
Appendices444

A Limitation and Societal Impacts445

Limitations. Our framework mainly implements models with neural networks, which are known446

to be data-hungry. Although they worked well in our experiments, it might still suffer compared to447

non-neural models if starved of data.448

Societal Impacts. By releasing the benchmarking code and data, we hope to facilitate the modeling of449

continuous-time sequential data in many domains. However, our method may be applied to unethical450

ends. For example, its abilities of better fitting data and making more accurate predictions could451

potentially be used for unwanted tracking of individual behavior, e.g. for surveillance.452

B EasyTPP’s Software Interface Details453

In this section, we describe the architecture of our open-source benchmarking software EasyTPP in454

more detail and provide examples of different use cases and their implementation.455

B.1 High Level Software Architecture456

The purpose of building EasyTPP is to provide a simple and standardized framework to allow users457

to apply different state-of-the-art (SOTA) TPPs to arbitrary data sets. For researchers, EasyTPP458

provides an implementation interface to integrate new recourse methods in an easy-to-use way, which459

allows them to compare their method to already existing methods. For industrial practitioners, the460

availability of benchmarking code helps them easily assess the applicability of TPP models for their461

own problems.462

A high level visualization of the EasyTPP’s software architecture is depicted in Figure 9. Data463

Preprocess component provides a common way to access the event data across the software and464

maintains information about the features. For the Model component, the library provides the possibil-465

ity to use existing methods or extend the users’ custom methods and implementations. A wrapper466

encapsulates the black-box models along with the trainer and sampler. The primary purpose of467

the wrapper is to provide a common interface to easily fit in the training and evaluation pipeline,468

independently of their framework (e.g., PyTorch, TensorFlow). See Appendix B.2 and Appendix B.3469

for details. The running of the pipeline is parameterized by the configuration class - RunnerConfig470

(without hyper-parameter tuning) and HPOConfig (with hyper-parameter tuning).471

Figure 9: Architecture of the EasyTPP library. The dashed arrows show the different implementation possibilities,
either to use pre-defined SOTA TPP models or provide a custom implementation. All dependencies between
these objects are visualized by solid arrows with an additional description. The running of the pipeline is
parameterized by the configuration classes - RunnerConfig (w/o hyper tuning) and HPOConfig (with hyper
tuning).

14

TensorFlow Wrapper

PyTorch Wrapper

Model

Model

Trainer

Trainer

Thinning

Thinning

Data Preprocess
Prepare the data, such as

padding and masking

Evaluation
Measure the performance of

the trained model

DataLoader

DataLoader

Figure 10: Illustration of TensorFlow and PyTorch Wrappers in the EasyTPP library.

B.2 Why Does EasyTPP Support Both TensorFlow and PyTorch472

TensorFlow and PyTorch are the two most popular Deep Learning (DL) frameworks today. PyTorch473

has a reputation for being a research-focused framework, and indeed, most of the authors have474

implemented TPPs in PyTorch, which are used as references by EasyTPP. On the other hand,475

TensorFlow has been widely used in real world applications. For example, Microsoft recommender,6476

NVIDIA Merlin7 and Alibaba EasyRec8 are well-known industrial user modeling systems with477

TensorFlow as the backend. In recent works, TPPs have been introduced to better capture the478

evolution of the user preference in continuous-time (Bao & Zhang, 2021; Fan et al., 2021; Bai et al.,479

2019). To support the use of TPPs by industrial practitioners, we implement an equivalent set of480

TPPs in TensorFlow. As a result, EasyTPP not only helps researchers analyze the strengths and481

bottlenecks of existing models, but also facilitates the deployment of TPPs in industrial applications.482

B.3 How Does EasyTPP Support Both PyTorch and TensorFlow483

We implement two equivalent sets of data loaders, models, trainers, thinning samplers in TensorFlow484

and PyTorch, respectively, then use wrappers to encapsulate them so that they have the same API485

exposed in the whole training and evaluation pipeline. See Figure 10.486

B.4 EasyTPP for Researchers487

The research groups can inherit from the BaseModel to implement their own method in EasyTPP.488

This opens up a way of standardized and consistent comparisons between different TPPs when489

exploring new models.490

Specifically, if we want to customize a TPP in PyTorch, we need to initialize the model by inheriting491

the class TorchBaseModel:492

1493

2 from easy_tpp.model.torch_model.torch_basemodel import TorchBaseModel494

3495

4 # Custom Torch TPP implementations need to496

5 # inherit from the TorchBaseModel interface497

6 class NewModel(TorchBaseModel):498

7 def __init__(self, model_config):499

8 super(NewModel, self).__init__(model_config)500

9501

10 # Forward along the sequence, output the states / intensities at the502

event times503

11 def forward(self, batch):504

12 ...505

13 return states506

14507

15508

16 # Compute the loglikelihood loss509

17 def loglike_loss(self, batch):510

18511

19 return loglike512

6https://github.com/microsoft/recommenders.
7https://developer.nvidia.com/nvidia-merlin.
8https://github.com/alibaba/EasyRec.

15

20513

21 # Compute the intensities at given sampling times514

22 # Used in the Thinning sampler515

23 def compute_intensities_at_sample_times(self, batch, sample_times, **516

kwargs):517

24 ...518

25 return intensities519

Listing 1: Pseudo implementation of customizing a TPP model in PyTorch using EasyTPP.

Equivalent, if we want to customize a TPP in TensorFlow, we need to initialize the model by inheriting520

the class TfBaseModel:521

1522

2 from easy_tpp.model.torch_model.tf_basemodel import TfBaseModel523

3524

4 # Custom Torch TPP implementations need to525

5 # inherit from the TorchBaseModel interface526

6 class NewModel(TfBaseModel):527

7 def __init__(self, model_config):528

8 super(NewModel, self).__init__(model_config)529

9530

10 # Forward along the sequence, output the states / intensities at the531

event times532

11 def forward(self, batch):533

12 ...534

13 return states535

14536

15537

16 # Compute the loglikelihood loss538

17 def loglike_loss(self, batch):539

18540

19 return loglike541

20542

21 # Compute the intensities at given sampling times543

22 # Used in the Thinning sampler544

23 def compute_intensities_at_sample_times(self, batch, sample_times, **545

kwargs):546

24 ...547

25 return intensities548

Listing 2: Pseudo implementation of customizing a TPP model in TensorFlow using EasyTPP.

B.5 EasyTPP as a Modeling Library549

A common usage of the package is to train and evaluate some standard TPPs. This can be done by550

loading black-box-models and data sets from our provided datasets, or by user-defined models and551

datasets via integration with the defined interfaces. Listing 3 shows an implementation example of a552

simple use-case, fitting a TPP model method to a preprocessed dataset from our library.553

1 import argparse554

2555

3 from easy_tpp.config_factory import Config556

4 from easy_tpp.runner import Runner557

5558

6559

7 def main():560

8 parser = argparse.ArgumentParser()561

9562

10 parser.add_argument(’--config_dir’,563

11 type=str,564

12 required=False,565

13 default=’configs/experiment_config.yaml’,566

14 help=’Dir of configuration yaml to train and567

evaluate the model.’)568

16

15569

16 parser.add_argument(’--experiment_id’,570

17 type=str,571

18 required=False,572

19 default=’IntensityFree_train’,573

20 help=’Experiment id in the config file.’)574

21575

22 args = parser.parse_args()576

23577

24 # Build up the configuation for the runner578

25 config = Config.build_from_yaml_file(args.config_dir, experiment_id=579

args.experiment_id)580

26581

27 # Intialize the runner for the pipeline582

28 model_runner = Runner.build_from_config(config)583

29584

30 # Start running585

31 model_runner.run()586

32587

33588

34 if __name__ == ’__main__’:589

35 main()590

Listing 3: Example implementation of running a TPP model using EasyTPP.

C Model Implementation Details591

We have implemented the following TPPs592

• Recurrent marked temporal point process (RMTPP) (Du et al., 2016). We implemented both593

the Tensorflow and PyTorch version of RMTPP by our own.594

• Neural Hawkes process (NHP) (Mei & Eisner, 2017) and Attentive neural Hawkes process595

(AttNHP) (Yang et al., 2022). The Pytorch implementation mostly comes from the code from the596

public GitHub repository at https://github.com/yangalan123/anhp-andtt (Yang et al.,597

2022) with MIT License. We developed the Tensorflow version of NHP and ttNHP by our own.598

• Self-attentive Hawkes process (SAHP) (Zhang et al., 2020) and transformer Hawkes process599

(THP) (Zuo et al., 2020). We rewrote the PyTorch versions of SAHP and THP based on the public600

Github repository at https://github.com/yangalan123/anhp-andtt (Yang et al., 2022)601

with MIT License. We developed the Tensorflow versions of the two models by our own.602

• Intensity-free TPP (IFTPP) (Shchur et al., 2020). The Pytorch implementation mostly comes603

from the code from the public GitHub repository at https://github.com/shchur/ifl-tpp604

(Shchur et al., 2020) with MIT License. We implemented a Tensorflow version by our own.605

• Fully network based TPP (FullyNN) (Omi et al., 2019). We rewrote both the Tensorflow and606

PyTorch versions of the model faithfully based on the author’s code at https://github.com/607

omitakahiro/NeuralNetworkPointProcess. Please not that the model only considers the608

number of the types to be one, i.e., the sequence’s K = 1.609

• ODE-based TPP (ODETPP) (Chen et al., 2021). We implement a TPP model, in both Tensorflow610

and PyTorch, with a continuous-time state evolution governed by a neural ODE. It is basically the611

spatial-temporal point process (Chen et al., 2021) without the spatial component.612

C.1 Likelihood Computation Details613

In this section, we discuss the implementation details of NLL computation in Equation (4).614

The integral term in Equation (4) is computed using the Monte Carlo approximation given by Mei615

& Eisner (2017, Algorithm 1), which samples times t. This yields an unbiased stochastic gradient.616

For the number of Monte Carlo samples, we follow the practice of Mei & Eisner (2017): namely, at617

training time, we match the number of samples to the number of observed events at training time, a618

17

reasonable and fast choice, but to estimate log-likelihood when tuning hyperparameters or reporting619

final results, we take 10 times as many samples.620

At each sampled time t, the Monte Carlo method still requires a summation over all events to obtain621

λ(t). This summation can be expensive when there are many event types. This is not a serious622

problem for our EasyTPP implementation since it can leverage GPU parallelism.623

C.2 Next Event Prediction624

It is possible to sample event sequences exactly from any intensity-based model in EasyTPP, using625

the thinning algorithm that is traditionally used for autoregressive point processes (Lewis & Shedler,626

1979; Liniger, 2009). In general, to apply the thinning algorithm to sample the next event at time627

≥ t0, it is necessary to have an upper bound on {λe(t) : t ∈ [t0,∞)} for each event type t. An628

explicit construction for the NHP (or AttNHP) model was given by Mei & Eisner (2017, Appendix629

B.3).630

Section 3 includes a task-based evaluation where we try to predict the time and type of just the next631

event. More precisely, for each event in each held-out sequence, we attempt to predict its time given632

only the preceding events, as well as its type given both its true time and the preceding events.633

We evaluate the time prediction with average L2 loss (yielding a root-mean-squared error, or RMSE)634

and evaluate the argument prediction with average 0-1 loss (yielding an error rate).635

Following Mei & Eisner (2017), we use the minimum Bayes risk (MBR) principle to predict the time636

and type with the lowest expected loss. For completeness, we repeat the general recipe in this section.637

For the ith event, its time ti has density pi(t) = λ(t) exp(−
∫ t

ti−1
λ(t′)dt′). We choose

∫∞
ti−1

tpi(t)dt638

as the time prediction because it has the lowest expected L2 loss. The integral can be estimated using639

i.i.d. samples of ti drawn from pi(t) by the thinning algorithm.640

Given the next event time ti, we choose the most probable type argmaxe λe(ti) as the type prediction641

because it minimizes expected 0-1 loss.642

C.3 Long Horizon Prediction643

The TPP models are typically autoregressive: predicting each future event is conditioned on all the644

previously predicted events. Following the approach in (Xue et al., 2022), we set up a prediction645

horizon and use OTD to measure the divergence between the ground truth sequence and the predicted646

sequence within the horizon. For more details about the setup and evaluation protocol, please see647

Section 5 in Xue et al. (2022).648

D Dataset Details649

To comprehensively evaluate the models, we preprocessed one synthetic and five real-world datasets650

from widely-cited works that contain diverse characteristics in terms of their application domains and651

temporal statistics.652

• Synthetic. This dataset contains synthetic event sequences from a univariate Hawkes process
sampled using Tick (Bacry et al., 2017) whose conditional intensity function is defined by

λ(t) = µ+
∑
ti<t

αβ · exp(−β(t− ti))

with µ = 0.2, α = 0.8, β = 1.0. We randomly sampled disjoint train, dev, and test sets with 1200,653

200 and 400 sequences.654

• Amazon (Ni, 2018). This dataset includes time-stamped user product reviews behavior from655

January, 2008 to October, 2018. Each user has a sequence of produce review events with each event656

containing the timestamp and category of the reviewed product, with each category corresponding657

to an event type. We work on a subset of 5200 most active users with an average sequence length658

of 70 and then end up with K = 16 event types.659

18

DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

RETWEET 3 369000 62000 61000 10 41 97
TAOBAO 17 350000 53000 101000 3 51 94
AMAZON 16 288000 12000 30000 14 44 94
TAXI 10 51000 7000 14000 36 37 38
STACKOVERFLOW 22 90000 25000 26000 41 65 101
HAWKES-1D 1 55000 7000 15000 62 79 95

Table 2: Statistics of each dataset.

• Retweet (Ke Zhou & Song., 2013). This dataset contains time-stamped user retweet event se-660

quences. The events are categorized into K = 3 types: retweets by “small,” “medium” and “large”661

users. Small users have fewer than 120 followers, medium users have fewer than 1363, and the rest662

are large users. We work on a subset of 5200 most active users with an average sequence length of663

70.664

• Taxi (Whong, 2014). This dataset tracks the time-stamped taxi pick-up and drop-off events across665

the five boroughs of the New York City; each (borough, pick-up or drop-off) combination defines666

an event type, so there are K = 10 event types in total. We work on a randomly sampled subset of667

2000 drivers and each driver has a sequence. We randomly sampled disjoint train, dev and test sets668

with 1400, 200 and 400 sequences.669

• Taobao (Xue et al., 2022). This dataset contains time-stamped user click behaviors on Taobao670

shopping pages from November 25 to December 03, 2017. Each user has a sequence of item click671

events with each event containing the timestamp and the category of the item. The categories of672

all items are first ranked by frequencies and the top 19 are kept while the rest are merged into one673

category, with each category corresponding to an event type. We work on a subset of 4800 most674

active users with an average sequence length of 150 and then end up with K = 20 event types.675

• StackOverflow (Leskovec & Krevl, 2014). This dataset has two years of user awards on a question-676

answering website: each user received a sequence of badges and there are K = 22 different kinds677

of badges in total. We randomly sampled disjoint train, dev and test sets with 1400, 400 and 400678

sequences from the dataset.679

Table 2 shows statistics about each dataset mentioned above.680

E Experiment Details681

E.1 Setup682

Training Details. For TPPs, the main hyperparameters to tune are the hidden dimension D of the683

neural network and the number of layers L of the attention structure (if applicable). In practice,684

the optimal D for a model was usually 16, 32, 64; the optimal L was usually 1, 2, 3, 4. To train the685

parameters for a given generator, we performed early stopping based on log-likelihood on the held-out686

dev set. The chosen parameters for the main experiments are given in Table 6.687

Computation Cost. All the experiments were conducted on a server with 256G RAM, a 64 logical688

cores CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz) and one NVIDIA Tesla P100 GPU689

for acceleration. For training, the batch size is 256 by default. On all the dataset, the training of690

AttNHP takes most of the time (i.e., around 4 hours) while other models take less than 2 hours.691

E.2 Sanity Checks692

For each model we reproduced in our library, we ran experiments to ensure that our implementation693

could match the results in the original paper. We used the same hyperparameters as in original papers;694

we reran each experiment 5 times and took the average.695

19

In Table 3, we show the relative differences between the implementations on Retweet and Taxi datasets.696

As we can see, all the relative differences are within (−5%, 5%), indicating that our implementation697

is close to the original.698

MODEL METRICS (TIME RMSE / TYPE ERROR RATE)

RETWEET TAXI

RMTPP −4.1%/− 3.5% −2.9%/− 3.7%
NHP +3.4%/+ 3.1% +2.6%/+ 3.5%
SAHP +1.3%/+ 1.7% +1.1%/+ 1.2%
THP +1.3%/+ 1.8% −1.6%/+ 1.5%
ATTNHP +1.2%/− 1.0% −1.2%/− 1.2%
ODETPP −4.0%/− 3.9% −4.3%/− 4.5%
FULLYNN −5.0%/N.A. −4.1%/N.A.
IFTPP +3.4%/+ 3.1% +3.9%/+ 3.0%

Table 3: The relative difference between the results of EasyTPP and original implementations.

E.3 More Results.699

For better visual comparisons, we present the results in Figure 6, Figure 7 and Figure 8 also in the700

form of tables, see Table 4 and Table 5.701

MODEL METRICS (TIME RMSE / TYPE ERROR RATE)

AMAZON RETWEET TAXI TAOBAO STACKOVERFLOW

MHP 0.635/75.9% 22.92/55.7% 0.382/9.53% 0.539/68.1% 1.388/65.0%
RMTPP 0.620/68.1% 22.31/44.1% 0.371/9.51% 0.531/55.8% 1.376/57.3%
NHP 0.621/67.1% 21.90/40.0% 0.369/8.50% 0.531/54.2% 1.372/55.0%
SAHP 0.619/67.7% 22.40/41.6% 0.372/9.75% 0.532/54.6% 1.375/56.1%
THP 0.621/66.1% 22.01/41.5% 0.370/8.68% 0.531/53.6% 1.374/55.0%
ATTNHP 0.621/65.3% 22.19/40.1% 0.371/8.71% 0.529/53.7% 1.372/55.2%
ODETPP 0.620/65.8% 22.48/43.2% 0.371/10.54% 0.533/55.4% 1.374/56.8%
FULLYNN 0.615/NA 21.92/NA 0.373/NA 0.529/NA 1.375/NA
IFTPP 0.618/67.5% 22.18/39.7% 0.377/8.56% 0.531/55.4% 1.373/55.1%

Table 4: Performance in numbers of all methods mentioned in Figure 6.

MODEL OTD

RETWEET RETWEET TAXI TAXI
AVG 5

EVENTS
AVG 10 EVENTS AVG 5 EVENTS AVG 10 EVENTS

MHP 5.128 11.270 4.633 12.784
RMTPP 5.107 10.255 4.401 12.045
NHP 5.080 10.470 4.412 12.110
SAHP 5.092 10.475 4.422 12.051
THP 5.091 10.450 4.398 11.875
ATTNHP 5.077 10.447 4.420 12.102
ODETPP 5.115 10.483 4.408 12.095
FULLYNN NA NA NA NA
IFTPP 5.079 10.513 4.501 12.052

Table 5: Long horizon prediction on Retweet and Taxi data.

20

MODEL DESCRIPTION VALUE USED

hidden_size 32
time_emb_size 16

RMTPP num_layers 2
hidden_size 64

time_emb_size 16
NHP num_layers 2

hidden_size 32
time_emb_size 16

SAHP num_layers 2
num_heads 2
hidden_size 64

time_emb_size 16
THP num_layers 2

num_heads 2
hidden_size 32

time_emb_size 16
ATTNHP num_layers 1

num_heads 2
hidden_size 32

ODETPP time_emb_size 16
num_layers 2
hidden_size 32

FULLYNN time_emb_size 16
num_layers 2
hidden_size 32

INTENSITYFREE time_emb_size 16
num_layers 2

Table 6: Descriptions and values of hyperparameters used for models.

F Additional Note702

F.1 Citation Count in ArXiv703

We search the TPP-related articles in ArXiv https://arxiv.org/ using their own search engine704

in three folds:705

• Temporal point process: we search through the abstract of articles which contains the term ’temporal706

point process’.707

• Hawkes process: we search through the abstract of articles with the term ’hawkes process’ but708

without the term ’temporal point process’.709

• Temporal event sequence: we search through the abstract of articles which include the term710

’temporal event sequence’ but exclude the term ’hawkes process’ and ’temporal point process’.711

We group the articles found out by the search engine by years and report it in Figure 2.712

21

