ ds′

=
1

2

∫
s′∈S

∣∣∣∣∫
s∈S

P (s′|s)P t−1(s|µ0)− P̃ (s′|s)P̃ t−1(s|µ0) ds

∣∣∣∣ ds′
≤ 1

2

∫
s′∈S

∫
s∈S

∣∣∣P (s′|s)P t−1(s|µ0)− P̃ (s′|s)P̃ t−1(s|µ0)
∣∣∣ ds ds′

=
1

2

∫
s′∈S

∫
s∈S

∣∣∣P (s′|s)P t−1(s|µ0)− P̃ (s′|s)P̃ t−1(s|µ0)
∣∣∣ ds ds′

19

Published as a conference paper at ICLR 2025

=
1

2

∫
s′∈S

∫
s∈S

∣∣∣P (s′|s)P t−1(s|µ0)− P̃ (s′|s)P t−1(s|µ0)

+P̃ (s′|s)P t−1(s|µ0)− P̃ (s′|s)P̃ t−1(s|µ0)
∣∣∣ ds ds′

≤ 1

2

∫
s′∈S

∫
s∈S

P t−1(s|µ0)
∣∣∣P (s′|s)− P̃ (s′|s)∣∣∣ ds ds′

+
1

2

∫
s′∈S

∫
s∈S

P̃ (s′|s)
∣∣∣P t−1(s|µ0)− P̃ t−1(s|µ0)

∣∣∣ ds ds′
=

∫
s∈S

[
1

2

∫
s′∈S

∣∣∣P (s′|s)− P̃ (s′|s)∣∣∣ ds′]P t−1(s|µ0) ds

+
1

2

∫
s∈S

(∫
s′∈S

P̃ (s′|s) ds′
) ∣∣∣P t−1(s|µ0)− P̃ t−1(s|µ0)

∣∣∣ ds
= Es∼P t−1(·|µ0)

[
DTV(P (·|µ0)∥P̃ (·|s))

]
+DTV(P

t−1(·|µ0)∥P̃ t−1(·|µ0))

= ξt + εt−1

Given that ξ0 = ε0 = 0, by induction we have:

εt ≤
t∑
i=0

ξi.

We now restate and prove Theorem 4.2:
Theorem A.2 (Multi-branch return bound). Let T be the minimal length of the in-context trajecto-
ries, p ∈ [0, 1] the probability that a given state is a branching point. We assume that the reward is
bounded and that the expected total variation between the LLM-based model and the true dynamics
under a policy π is bounded at each timestep by maxt≥T Es∼P t,a∼π[DTV(P (.|s, a)||P̂llm(.|s, a))] ≤
εllm(T). Then under a multi-branched rollout scheme with a branch length of k, the return is
bounded as follows:

|η(π)− ηllm
p,k,T (π)| ≤ 2

γT

1− γ
rmaxk

2 p εllm(T) , (6)

where rmax = maxs∈S,a∈A r(s, a).

Proof. Step 1: Expressing the bound in terms of horizon-dependent errors.

|η(π)− ηllm
p,k,T (π)| =

∣∣∣∣ ∞∑
t=T

γtEst∼P t,at∼π
[
r(st, at)

]
− EXt−i∼b(p),1≤i≤k

[
1[Akt]

1∑k
i=1Xt−i

k∑
i=1

Xt−iEst∼P̂ i
t,llm,at∼π

[
r(st, at)

]
− 1[Ākt]Est∼P t,at∼π

[
r(st, at)

]]∣∣∣∣
≤

∞∑
t=T

γt
∣∣∣∣EXt−i∼b(p),1≤i≤k

[
1[Akt]Est∼P t,at∼π

[
r(st, at)

]
+ 1[Ākt]Est∼P t,at∼π

[
r(st, at)

]]

− EXt−i∼b(p),1≤i≤k

[
1[Akt]

1∑k
i=1Xt−i

k∑
i=1

Xt−iEst∼P̂ i
t,llm,at∼π

[
r(st, at)

]
− 1[Ākt]Est∼P t,at∼π

[
r(st, at)

]]∣∣∣∣
20

Published as a conference paper at ICLR 2025

≤
∞∑
t=T

γt
∣∣∣∣EXt−i∼b(p),1≤i≤k

[
1[Akt]

(

Est∼P t,at∼π
[
r(st, at)

]
− 1∑k

i=1Xt−i

k∑
i=1

Xt−iEst∼P̂ i
t,llm,at∼π

[
r(st, at)

])]∣∣∣∣
≤

∞∑
t=T

γt
∣∣∣∣EXt−i∼b(p),1≤i≤k

[
1[Akt]

1∑k
i=1Xt−i

k∑
i=1

Xt−i

(
Est∼P t,at∼π

[
r(st, at)

]
− Est∼P̂ i

t,llm,at∼π
[
r(st, at)

])]∣∣∣∣
We then expand the integrals in the terms Est∼P t,at∼π

[
r(st, at)

]
− Est∼P̂ i

t,llm,at∼π
[
r(st, at)

]
and

express it in terms of horizon-dependent multi-step model errors:

Est∼P t,at∼π
[
r(st, at)

]
− Est∼P̂ i

t,llm,at∼π
[
r(st, at)

]
=

∫
s∈S

∫
a∈A

r(s, a)
(
P t(s, a)− P̂ it,llm(s, a)

)
da ds

≤ rmax

∫
s∈S

∫
a∈A

(
P t(s, a)− P̂ it,llm(s, a)

)
da ds

≤ rmax

∫
s∈S

∫
a∈A

(
P t(s)− P̂ it,llm(s)

)
π(a|s) da ds

≤ rmax

∫
s∈S

(
P t(s)− P̂ it,llm(s)

)
ds

≤ 2rmaxDTV(P
t||P̂ it,llm)

(7)

Step 2: Simplifying the bound.
By applying Lemma A.1 we can bound the multi-step errors using the bound on one-step errors:

DTV(P
t||P̂ it,llm) ≤ i εllm(T) ≤ k εllm(T) (8)

Therefore, the bound becomes:

|η(π)− ηllm
p,k,T (π)| ≤ 2rmax k εllm(T)

∞∑
t=T

γt

∣∣∣∣∣EXt−i∼b(p),1≤i≤k

[
1[Akt]

1∑k
i=1Xt−i

k∑
i=1

Xt−i

]∣∣∣∣∣
= 2rmax k εllm(T)

∞∑
t=T

γt
∣∣EXt−i∼b(p),1≤i≤k

[
1[Akt]

]∣∣
≤ 2rmax k εllm(T)

∞∑
t=T

γtkp

= 2
γT

1− γ
rmaxk

2 p εllm(T)

(9)

B RELATED WORK

Model-based reinforcement learning (MBRL). MBRL has been effectively used in iterated
batch RL by alternating between model learning and planning (Deisenroth & Rasmussen, 2011;
Hafner et al., 2021; Gal et al., 2016; Levine & Koltun, 2013; Chua et al., 2018; Janner et al., 2019;

21

Published as a conference paper at ICLR 2025

Kégl et al., 2021), and in the offline (pure batch) RL where we do one step of model learning
followed by policy learning (Yu et al., 2020; Kidambi et al., 2020; Lee et al., 2021; Argenson &
Dulac-Arnold, 2021; Zhan et al., 2021; Yu et al., 2021; Liu et al., 2021; Benechehab et al., 2024).
Planning is used either at decision time via model-predictive control (MPC) (Draeger et al., 1995;
Chua et al., 2018; Hafner et al., 2019; Pinneri et al., 2020; Kégl et al., 2021), or in the background
where a model-free agent is learned on imagined model rollouts (Dyna; Janner et al. (2019); Sutton
(1991); Sutton et al. (1992); Ha & Schmidhuber (2018)), or both. For example, model-based policy
optimization (MBPO) (Janner et al., 2019) trains an ensemble of feed-forward models and generates
imaginary rollouts to train a soft actor-critic agent.

LLMs in RL. LLMs have been integrated into reinforcement learning (RL) (Cao et al., 2024;
Yang et al., 2023), playing key roles in enhancing decision-making (Kannan et al., 2024; Pignatelli
et al.; Zhang et al., 2024; Feng et al., 2024), reward design (Kwon et al., 2023; Wu et al., 2024; Carta
et al., 2023; Liu et al., 2023), and information processing (Poudel et al., 2023; Lin et al., 2024). The
use of LLMs as world models is particularly relevant to our work. More generally, the Transformer
architecture (Vaswani et al., 2017) has been used in offline RL (Decision Transformer Chen et al.
(2021); Trajectory Transformer Janner et al. (2021)). Pre-trained LLMs have been used to initialize
decision transformers and fine-tune them for offline RL tasks (Shi et al., 2023; Reid et al., 2022;
Yang & Xu, 2024). As world models, Dreamer-like architectures based on Transformers have been
proposed (Micheli et al., 2022; Zhang et al., 2023a; Chen et al., 2022), demonstrating efficiency for
long-memory tasks such as Atari games. In text-based environments, LLMs have found multiple
applications (Lin et al., 2024; Feng et al., 2024; Zhang et al., 2024; Ma et al., 2024), including using
code-generating LLMs to generate policies in a zero-shot fashion (Liang et al., 2023; Liu et al.,
2024a).

The closest work to ours is Wang et al. (2023), where a system prompt consisting of multiple pieces
of information about the control environment (e.g., description of the state and action spaces, nature
of the controller, historical observations, and actions) is fed to the LLM. Unlike our approach, which
focuses on predicting the dynamics of RL environments, Wang et al. (2023) aim to directly learn a
low-level control policy from the LLM, incorporating extra information in the prompt. Furthermore,
Wang et al. (2023) found that only GPT-4 was usable within their framework, while we provide a
proof-of-concept using smaller open LLMs such as Llama 3.2 1B.

ICL on Numerical Data. In-context learning for regression tasks has been theoretically analyzed
in several works, providing insights based on the Transformer architecture (Li et al., 2023; von Os-
wald et al., 2023; Akyürek et al., 2023; Garg et al., 2023; Xie et al., 2022). Regarding time series
forecasting, LLMTime (Gruver et al., 2023a) successfully leverages ICL for zero-shot extrapolation
of one-dimensional time series data. Similarly, Das et al. (2024) introduce a foundational model for
one-dimensional zero-shot time series forecasting, while Xue & Salim (2023) combine numerical
data and text in a question-answer format. ICL can also be used to approximate a continuous density
from the LLM logits. For example, Liu et al. (2024c) develop a Hierarchical softmax algorithm to
infer the transition rules of uni-dimensional Markovian dynamical systems. Building on this work,
Zekri et al. provide an application that predicts the parameter value trajectories in the Stochastic
Gradient Descent algorithm. More relevant to our work, Requeima et al. (2024) presented LLMPro-
cesses, a method aimed at extracting multi-dimensional distributions from LLMs. Other practical
applications of ICL on numerical data include few-shot classification on tabular data (Hegselmann
et al., 2023), regression (Vacareanu et al., 2024), and meta ICL (Coda-Forno et al., 2023).

C STATE AND ACTION DIMENSIONS INTERDEPENDENCE - ADDITIONAL
MATERIALS

C.1 PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis. PCA is a dimensionality reduction technique that transforms
the original variables into a new set of variables, the principal components, which are linearly
uncorrelated. The principal components can be ordered such that the first few retain most of
the variation present in all of the original variables. Formally, given a data matrix X with n
observations and p variables, PCA diagonalizes the covariance matrix C = 1

n−1X
TX to find

22

Published as a conference paper at ICLR 2025

the eigenvectors, which represent the directions of the principal components: PCA: X → Z =
XW, where W are the eigenvectors of C. In our case, the data represents a dataset of states and
actions given a data collecting policy πD, while the p variables represent the state (eventually also
the action) dimensions.

0 5 10 15 20
n_components

0.4

0.5

0.6

0.7

a
v
g
_e
rr
o
r

HalfCheetah

DICL-(s,a)

Figure 9: Ablation study on the number
of principal components in the DICL-
(s, a) method.

Ablation on the number of components. Fig. 9 shows
an ablation study on the number of components used in
the DICL-(s, a) method. Surprisingly, we observe a sharp
decline in the average multi-step error (see Appendix F
for a detailed definition) given only 4 components among
23 in the HalfCheetah system. The error then slightly
increases for an intermediate number of components, be-
fore going down again when the full variance is recov-
ered. This finding strengthens the position of PCA as our
Disentangling algorithm of choice in DICL.

C.2 INDEPENDENT COMPONENT ANALYSIS (ICA)

ICA is a statistical and computational technique used to
separate a multivariate signal into additive, statistically
independent components. Unlike PCA, which decorre-
lates the data, ICA aims to find a linear transformation
that makes the components as independent as possible. Given a data matrix X, ICA assumes that
the data is generated as linear mixtures of independent components: X = AS, where A is an un-
known mixing matrix and S is the matrix of independent components with independent rows. The
goal of ICA is to estimate an unmixing matrix W such that Y = WX is a good approximation
of the independent components S. The implications of ICA on independence are profound: while
PCA only guarantees uncorrelated components, ICA goes a step further by optimizing for statistical
independence, often measured by non-Gaussianity (kurtosis or negentropy).

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

rootz

rooty

thigh

leg

foot
rootx_dot

rootz_dot

rooty_dot

thigh_dot

leg_dot

foot_dot

thigh_joint

leg_joint

foot_joint

ICA - Estimated Mixing matrix

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 10: ICA estimated mixing ma-
trix.

Fig. 10 shows the estimated mixing matrix A when run-
ning ICA on the D4RL-expert dataset on the Hopper en-
vironment. Under the assumptions of ICA, notably the
statistical independence of the source signals, their lin-
ear mixing and the invertibility of the original (unknown)
mixing matrix, the original sources are successfully re-
covered if each line of the estimated mixing matrix is
mostly dominated by a single value, meaning that it’s
close to an identity matrix up to a permutation with scal-
ing. In the case of our states and actions data, it’s not
clear that this is the case from Fig. 10. Similarly to PCA,
we can transform the in-context multi-dimensional signal
using ICA, and apply the ICL procedure to the recovered
independent sources. We plan on exploring this method
in future follow-up work.

C.3 AUTOENCODER-BASED APPROACH

Variational Autoencoders (VAEs) (Kingma & Welling, 2022) offer a powerful framework for learn-
ing representations. A disentangled representation is one where each dimension of the latent space
captures a distinct and interpretable factor of variation in the data. By combining an encoder net-
work that maps inputs to a probabilistic latent space with a decoder network that reconstructs the
data, VAEs employ the reparameterization trick to enable backpropagation through the sampling
process. The key to disentanglement lies in the KL-divergence term of the VAE loss function, which
regularizes the latent distribution to be close to a standard normal distribution. Variants such as β-
VAE (Higgins et al., 2017) further emphasize this regularization by scaling the KL-divergence term,
thereby encouraging the model to learn a more disentangled representation at the potential cost of
reconstruction quality. Beyond simple VAEs, there exist previous work in the literature that specif-
ically aim at learning a factorized posterior distribution in the latent space (Kim & Mnih, 2019).

23

Published as a conference paper at ICLR 2025

Although this direction looks promising, it strikes different concerns about the learnability of these
models in the low data regime considered in our paper.

C.4 SENSITIVITY ANALYSIS

The preceding analysis examines state dimensions as features within a representation space, disre-
garding their temporal nature and our ultimate objective of predicting the next state. In practice, our
interest lies in capturing the dependencies that most significantly influence the next state through the
dynamics function of the MDP. To achieve this, we use Sensitivity Analysis (SA) to investigate how
variations in the input of the dynamics function impact its output.

ro
ot

z

ro
ot

y

th
ig

h

le
g

fo
ot

ro
ot

x

ro
ot

z

ro
ot

y

th
ig

h

le
g

fo
ot

t_
th

ig
h

t_
le

g

t_
fo

ot

rootz
rooty
thigh

leg
foot

rootx
rootz
rooty
thigh

leg
foot

Hopper

2

4

6

8

Figure 11: Sensitivity matrix.

Sensitivity Analysis. Sensitivity analysis is a system-
atic approach to evaluate how the uncertainty in the out-
put of a model can be attributed to different sources of un-
certainty in the model’s inputs. The One-at-a-Time (OAT)
method is a technique used to understand the impact of
individual input variables on the output of a model. In
the context of a transition function of a MDP, the OAT
method involves systematically varying one current state
or action dimension at a time, while keeping all others
fixed, and observing the resulting changes in the out-
put dimensions: ∂(st+1)k

∂(st)i
and ∂(st+1)k

∂(at)j
, where (st)i, (at)j

and (st+1)k denote the i-th dimension of the state, the j-
th dimension of the action, and the k-th dimension of the
next state, respectively.

In practice, we measure the sensitivity by applying a perturbation (of scale 10%) to each input
dimension separately, reporting the absolute change that occurs in each dimension of the output.
Precisely, for a deterministic transition function f , input state dimension i, and output dimension k,
we measure |f(s + ϵ, a)k − f(s, a)k| where ϵi = 0.1 × scale(i) and 0 elsewhere. The sensitivity
matrix in Fig. 11 demonstrates that most of the next state dimensions are mostly affected by their
respective previous values (the diagonal shape in the state dimensions square). In addition to that,
actions only directly affect some state dimensions, specifically velocities, which is expected from
the nature of the physics simulation underlying those systems. This finding suggests that the vICL
method might give good results in practice for the considered RL environments, and makes us hope
that the DICL-(s) approach is enough to capture the state dimensions dependencies, especially for
single-step prediction.
Remark C.1. This sensitivity analysis is specific to the single-step transition function. In practice,
such conclusions might change when looking at a larger time scale of the simulation.

D ALGORITHMS

D.1 SOFT-ACTOR CRITIC

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy algorithm that incorporates the max-
imum entropy framework, which encourages exploration by seeking to maximize the entropy of the
policy in addition to the expected return. SAC uses a deep neural network to approximate the policy
(actor) and the value functions (critics), employing two Q-value functions to mitigate positive bias
in the policy improvement step typical of off-policy algorithms. This approach helps in learning
more stable and effective policies for complex environments, making SAC particularly suitable for
tasks with high-dimensional, continuous action spaces.

We use the implementation provided in CleanRL (Huang et al., 2022) for SAC. In all environments,
we keep the default hyperparameters provided with the library, except for the update frequency. We
specify in Table 2 the complete list of hyperparameters used for every considered environment.

24

Published as a conference paper at ICLR 2025

Table 2: SAC hyperparameters.

Environment HalfCheetah Hopper Pendulum

Update frequency 1000 1000 200
Learning starts 5000 5000 1000
Batch size 128 128 64
Total timesteps 1e6 1e6 1e4
Gamma γ 0.99 0.99 0.99
policy learning rate 3e − 4 3e − 4 3e − 4

D.2 DICL-SAC

For our algorithm, we integrate an LLM inference interface (typically the Transformers library from
Huggingface (Wolf et al., 2020)) with CleanRL (Huang et al., 2022). Table 3 shows all DICL-SAC
hyperparameter choices for the considered environments.

Table 3: DICL-SAC hyperparameters.

Environment HalfCheetah Hopper Pendulum

Update frequency 1000 1000 200
Learning starts 5000 5000 1000
LLM Learning starts 10000 10000 2000
LLM Learning frequency 256 256 16
Batch size 128 128 64
LLM Batch size (α%) 7(5%), 13(10%), 32(25%) 7(5%), 13(10%), 32(25%) 4(5%), 7(10%), 16(25%)
Total timesteps 1e6 1e6 1e4
Gamma γ 0.99 0.99 0.99
Max context length 500 500 198
Min context length 1 1 1
LLM sampling method mode mode mode
LLM dynamics learner vICL vICL vICL

Balancing gradient updates. To ensure that DICL-SAC performs equally important gradient up-
dates on the LLM generated data, we used a gradient updates balancing mechanism. Indeed, since
the default reduction method of loss functions is averaging, the batch B with the smallest batch
size gets assigned a higher weight when doing gradient descent: 1

|B| . To address this, we multiply

the loss corresponding to the LLM generated batch Bllm with a correcting coefficient |Bllm|
|B| ensuring

equal weighting across all samples.

We now show the full training curves on the HalfCheetah and Hopper environments (Fig. 12). The
return curves show smoothed average training curves ± 95% Gaussian confidence intervals for 5
seeds in HalfCheetah and Hopper, and 10 seeds for Pendulum.

0.0 0.5 1.0
Step 1e6

0.00

0.25

0.50

0.75

1.00

1.25

Re
tu

rn

1e4 HalfCheetah

0.0 0.5 1.0
Step 1e6

0

1

2

3

Re
tu

rn

1e3 Hopper

DICL-SAC DICL-SAC DICL-SAC

Figure 12: Data-augmented off-policy RL. Full training curves.

25

Published as a conference paper at ICLR 2025

The update frequency. The default update frequency of SAC is 1 step, meaning that the policy that
interacts with the environment gets updated after every interaction. In our LLM-based framework,
this introduces an additional layer of complexity at this implies that the state visitation distribution
of the in-context trajectories will be moving from one timestamp to another. We therefore assume
an update frequency equal to the maximal number of steps of an episode of a given environment.

It is important to mention that the choice of setting the update frequency for all algorithms to the
number of steps equivalent to a full episode has dual implications: it can stabilize the data collection
policy, which is beneficial, but it may also lead to overtraining on data gathered by early, low-
quality policies, which is detrimental. This trade-off has been previously studied in the RL literature
(Matsushima et al., 2021; Thomas et al., 2024). Notably, Thomas et al. (2024) argues that the update
frequency is more of a system constraint than a design choice or hyperparameter. For instance,
controlling a physically grounded system, such as a helicopter, inherently imposes a minimal update
frequency. Therefore, we deem it a fair comparison as this constraint is uniformly applied to all
algorithms.

For the sake of completeness and comparison, we also evaluated the SAC baseline using its default
update frequency of one step. Fig. 13 shows the comparison of our algorithm DICL-SAC, the
baseline SAC with update frequency 1000, and the default SAC with update frequency 1. We see
that on Halfcheetah the default SAC (uf = 1) performs similarly to SAC with an update frequency
of 1000. On Pendulum and Hopper it performs slightly better with DICL remaining competitive
while having the constraint of an update frequency of 1000.

0.0 0.5 1.0
Step 1e4

1.5

1.0

0.5

0.0

Re
tu

rn

1e3 Pendulum

0.25 0.50 0.75 1.00
Step 1e5

0

2

4

6

Re
tu

rn

1e3 HalfCheetah

0.25 0.50 0.75 1.00
Step 1e5

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

1e3 Hopper

Figure 13: Data-augmented off-policy RL. Comparison with SAC in the default update frequency
regime. We conducted this experiment using the Llama 3.2-1B model.

E WHAT IS THE IMPACT OF THE POLICY ON THE PREDICTION ERROR?

In this experiment, We investigate how a policy impacts the accuracy and calibration of our LLM-
based dynamics models. To do so, we train three model-free algorithms (PPO (Schulman et al.,
2017), SAC (Haarnoja et al., 2018), and TD3 (Fujimoto et al., 2019)) on the HalfCheetah envi-
ronment, selecting different checkpoints throughout training to capture diverse policies. We then
analyze the correlation between policy characteristics, specifically state coverage (defined as the
maximum distance between any two states encountered by the policy) and entropy, with the Mean
Squared Error and Kolmogorov-Smirnov (KS) statistic. Our findings indicate that the state cover-
age correlates with both MSE and KS, possibly because policies that explore a wide range of states
generate trajectories that are more difficult to learn. Regarding the entropy, we can see that it also
correlates with MSE, but interestingly, it does not appear to impact the calibration.

F MULTI-STEP PREDICTION ERRORS

The average multi-step error. In Fig. 4a, we compute the average Mean Squared Error over
prediction horizons for h = 1, . . . , 20, and 5 trajectories sampled uniformly from the D4RL expert
dataset. For visualization purposes, we first rescale all the dimensions (using a pipeline composed

26

Published as a conference paper at ICLR 2025

4 6 80

0.25

0.5

0.75

1

1.25

m
se

0 5 100

0.25

0.5

0.75

1

1.25

4 6 8
state_coverage

0.4
0.5
0.6
0.7
0.8
0.9
1.0

ks

1e 1

0 5 10
entropy

0.4
0.5
0.6
0.7
0.8
0.9
1.0 1e 1 ppo

sac
td3

Figure 14: Correlation plots between state coverage and entropy of policies with MSE and KS
metrics under the vICL dynamics learner.

of a MinMaxScaler and a StandardScaler) so that the respective MSEs are on the same scale. The
MSE metric in Table 1 is also computed in a similar fashion, with the exception that it’s average
over 7 different tasks (HalfCheetah: random, medium, expert; Hopper: medium, expert; Walker2d:
medium, expert).

The MLP baseline. For the MLP baseline, we instantiate an MLP with: 4 layers, 128 neurons
each, andReLU activations. We then format the in-context trajectory as a dataset of {(st, at, st+1)}
on which we train the MLP for 150 epochs using early stopping and the Adam optimizer (Kingma
& Ba, 2015).

We now extend Fig. 4 to show the multi-step generated trajectories for all the dimensions of the
HalfCheetah system in Fig. 15.

G CALIBRATION

The naive baseline. In the calibration plots Figs. 8 and 16, we compare the LLM-based dynamics
models with a (naive) baseline that estimates a Gaussian distribution using the in-context moments
(mean and variance).

KOLMOGOROV-SMIRNOV STATISTIC (KS): This metric is computed using the quantiles (under
the model distribution) of the ground truth values. Hypothetically, these quantiles are uniform if the
error in predicting the ground truth is a random variable distributed according to a Gaussian with the
predicted standard deviation, a property we characterize as calibration. To assess this, we compute
the Kolmogorov-Smirnov (KS) statistics. Formally, starting from the model cumulative distribution
function (CDF) Fθ(st+1|st, at), we define the empirical CDF of the quantiles of ground truth values

by Fθ,j(x) =
∣∣{(st,at,st+1)∈D|F j

θ (st+1|st,at)≤x
}∣∣

N for x ∈ [0, 1]. We denote by U(x) the CDF of the
uniform distribution over the interval [0, 1], and we define the KS statistics as the largest absolute
difference between the two CDFs across the dataset D:

KS(D; θ; j ∈ {1, . . . , ds}) =

max
i∈{1,...,N}

∣∣∣Fθ,j(F jθ (si,t+1|si,t, ai,t))− U(F jθ (si,t+1|si,t, ai,t))
∣∣∣ (10)

The KS score ranges between zero and one, with lower values indicating better calibration.

27

Published as a conference paper at ICLR 2025

rootz

rooty

bthigh

bshin

bfoot

fthigh

fshin

ffoot

rootx

rootz

rooty

bthigh

bshin

bfoot

fthigh

fshin

0 50 100 150 200 250 300 350 400

ffoot
mult i-step

DICL-(s) DICL-(s, a)

Figure 15: Halfcheetah

H ON THE CHOICE OF THE LLM

In this ablation study, we investigate the impact of LLM size on prediction performance and cali-
bration on D4RL tasks. The LLMs analyzed are all from the LLaMA 3 family of models (Dubey &
the Llama 3 team., 2024), with size range from 1B to 70B parameters, including intermediate sizes
of 3B and 8B. Each model is fed with 5 randomly sampled trajectories of length T = 300 from
the D4RL datasets: expert, medium, and random. This latter task is only evaluated on HalfCheetah,
since the Hopper and Walker2d environments random policies episodes do not have enough context
yet to apply DICL. For the medium and expert datasets, we evaluate them on all the environments
HalfCheetah (Fig. 17), Hopper (Fig. 18a), and Walker2d (Fig. 18b). The metrics used to evaluate
the models are:

28

Published as a conference paper at ICLR 2025

0.0

0.5

1.0

p
ro

p
o

rt
io

n rootz rooty bthigh

0.0

0.5

1.0

p
ro

p
o

rt
io

n bshin bfoot fthigh

0.0

0.5

1.0

p
ro

p
o

rt
io

n fshin ffoot rootx

0.0

0.5

1.0

p
ro

p
o

rt
io

n rootz rooty bthigh

0.0

0.5

1.0

p
ro

p
o

rt
io

n bshin bfoot fthigh

0.0 0.5 1.0
quant ile

0.0

0.5

1.0

p
ro

p
o

rt
io

n fshin

0.0 0.5 1.0
quant ile

ffoot

MLP vICL ks = 0.08
DICL-(s)

ks = 0.05
DICL-(s,a)

MLP vICL ks = 0.08
DICL-(s)

ks = 0.05
DICL-(s,a)

MLP vICL ks = 0.0 4
DICL-(s)

ks = 0.10
DICL-(s,a)

MLP vICL ks = 0.07
DICL-(s)

ks = 0.06
DICL-(s,a)

MLP vICL ks = 0.07
DICL-(s)

ks = 0.07
DICL-(s,a)

MLP vICL ks = 0.07
DICL-(s)

ks = 0.06
DICL-(s,a)

MLP vICL ks = 0.07
DICL-(s)

ks = 0.05
DICL-(s,a)

MLP vICL ks = 0.12
DICL-(s)

ks = 0.11
DICL-(s,a)

MLP vICL ks = 0.08
DICL-(s)

ks = 0.09
DICL-(s,a)

MLP vICL ks = 0.31
DICL-(s)

ks = 0.17
DICL-(s,a)

MLP vICL ks = 0.07
DICL-(s)

ks = 0.05
DICL-(s,a)

MLP vICL ks = 0.06
DICL-(s)

ks = 0.08
DICL-(s,a)

MLP vICL ks = 0.09
DICL-(s)

ks = 0.06
DICL-(s,a)

MLP vICL ks = 0.10
DICL-(s)

ks = 0.06
DICL-(s,a)

MLP vICL ks = 0.09
DICL-(s)

ks = 0.09
DICL-(s,a)

MLP vICL ks = 0.08
DICL-(s)

ks = 0.11
DICL-(s,a)

MLP vICL ks = 0.12
DICL-(s)

ks = 0.12
DICL-(s,a)

Figure 16: Halfcheetah

• Mean Squared Error (MSE): Applied after rescaling the data similarly to Appendix F to
measure the prediction error.

• Kolmogorov-Smirnov (KS) statistic: To evaluate calibration, indicating how well the pre-
dicted probabilities match the observed outcomes. This metric is formally described in
Appendix G.

All results are averaged over prediction horizons h ∈ {1, . . . , 20}. In the HalfCheetah environment,
we observe that DICL-(s) consistently outperforms the other variants across all tasks and with al-
most all LLMs in terms of prediction error. DICL-(s, a) is outperformed by vICL in the random and
medium datasets, while its performance improves in the expert dataset. This is likely because the
policy has converged to a stable expert policy, making it easier for DICL-(s, a) to predict actions as
well. Regarding calibration, the three methods generally perform similarly, with a slight advantage
for DICL-(s, a), especially with smaller LLMs. In the Hopper environment, the MSE improvement
of DICL over vICL is less pronounced with the smallest LLMs but becomes more evident with
the LLaMA 3.1 70B model. However, DICL-(s, a) consistently and significantly outperforms both
vICL and DICL-(s) in terms of the KS statistic (calibration). In the Walker2d environment, vICL
proves to be a strong baseline in the expert task, while DICL-(s) shows improvements over it in

29

Published as a conference paper at ICLR 2025

the medium dataset. For calibration in Walker2d, DICL-(s, a) continues to outperform the other
variants across all tasks and LLM sizes.

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

2

4

M
SE

HalfCheetah - expert

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

2

4

M
SE

HalfCheetah - medium

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

2

4

M
SE

HalfCheetah - random

method
DICL-(s, a)
DICL-(s)
vICL

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0.0

0.1

0.2

0.3

0.4

ks

HalfCheetah - expert

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0.0

0.1

0.2

0.3

ks
HalfCheetah - medium

3.2
-1B

3.2
-3B

3.1
-8B3-8

B

3.1
-70

B

llm

0.0

0.1

0.2

ks

HalfCheetah - random

method
DICL-(s, a)
DICL-(s)
vICL

Figure 17: HalfCheetah.

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

1

2

3

4

M
SE

Hopper - expert

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

1

2

3

4

M
SE

Hopper - medium

method
vICL
DICL-(s, a)
DICL-(s)

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0.0

0.2

0.4

0.6

0.8

ks

Hopper - expert

3.2
-1B

3.2
-3B

3.1
-8B3-8

B

3.1
-70

B

llm

0.0

0.2

0.4

0.6

0.8

ks

Hopper - medium

method
vICL
DICL-(s, a)
DICL-(s)

(a) Hopper.

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

2

4

6

M
SE

Walker2d - expert

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0

2

4

6

8

M
SE

Walker2d - medium

method
DICL-(s)
vICL
DICL-(s, a)

3.2
-1B

3.2
-3B

3.1
-8B 3-8

B

3.1
-70

B

llm

0.0

0.2

0.4

0.6

ks

Walker2d - expert

3.2
-1B

3.2
-3B

3.1
-8B3-8

B

3.1
-70

B

llm

0.0

0.2

0.4

0.6

ks

Walker2d - medium

method
DICL-(s)
vICL
DICL-(s, a)

(b) Walker2d.

30

	1 Introduction
	2 Background knowledge
	3 Zero-shot dynamics learning using Large Language Models
	3.1 Motivation
	3.2 Problem setup
	3.3 State and action dimension interdependence
	3.4 An illustrative example

	4 Use-cases in Reinforcement Learning
	4.1 Theoretical analysis: Return bound under multi-branch rollouts
	4.2 Data-augmented off-policy Reinforcement Learning
	4.3 Policy Evaluation
	4.4 Calibration of the LLM uncertainty estimates

	5 Discussion
	A Theoretical analysis
	A.1 Proof of theorem:main

	B Related Work
	C State and action dimensions interdependence - additional materials
	C.1 Principal Component Analysis (PCA)
	C.2 Independent Component Analysis (ICA)
	C.3 AutoEncoder-based approach
	C.4 Sensitivity Analysis

	D Algorithms
	D.1 Soft-Actor Critic
	D.2 DICL-SAC

	E What is the impact of the policy on the prediction error?
	F Multi-step prediction errors
	G Calibration
	H On the choice of the LLM

