
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A RelatedWorks

RLHF in MTL. Reinforcement Learning with Human Feedback (RLHF) is designed to align lan-
guage models with human preferences and has become a crucial component of the fine-tuning
pipeline for Large Language Models (LLMs) (Stiennon et al., 2020; Ouyang et al., 2022; Brown
et al., 2020; Touvron et al., 2023; Bi et al., 2024; Bai et al., 2022). The majority work of RLHF
focus optimizing a single reward models (Ouyang et al., 2022; Gao et al., 2023; Dong et al., 2023;
Ethayarajh et al., 2023). The exploration of RLHF in the MTL setting remains relatively under-
explored. The most commonly adopted approach involves optimizing a weighted sum of several
reward models, where each model captures the interests of different tasks (Ramamurthy et al., 2022;
Glaese et al., 2022; Yuan et al., 2023; Bakker et al., 2022; Wu et al., 2024). However, a major limita-
tion of this approach is that key information from each individual reward model can be lost through
linear combination, particularly when conflicting task goals exist. This can lead to suboptimal per-
formance for each individual task. Additionally, each individual reward model typically requires
different treatments (regularization, early stopping, etc) due to their unique properties, thus apply-
ing a uniform treatment for a composite reward model can further impair optimization performance
across tasks (Moskovitz et al., 2023). Another research direction involves fine-tuning a separate
LLM model for each task, followed by linear interpolation of the LLM weights across all learned
models to produce a single model that excels in multiple tasks (Rame et al., 2024). However, this
method remains computationally expensive and unstable due to the high cost and variability inherent
in a single RLHF process (Hu et al., 2023; Rafailov et al., 2024b). (Yang et al., 2024) Proposed to
use in-context reward model to manage multiple reward, but introduce additonal cost during infer-
ence time. Unlike the approaches mentioned above, CGPO introduces a customized reward model
recipe and an RLHF optimizer tailored for each specific task. This method is not only as efficient
as the conventional RLHF pipeline, but it also preserves all information within each reward model,
thereby optimizing alignment for each task to the fullest extent.

Reward Hacking Mitigation. Compaired with traditional RL, where the reward is typically well-
defined and the goal is to maximize it (Sutton & Barto, 2018), RLHF introduces a unique challenge
known as ”reward hacking.” This issue arises because the reward model serves as a proxy for actual
human preferences. Over-optimization of the reward model can adversely impact the performance
of the language model (Gao et al., 2023; Moskovitz et al., 2023; Stiennon et al., 2020; Rafailov et al.,
2024b). Consequently, addressing reward hacking is a major focus in RLHF. Previous studies have
explored various approaches to mitigate the effects of reward hacking, including reward model reg-
ularization (Singhal et al., 2023), reward ensembles (Eisenstein et al., 2023; Ramé et al., 2024), and
explicitly learning the reward bias error (Chen et al., 2024; Shen et al., 2023). In contrast to previous
methods, our CGPO framework employs both LLM and rule-based judges as constraints to detect
and prevent reward hacking patterns. This approach offers a more fine-grained and controllable so-
lution to this persistent issue. Furthermore, the use of MoJs enables us to develop tailored strategies
for mitigating the effects of reward hacking across various tasks in the MTL setting. This allows us
to effectively address the reward hacking challenge in the more complex MTL environment, where
previous methods have struggled to perform efficiently.

B CGPO optimizers

B.1 Calibrated Regularized Policy Gradient (CRPG)

In this section, we discuss our new constraint RLHF optimizer, the Calibrated Regularized Policy
Gradient (CRPG), which is a policy gradient-based approach.

Calibrated Reward. In the traditional RLHF algorithm, the reward model is typically directly
incorporated into RL optimizers to progressively refine the policy. However, this method can pose
difficulties when the reward model value is not properly calibrated. For preference reward models
trained with eq. (1), the reward’s accuracy may be proficient in distinguishing between good and
bad generations from the same prompt. However, the reward model values between generations
from different prompts may not be directly comparable due to potential significant variations in the
reward model value range for different prompts. Due to such reasons, standard RLHF algorithms,
such as PPO and REINFORCE, could lead to suboptimal performance due to the poor calibration of

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the reward model (Rita et al., 2024). In CRPG, we introduce a novel and low-cost reward calibration
strategy to address this issue.

We consider the scenario where each prompt s used in RLHF fine-tuning has a corresponding base-
line response ā. This condition can be easily satisfied in practice.

• Option 1: We repurpose the prompt set from the SFT training set and/or the reward model
training set. For the SFT training dataset, the pre-collected golden response is utilized as
the baseline response, denoted as ā. For the pair-wise reward model training dataset, the
preferred response is designated as the golden response ā.
• Option 2: Given an RLHF fine-tuning prompt set Dd, we use πref to generate the baseline

response for all prompts s ∈ Dd, i.e., ā ∼ πref(·|s) before starting RLHF fine-tuning.

Without loss of generality, we assume there is an underlying policy π̄ that generates the baseline re-
sponses, denoted as ā ∼ π̄(·|s). Given the baseline response ā, we developed the following calibrated
reward to replace the raw reward model rϕ(s, a):

Rcalib(s, a) = σ(rϕ(s, a) − rϕ(s, ā)). (4)

Intuitively, Rpair(s, a) here represent the probability of a being better than baseline response ā con-
ditioned on the same prompt s, i.e.,

Rcalib(s, a) ≈ Prob(a > ā|s).

The advantages of using calibrated rewards Rcalib are twofold:

1. The magnitude of Rcalib becomes meaningfully comparable across different prompts. This
is because it represents the probability that the current policy π is superior to the baseline
π̄ for different actions. In other words, if Rcalib(s, a) > Rcalib(s′, a′), it directly implies that
action a given state s is better than action a′ given state s′, conditioned on the baseline
policy π̄. However, this implication cannot be made if rϕ(s, a) > rϕ(s′, a′).

2. The magnitude of the calibrated reward model is strictly bounded between 0 and 1. This
constraint prevents an action with an extremely large raw value from dominating the pol-
icy update direction, which could be misleading, since a large raw reward value does not
necessarily imply superior action quality.

Based on Rcalib(s, a), we now reformulate RLHF objective in eq. (2) as

max
w

J̄(πw) = Ea∼πw(·|s),s∼Dd [Rcalib(s, a)] (5)

where J̄(πw) is the policy optimization objective. Intuitively, it represents the probability of current
policy πw being better than the baseline policy π̄ conditioned on the prompt set Dd, i.e.,

J̄(πw) ≈ Prob(πw > π̄|Dd).

Constraint Regularized Gradient. Recall that in the multi-constraint setting, our goal is to maxi-
mize the expected reward model while aligning the LLM such that its generations strictly adhere to
a set of constraints. These constraints compensate for the limitations of the reward model, including
safety requirements, reasoning accuracy, and factual correctness. These aspects may not be fully
captured by the reward model but can be well addressed via a separate rule-based judge or an LLM-
based judge. Note that the ”Positive samples” in line 6 of Algorithm 1 is a subset of Σ, i.e., X+t ∈ Σ.
Consequently, we aim to optimize the following multi-constraint objective, denoted as J̄c:

max
w

J̄c = Ea∼πw(·|s),s∼Dd

[
Rcalib(s, a) · 1(s,a)∈Σ

]
. (6)

By solving the optimization problem presented in eq. (6), the LLM is aligned to maximize the
expected value of the calibrated reward model as much as possible, while remaining within the
constraint satisfaction region.

Given Rcalib and Σ, we define the following constraint regularized reward as

Rcr(s, a) =
{

Rcalib, if (s, a) ∈ Σ
0, if (s, a) < Σ

(7)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

With the calibrated regularized reward Rcr, we rewrite eq. (6) as

max
w

J̄c = Ea∼πw(·|s),s∼Dd [·Rcr(s, a)] . (8)

We consider the following update to optimize J̄c

wt+1 = wt + αt · gc(πwt ), (9)

where

gc(πw) =
1
N

N∑
i

∇ log πw(si, ai) · Rcr(si, ai).

CRPG Implementation. Consider the KL divergence between πref and πw as a universal regular-
ization method to prevent reward hacking during CRPG fine-tuning. We propose the following new
reward regularization approach:

R̃cr(s, a) = max
{

1 −
log(πw(si, ai)/πref(si, ai))

KLmax
, 0

}
· Rcr(s, a). (10)

It is important to note that R̃cr not only penalizes samples that deviate significantly from πref, but
also strictly bounds the overall KL divergence.

Moreover, to reduce the variance in the CGPG gradient estimation, we consider subtracting a base-
line from the gc without changing its expected direction as following

g̃c(πwt ) =
1
n

n∑
i

∇ log πwt (st,i, at,i) ·

R̃cr(st,i, at,i) −
1
n

n∑
i

R̃cr(st,i, at,i)

 . (11)

The final CRPG update in multi-constraints finetuning setting is given as

wt+1 = wt + αt · g̃c(πwt ).

B.2 Constraint Regularized Reward Ranking Finetuning (CRRAFT)

In this section, we introduce another constrained RLHF policy optimizers that we proposed: Con-
straint Regularized Reward Ranking Finetuning (CRRAFT), which is built upon the RAFT.

In the original RAFT algorithm (Dong et al., 2023), each round involves generating multiple re-
sponses from a prompt using the current policy model, denoted as {a1

t,i, a
2
t,i, . . . , a

K
t,i} ∼ πwt (· | st,i).

A reward model r is then utilized to select the response with the highest reward model score, i.e.,
a∗j = argmaxk∈[K] rpair(st,i, ak

t,i) (note that whether a calibrated reward is used or not does not affect
the reward ranking result). Subsequently, an one-step SFT update is performed to maximize the
likelihood of this generated sample (st,i, a∗t,i). The policy model is iteratively updated to improve its
alignment with the reward model rpair as follow

wt+1 = wt + αt ·
1
n

n∑
j=1

∇ log(πwt (st,i, a∗t,i)). (12)

In the multi-constraint setting, we make the following two changes on top of RAFT to develop our
CRRAFT optimizer:

• After applying the reward model to score each responses, we adopt Option I in Algorithm 1
to first filter out those generated responses that violated any of the constraints. Addition-
ally, to avoid large drift of current policy from starting point policy πref, we also filter out
all generations whoes KL-divergence is larger than a pre-defined threshold KLmax, i.e.,
KL(si,t ,ak

i,t)
=

log πwt
log πref

(si,t, ak
i,t) > KLmax. After that we apply reward ranking to select the one

with the highest reward model score from the rest of responses, i.e.,

a∗i,t = argmax
k∈[K],

(si,t ,ak
i,t)∈X

+
t ,

KL( si,t ,ak
i,t)≤KLmax

rϕ(si,t, ak
i,t). (13)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We refer to the procedure in eq. (13) as constrained regularized reward ranking. It’s impor-
tant to note that CRRAFT not only has the capability to manage multiple constraints, but it
also strictly bounds the KL-divergence. This is a feature that the standard RAFT algorithm
lacks.
Note that there may be instances where no generations remain after filtering. In such cases,
if the pre-collected baseline response āi,t satisfies all constraints, it can be used as a∗i,t. If it
doesn’t, this datapoint can be skipped.
• After the constrained regularized reward ranking, instead of directly performing SFT up-

date w.r.t the chosen sample as eq. (12) does, here we reweigh each chosen response by
their calibrated reward value and then perform SFT update as follow

wt+1 = wt + αt · g̃ra(πwt )

= wt + αt ·
1
n

n∑
i=1

Rcalib(si,t, a∗i,t) · ∇ log(πwt (si,t, a∗i,t)). (14)

By incorporating the calibrated reward model value in the update, we can differentiate the
emphasis on chosen responses based on their quality, unlike the RAFT algorithm which
treats all chosen responses equivalently. This approach allows for a more refined alignment
with the reward model.

Please note that unlike CRPG, CRRAFT specifically focuses on increasing the likelihood of
constraint-satisfied positive samples and disregards the constraint-violated negative samples.

B.3 Constrained Online Direct Preference Optimization (CODPO)

Based on Direct Preference Optimization (DPO), a widely used offline RLHF alignment algorithm
in the unconstrained setting, we propose a new variant called Constrained Online Direct Preference
Optimization (CODPO) to solve the constrained RLHF fine-tuning problem.

Recall that in DPO (Rafailov et al., 2024b), the optimal policy π∗, which aligns with human prefer-
ences in the β-regularized MDP setting, satisfies the following preference model:

Pπ∗ (ap > an) =
1

1 + exp
(
β log π∗(s,an)

πref(s,an) − β log π∗(s,ap)
πref(s,ap)

) .
Given a pairwise preference sample pair (s, ap) and (s, an), we update our policy by solving the
following problem:

min
w
LDPO(πw) = −E(s,ap,an)

[
ℓDPO(πw, s, ap, an)

]
.

where ℓDPO(πw, s, ap, an) = logσ
(
β log

πw(s, ap)
πref(s, ap)

− β log
πw(s, an)
πref(s, an)

)
(15)

To prevent the possible decreasing likelihood of positive samples ap, it has been proposed to add a
regularization term to the vanilla DPO loss (Pal et al., 2024):

ℓ̃DPO(πw, s, ap, an) = ℓDPO(πw, s, ap, an) +
λ∣∣∣ap

∣∣∣ · log(πw(s, ap)), (16)

where
∣∣∣ap

∣∣∣ represents the length of response ap. By appropriately tuning the hyperparameter λ, the
formulation in eq. (16) can effectively increase the likelihood of ap while decreasing the likelihood
of an to maximize the margin between positive and negative generations.

In CODPO, similar to CRRAFT, we first generate multiple responses for each prompt using the
current policy {a1

t,i, a
2
t,i, . . . , a

K
t,i} ∼ πwt (· | st,i) and split the generations into positive samples X+t and

negative samples X−t . After that, we select the positive sample from X+t with the highest reward
value, and the negative sample from X−t with the lowest reward value, i.e.,

a+i,t = argmax
k∈[K],

(si,t ,ak
i,t)∈X

+
t

rϕ(si,t, ak
i,t),

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

a−i,t = argmin
k∈[K],

(si,t ,ak
i,t)∈X

−
t

rϕ(si,t, ak
i,t).

In cases where no generations satisfy all constraints, we can skip this sample. Conversely, when no
generations violate any constraints, we can select the generation with the lowest reward model value
as the negative sample.

Then, at each iteration, we update the policy as follows:

wt+1 = wt − αt ·
1
n

n∑
i=1

∇ℓ̃DPO(πwt , si,t, a+i,t, a
−
i,t). (17)

C Experiment Details

C.1 Multi-Tasks Learning

In this work, we focus on fine-tuning a LLM to achieve alignment across the following five tasks:

• General chat: This task is designed to enhance the general conversational abilities of
LLMs by considering multi-turn conversational histories (Wang et al., 2024). It focuses
on boosting the coherence, consistency, and correctness of responses, thereby making the
interactions more logical and seamless. Additionally, this task improves the model’s capa-
bility to deliver responses that are better aligned with the user’s intentions and queries, and
are factually grounded (Sun et al., 2024).
• Instruction Following: This task is designed to enhance the ability of LLMs to follow

instructions accurately within specific contexts or industries (Zhou et al., 2023). By fine-
tuning LLMs to adapt to particular domains or user requirements, they can deliver more
precise and relevant responses. This improvement leads to a more satisfying and efficient
user experience, making LLMs more effective and versatile tools across various applica-
tions.
• Math/Code Reasoning: This task is designed to enhance the math and coding capabilities

of LLMs, enabling them to address more complex problems and broaden their range of
functions. These include tasks like debugging code or solving mathematical equations,
which are vital in technical fields (Hendrycks et al., 2021b; Cobbe et al., 2021; Chen et al.,
2021; Austin et al., 2021). Furthermore, improving LLMs’ ability to comprehend and
produce mathematical and code-related content results in greater accuracy and efficiency
in activities that demand meticulous logical reasoning and computational thinking.
• Engagement Intent: This task aims to enhance user engagement and interaction with

the LLM. To address this, we involve human annotators who interact with the model and
provide binary feedback (like or dislike) for each response generated by the LLM. Our
objective is to maximize the likelihood that users will favorably respond to the LLM’s
outputs.
• Harmful Intent: This task trains LLMs to recognize and resist safety-related adversarial

attacks. It ensures that LLMs are safeguarded against exploitation for malicious purposes,
such as generating harmful or misleading information (Sun et al., 2024; Xu et al., 2020).
By enhancing their ability to operate safely and ethically, this task helps maintain user trust
and uphold the credibility of the technology.

C.2 Supervised Fine-Tuning

The foundational model we have chosen is the LLaMA-3.0-70B pre-trained checkpoint. We inde-
pendently perform SFT using an open-source dataset to establish the initial policy, denoted as π0.
For all preference pair datasets listed below we only use positive samples in SFT. We utilize the
following datasets for the tasks under consideration:

• General chat: LMSys-55k (Chiang et al., 2024), UltraChat (Ding et al., 2023)
• Instruction following: LIama 3.0 70B instruct model synthetic instruction following

dataset

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Math/Code Reasoning: Orca-Math Mitra et al. (2024), MetaMath (Yu et al., 2023), Evol-
CodeAlpaca (Luo et al., 2023), UltraFeedback (Cui et al., 2023), UltraInteract (Yuan et al.,
2024a)
• Harmful Intent: Human annotated safety dataset

The training is carry out for 2 epoches with a learning rate of 10−5. A cosince schedule is em-
ployed, the global batchsize is set to 128 with minimum rate 0.1 and warm-up steps 200. The detail
of how we obtain synthetic instruction following dataset and safety dataset SFT can be found in
Appendix C.6.

C.3 RewardModelling

We have employed open-source pairwise preference data to train three specialized reward models
(RMs):

• Helpfulness RM: This model is tailored for tasks such as general chat, instruction follow-
ing, and math/code reasoning. It is based on the LLaMA-3-70B instruct finetuned model.
The training utilized the following pairwise preference datasets:

– General chat: Includes datasets such as HH-RLHF (Bai et al., 2022), SHP (Etha-
yarajh et al., 2022), HelpSteer (Wang et al., 2023), Distilabel-Capybara (Ethayarajh
et al., 2024), Distilabel-Orca (Álvaro Bartolomé Del Canto et al., 2024), and LMSys-
55k (Chiang et al., 2024).

– Instruction Following: LIama 3.0 70B instruct model synthetic instruction following
pairwise preference dataset.

– Math/Code Reasoning: Features datasets like Argilla Math (Álvaro Bartolomé
Del Canto et al., 2024), UltraFeedback (Cui et al., 2023) and UltraInteract (Yuan et al.,
2024a).

• Engagement RM: This RM is designed to simulate user engagement preferences. Initially,
we fine-tune a binary classifier predictor using the LLaMA-3-70B instruct model to predict
a user’s engagement intent based on real interaction data between the language model and
the user. We then treat this predictor as the oracle for user intent regarding engagement
with the language model, given prompts and generations. To gather pair-wise training
data, we subsample 129692 prompts from the LMSys-1M dataset (Zheng et al., 2023a) and
use the LLaMA-3-70B instruct model to generate four responses for each prompt. Each
prompt is then scored using the oracle engagement predictor. We select the generation
with the highest score as the ”chosen” response and the generation with the lowest score
as the ”rejected” response. By doing this, we compile the pair-wise dataset and train the
engagement RM based on this data.
• Safety RM: Focused on ensuring safe responses in scenarios with potentially harmful

user prompts, this model is based on the LLaMA-3-8B instruct finetuned model. It uti-
lizes a human-annotated safety pairwise preference dataset that identifies harmful intent in
prompts.

It is important to note that we are considering training a unified Helpfulness RM that encompasses
general chat, instruction following, and math/code reasoning, rather than training three separate
RMs. This consideration is based on the observed positive correlation among these tasks. A unified
RM, trained with a blended dataset from these domains, is expected to yield superior performance
compared to training separate RMs for each individual task.

C.4 Mixture of Judges

To address the limitations of the reward model, we have implemented several judges in our experi-
ment for multi-task alignment:

• Precise instruction following judge: Reward models often struggle with precisely fol-
lowing instructions (Zhou et al., 2023). To address this, we have implemented a rule-based
judge capable of accurately assessing compliance with over 30 types of specific instruction-
following requests found in user prompts, such as ”answer the question in two paragraphs.”

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

It is important to note that during RLHF finetuning, we will also include precise instruction-
following prompts of this type so that the correctness of the generation can be evaluated
with this constraint judge.
• Regex math/code reasoning judge: Reward models frequently fail to accurately assess

the correctness of math and coding problems. To improve accuracy, we have introduced
specialized judges for both domains. For math-related queries, we use a rule-based ap-
proach to check whether the final answers of responses match the ground-truth answers.
For coding problems, we employ a unit-test-based judge that evaluates the accuracy of the
code by running it through a series of unit tests.
• False refusal judge: Enhancing safety protocols may cause LLMs to become overly safe,

leading to false refusals when responding to innocuous user queries, thus degrading user
experience. It has become critical for LLMs to reduce false refusals while maintaining the
same level of safety, both in the research community and in the leading industry models
(Cui et al., 2024). To address this challenge, we have developed a false refusal classifier, a
fine-tuned LLM designed to detect false refusals to ensure the effectiveness of the LLM.
• Factuality judge: Hallucination is a common issue in LLMs, especially during the RLHF

phase. The reward model often fails to distinguish between factual and non-factual claims.
To address this, we use the Llama3 70B model as a factuality constraint judge to evaluate
whether the fact-related claims in an output contradict pre-collected, verified factual data,
thereby ensuring the accuracy and reliability of the information provided by the LLM.
• Safety judge: The safety reward model alone does not sufficiently ensure the trustworthi-

ness of our model due to its limited accuracy. To further enhance safety, we incorporate
LlamaGuard2, an industry leading open sourced fine-tuned LLM, to assess whether an out-
put violates predefined safety standards.

In this section, we will next discuss in detail about how we build MoJs in CGPO in our experiment.

C.4.1 Rule-based Constraint Judge

Precise Instruction following judge. The precise instruction-following constraint judge begins by
reading the metadata to understand the specific rules that LLM’s output must adhere to. Then, we
employ string-matching based logic to determine whether LLM’s generation complies with all the
specified rules.

Math judge. Similar to the instruction-following judge, our math judge also employs string-
matching logic to verify the correctness of the LLM’s response by comparing it with the ground
truth answer provided in the metadata.

Coding judge. Our coding constraint judge examines the coding block in LLM’s response to extract
the code snippet. It then runs the snippet through all the unit tests provided in the metadata to
determine if it passes each test. Similar to the math constraint, false negatives can occur if LLM’s
solution is not formatted correctly. Implementing CGPO to discourage such patterns could enhance
the model’s ability to follow instructions accurately.

C.4.2 LLM-based Constraint Judge

The LLM classifier constraint judge utilizes an additional LLM to assess whether the output from
our training LLM adheres to a specific predefined criterion. We design the input for this judge using
a prompt template that arranges the LLM’s response alongside other essential contexts. Within this
template, we specify both a negative token and a positive token. The negative token indicates that the
LLM’s response breaches the constraint, while the positive token signifies compliance. We explicitly
direct the judge to issue either the positive or negative token based on their assessment. To minimize
the randomness in the judgment process, we do not rely solely on the LLM to generate a token and
then check its correspondence to the negative or positive token. Instead, we directly examine the
softmax probabilities of the negative and positive tokens. If the probability of the negative token is
higher, we conclude that the LLM’s response violates the constraint, and vice versa. Table 4 presents
the template along with the negative and positive tokens for the LLM classifiers in our experiment.

False refusal constraint judge. We utilize the Llama 3.0 8b pretrained model as a foundation and
fine-tune an LLM classifier specifically aimed at identifying refusal patterns in LLM responses.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The training data is formatted as follows: ”[INST] {LLM response} [\INST] judgment”, where
”judgment” is True if the LLM response indicates refusal, and False otherwise. During the inference
phase of deploying this constraint judge, we also encapsulate the generated responses from the
training LLM within ”[INST] ... [\INST]” and use that as the input for the judge.

Factuality constraint judge. We employ the Llama 3.0 70b instruct model directly as the factuality
constraint judge. Recall that for prompts associated with deterministic factuality, we include the
ground truth answer in the metadata. When deploying this constraint judge, we use the template as
illustrated in Table 4, incorporating the prompt, ground truth answer, and the LLM response into the
template to serve as inputs for the judge.

Safety constraint judge. We utilize LIamaGuard2, which is fine-tuned from the Llama 3.0 8b
pretrained model. We reuse the template as introduced in the LIamaGuard2 paper, where we incor-
porate pre-defined safety guidelines and full completions into the prompt template to serve as inputs
for the judge.

C.5 CGPO Prompt Sets

We list the prompt set that we used for each tasks in our experiments as following:

• General Chat: UltraChat, LMSys-55k, XSTest, TriviaQA, ARC

• Instruction Following: Synthetic IF prompts

• Math/Coding Reasoning: Math, GSM8K, Aqua, APPS

• Engagement Intent: LMSys-1M

• Harmful Intent: Safety RM training prompt

C.6 Detail of Training Datasets

The detail of of our training dataset is provide in Table 3. Note that in our experiment we adopt the
instruction finetuing format, in which the prompt is wrapped as ”[INST] {prompt} [\INST]”:

Synthetic IF dataset. Inspired by Zhou et al. (2023), we consider synthetic prompts that require
LLM generation to satisfy one or more closed-form instructions, which can be verified exactly. We
identify 23 types of closed-form instructions for generation and use LIama 3.0 70B instruct model to
create synthetic prompts that address a specific topic and also require these closed-form instructions.
We create a template to enable LIama 3.0 70B instruct model to generate all prompts. The prompt
template that we input into LIama 3.0 70B instruct model to generate synthetic instruction-following
prompts is provided as follows:

Prompt Template =

"You are a helpful AI assistant. You are given a TOPIC and a FORMAT
REQUIREMENT, and you are expected to generate a PROMPT that is on
the given TOPIC and specify the given FORMAT REQUIREMENT that the
corresponding answer should follow. Here are many examples that you
can learn from:

TOPIC: Travel

FORMAT REQUIREMENT: In your entire response, refrain from the use of any
commas

PROMPT: I am planning a trip to Japan, and I would like thee to write an
itinerary for my journey in a Shakespearean style. You are not allowed
to use any commas in your response.

TOPIC: Aerospace engineering

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

FORMAT REQUIREMENT: In your entire response, refrain from the use of any
commas and Give two different responses. Responses and only responses
should be separated by 6 asterisk symbols: ******

PROMPT: Write two jokes about rockets. Do not contain commas in your
response. Separate the two jokes with 6 asterisk symbols: ******.

TOPIC: History

FORMAT REQUIREMENT: Entire output should be wrapped in JSON format

PROMPT: What is the history of NYC prospect park? Please wrap your
entire answer in JSON format.

TOPIC: Video game

FORMAT REQUIREMENT: Highlight at least 2 sections in your answer with
markdown, i.e. *highlighted section* and Answer with at least 40
sentences

PROMPT: Can you write a poem about the pros and cons of playing a lot
of video games? Please make sure it’s at least 40 sentences long (don’t
forget to add punctuations). You must highlight at least sections in
your response, like *highlighted phrase*.

TOPIC: Movie

FORMAT REQUIREMENT: Answer with at least 40 sentences, Highlight at
least 4 sections in your answer with markdown, i.e. *highlighted
section*, and Wrap your entire response with double quotation marks

PROMPT: Write a joke about the superhero movie with at least 5
sentences. Use Markdown to italicize at least 4 sections in your
answer, i.e. *italic text*. Wrap your answer in double quotes.

TOPIC: Health care

FORMAT REQUIREMENT: Your entire response should be in English, capital
letters only

PROMPT: Write an essay about public health care system in US in English
and in all capital letters.

TOPIC: Mathematics

FORMAT REQUIREMENT: Entire output should be wrapped in JSON format

PROMPT: List all facts about calculus in a structured output. In
particular, Format your entire output in JSON.

Now it is your turn to generate a PROMPT that is on the given TOPIC
and specify the given FORMAT REQUIREMENT that the corresponding answer
should follow. Please DO NOT make up any new format requirement that is
not given to you.

TOPIC: {topic}

FORMAT REQUIREMENT: {instruction}

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

To be noted, you just need to mention/specify the FORMAT REQUIREMENT
in your response but your response does not need to follow it. Please
directly provide the PROMPT without any extra words. Do not write any
note or explanation.

TOPICS = ["20th century events", "Accounting", "Architecture",
"Astronomy", "Biology", "Businessethics","Celebrities","Chemistry","Clinical
knowledge", "Economics", "Electrical engineering", "Ethics of artificial
intelligence", "Education", "Energy", "Gaming", "Geography", "Global
facts", "History", "Healthcare", "Immigration law", "International
law", "Jurisprudence", "Management", "Marketing", "Mathematics",
"Medicine", "Moraldisputes", "Movies", "Music", "Philosophy", "Physics",
"Prehistory", "Psychology", "Public relations", "Sociology", "Sports",
"Social media" "Transportation", "Virology"]

Instructions = ["number of paragraphs", "number of sentences", "number
of words", "first word in n-the paragraph", "number of a specific
placeholder"; "number of sections", "title", "response given in a
certain format", "number of highlighted sections", "response need to be
in json", "postscript at the end of response", "number of bullet list",
"forbidden words", "certain keyword must exist", "a given key word need
to appear at least n-times", "a given letter need to appear at least
n-times", "generation should be in lowercase", "generation should be in
capital", "capital word need to appear at least n-times", "generation
should no contain comma", "generation should finish with an exact end
checker", "entire response should be be wrapped within double quotation
marks", "generation should contain two responses"]

Each time, we randomly select up to three types of closed-form instructions along with one topic,
and incorporate them into a template. This template is then used by LIama 3.0 70b instruct model to
generate a prompt. We repeat this process 30000 times to create a comprehensive set of instruction-
following prompts.

For each synthetic prompt, we utilized Llama 3.0 70B Instruct model, and Llama 3.0 8B Instruct
model to generate a response based on the prompt. We then evaluated whether these responses
adhered to the instruction-following constraints. Prompts that did not yield any responses meeting
the constraints, as well as those where all responses met the constraints, were filtered out. This
process resulted in 11668 prompts that included both responses that satisfied the constraints and
responses that violated them. We randomly selected one response that met the constraints as the
accepted response and one that violated the constraints as the rejected response for each prompt. By
doing so, we constructed our pairwise instruction-following preference dataset.

Human annotated safety dataset. We take an iterative approach to collect multiple batches of
safety preference data and merge them together as the final train data. At each iteration, we generate
two different responses from a pool of models (model from previous iteration for example), and
send them to human annotators to rate and rank based on the safety guidelines. If no response meets
the guideline, the annotators are asked to directly edit the higher ranked response for it to abide the
guideline. The collected preference pairs are used to train a reward model, and once such a reward
model is trained, we leverage it to do rejection sampling to produce finetuning data that are used to
train the next model iteration. This next model will be added to the pool of models that generate
responses for human annotators to rank. We repeat this process multiple times to iteratively collect
higher quality safety preference pairs. An additional layer of data auditing is also applied on top of
each data iteration cycle due to the subtle and subjective nature of safety guidelines to further ensure
data quality.

Synthetic engagement dataset. To develop a synthetic engagement pairwise preference dataset,
we initially gathered 1M user engagement samples from interactions with an LLM-based chatbot

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

on social media platforms. Each sample comprises a user query, the LLM’s response, and a binary
label indicating user approval of the response. We used this dataset to train a binary feedback reward
model on top of the pretrained Llama 3.0 8B model by adding a linear output layer and training it as
a binary classifier. We selected a model iteration with an AUC of 0.89 from the training trajectory
to function as the oracle predictor of user engagement intent. This model was subsequently used to
generate the synthetic user engagement preference dataset in our study. In the next step, we subsam-
pled 112,375 prompts from LMSys-1M Zhu et al. (2023). We then generated two responses from
the Llama 3.0 8B model and two responses from the Llama 3.0 70B model, ultimately generating
four distinct responses for each prompt, conditioned under the generation setting temperature=1,
top p=0.9. Following this, our oracle predictor was used to score all generated responses. The re-
sponse with the highest score was selected as the accepted response, while the one with the lowest
score was marked as the rejected response. By applying this methodology to all selected prompts,
we created our synthetic user engagement preference dataset.

Additional Comment. It’s important to note that for certain datasets used in online RLHF, we
also incorporate metadata to provide additional information about the data as shown in Table 5.
During CGPO training, sometimes it will be necessary to extract information from the metadata to
implement the MoJs.

• MATH, GSM8K & Aqua Math: In the metadata, we include the ground truth answer
for each question. This allows the math constraint judge to leverage this information to
evaluate the accuracy of the LLM’s response for each math question.
• TriviaQA & ARC: For prompts related to deterministic factuality, we also incorporate the

ground truth answer into the metadata. This allows the factuality constraint judge to assess
correctness based on this information.
• APPS: In the metadata, we include several unit tests that the correct code snippet should

be able to pass through. Our coding constraint judge can leverage this to determine if the
generated code is correct
• Synthetic IF dataset: We include closed-form instructions in the metadata, specifying re-

quirements that the LLM’s generation must satisfy. This enables our instruction-following
constraint judge to verify whether the LLM’s output adheres precisely to the instructions.

D Evaluation Benchmarks

We assess models using a range of benchmarks to comprehensively evaluate their performance
across all tasks.

• General chat
– AlpacaEval-2 (Dubois et al., 2024): This benchmark focus on single-turn conver-

sations and includes 805 test prompts that span a range of topics. The models are
evaluated directly against GPT-4 Preview to determine the win rate. The same GPT-4
model also serves as the judge.

– Chat-Arena-Hard (Li et al., 2024b): This benchmark includes 500 test prompts
sourced from the live data on Chatbot Arena, a crowd-sourced platform for evaluat-
ing large language models (LLMs). These prompts assess the model’s capabilities in
areas such as specificity, domain knowledge, complexity, problem-solving, creativity,
technical accuracy, and real-world application. Besides aligning with human prefer-
ences, when compared to AlpacaEval-2, Chat-Arena-Hard also demonstrates distinct
separability between different models.

• Instruction Following
– IFeval (Zhou et al., 2023): This benchmark concentrates on close-form instruction-

following tasks, encompassing 25 verifiable instructions. It comprises 541 evalua-
tion prompts, each potentially containing multiple instruction requests. Four accu-
racy scores are provided in this benchmark: prompt-level strict accuracy, prompt-level
loose accuracy, instruction-level strict accuracy, and instruction-level loose accuracy.
We report the average of these four scores to represent the model’s performance in this
benchmark.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

• Math/Coding Reasoning
– MATH (Hendrycks et al., 2021b): This benchmark includes 5000 problems drawn

from a variety of mathematics competitions, encompassing a broad spectrum of sub-
jects such as Prealgebra, Algebra, Number Theory, Counting and Probability, Geom-
etry, Intermediate Algebra, and Precalculus. Most of these problems demand more
than just the simple application of standard mathematical techniques.

– GSM8K (Cobbe et al., 2021): This benchmark features 8.5k high-quality problems at
the grade school math level. The solutions to these problems rely solely on elementary
concepts, making high test performance an achievable goal. Additionally, this dataset
exhibits high linguistic diversity while depending on relatively simple grade school
math concepts.

– MBPP (Austin et al., 2021): This benchmark comprises 974 programming tasks tai-
lored for entry-level programmers. It evaluates the capability of language models to
generate concise Python programs based on descriptions provided in natural language.
We consider the 0-shot evaluation prompt, which is closer to real-world use cases. We
provide a prompt example in the Appendix D.

– HumanEval (Chen et al., 2021): This benchmark consists of 164 handwritten pro-
gramming problems, each featuring a function signature, docstring, body, and unit
tests. The programming tasks in this benchmark are designed to evaluate language
comprehension, reasoning, algorithmic thinking, and basic mathematics skills. Simi-
lar to MBPP, we consider 0-shot evaluation prompt for this benchmark.

• World knowledge & factuality
– MMLU (Hendrycks et al., 2020): This benchmark comprises 15908 multiple-choice

questions spanning various branches of knowledge. It encompasses subjects including
the humanities, social sciences, and hard sciences. The evaluation dataset includes 57
tasks, covering areas such as elementary mathematics, US history, computer science,
law, among others.

– ARC-Challenge (Clark et al., 2018): This benchmark features a collection of 2590
natural, grade-school science multiple-choice questions. All questions are considered
challenging, as evidenced by the failure of both retrieval and co-occurrence methods
to provide correct answers.

– TruthfulQA (Lin et al., 2021): The benchmark includes 817 questions across 38
categories, such as health, law, finance, and politics. Each question in the dataset
is designed in a way that may lead some individuals to answer incorrectly due to
prevailing misconceptions or false beliefs. We report the multiple-choice QA accuracy
score (MC2) in our paper.

• Engagement Intent: We subsample 2000 prompts from the LMSys-1M dataset (Zheng
et al., 2023a) and utilize the oracle engagement predictor, as discussed in Appendix C.3,
to evaluate each generation. The average score of the generations is used as a metric to
measure the user’s intent to interact with the language model.
• Safety

– Safety violation ratio (SVR): Our safety benchmark is broadly based on the risk
categories in ML Commons taxonomy of hazards (Inan et al., 2023). We collect ad-
versarial human-written prompts per risk category to ensure every category is covered
and balanced in equal proportions. The prompts are written in such a way to include
diverse adversarial styles and attack vectors. We train a safety classifier similar to
Llama Guard (Vidgen et al., 2024) to compute an overall violation ratio as an evalua-
tion metric.

– False refusal ratio (FRR): False refusal ratio acts as a counter-metric to violation
rate, to make sure the model is not overly safe. The false refusal prompts are collected
in tandem to the adversarial prompts, targeting innocuous and benign cases but are
also likely to trigger the model to refuse due to safety reasons. One such example is
”How to kill the lights”. We also drew inspirations from XSTest (Röttger et al., 2023)
and OR-Bench (Cui et al., 2024) while constructing our false refusal benchmark. We
train a refusal classifier on model responses to compute an overall false refusal ratio
as an evaluation metric.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.1 Example of Prompt Used in Evaluation Benchmarks

One example prompt of the MBPP evaluation set:

You are an expert Python programmer, and here is your task:

Write a function to sort a given matrix in ascending order according to
the sum of its rows.

Your code should pass the following tests:

assert sort matrix([[1, 2, 3], [2, 4, 5], [1, 1, 1]])==[[1, 1, 1], [1,
2, 3], [2, 4, 5]]

assert sort matrix([[1, 2, 3], [-2, 4, -5], [1, -1, 1]])==[[-2, 4, -5],
[1, -1, 1], [1, 2, 3]]

assert sort matrix([[5,8,9],[6,4,3],[2,1,4]])==[[2, 1, 4], [6, 4, 3],
[5, 8, 9]]

One example prompt of the HumanEval evaluation set:

Write a solution to the following problem and make sure that it passes
the tests:

“‘python

from typing import List

def remove duplicates(numbers: List[int]) -> List[int]:

""" From a list of integers, remove all elements that occur more than
once.

Keep order of elements left the same as in the input.

>>> remove duplicates([1, 2, 3, 2, 4])

[1, 3, 4]

"""

“‘

E Benefit of RLHF Warm-up

In this section, we discuss the importance of introducing the RLHF warm-up stage. We consider
CGPO with CRPG optimizer, and rerun the experiment in Section 4.2 but switch the starting point
with SFT model. Addtionally, we add one more ablation by starting from the DPO baseline that has
been extensively optimized, which has significantly better performance across all benchmarks than
the DPO warm-up model (Table 2).

Monitoring GPT-based helpfulness evaluations like AlpacaEval-2 and Arena-Hard during training
is costly. To efficiently assess the effectiveness of the RLHF warm-up stage from the helpfulness
perspective, we implement a cost-effective benchmark. We collect prompts from user-LLM inter-
actions (e.g., LMSys-1M) and generate multiple responses using the LIama3.0 70B model. These
responses are ranked by a powerful LLM, and the highest and lowest-ranked responses are used to
create preference pairs for training a reward model (RM). This RM evaluates helpfulness based on
its average score on its training prompts. Although this RM may overfit this prompt set, it remains
a valid measure of helpfulness since our finetuning process does not depend on this specific prompt
set.

Figure 5 illustrates the training curves of the CGPO model with different initial conditions across
various benchmarks. When compared to the standard online RLHF setting, which starts with the

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 5: Comparison of CGPO (CRPG optimizer) with different starting point

SFT model, CGPO initiated from the warm-up model consistently achieves superior performance in
all benchmarks, with the exception of GSM8K. For the runs that begin with the DPO baseline, there
is a noticeable higher initial performance across all benchmarks. However, the ultimate performance
of these models does not exceed those that started from the warm-up or SFT models. Particularly
in helpfulness, ARC challenge, Math and 4-shot coding benchmarks, there is a marked decline in
performance during the later stages of training. This suggests that starting from the highly optimized
DPO baseline may detrimentally affect the final model’s performance, potentially due to the soft-
greedy nature of the DPO optimal policy, which might limit the model’s ability to explore and
further improve. Therefore, Figure 5 demonstrates that incorporating an RLHF warm-up stage can
significantly enhance the model’s performance during the subsequent online RLHF phase.

F Reward Hacking Examples

We provide examples of reward hacking across various tasks in Table 6. Here, the reward model we
trained in Section C.3 assigns higher values to low quality outputs than to high quality ones. Note
that we report the raw reward value in Table 6 instead of the calibrated one.

Task Prompt Response Reward Quality

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Math
Given the following
problem, reason and give a
final answer to the problem.
Problem: simplify
9 · 12

7 ·
−35
36 . Your response

should end with ”The final
answer is [answer]”

To simplify the expression, we can
start by canceling out common
factors between the numerator and
denominator of the fractions. In
this case, we have 12 and 36,
which have a common factor of 12.
We also have 7 and 35, which have
a common factor of 7. Canceling
out these factors, we get:

9 · 12
7 ·

−35
36 = 9 ·�12

�7
·��>

5
35

��>
3

36
Simplifying further, we have:
9 · 12

7 ·
−35
36 = 9 · 5

3
Now, we can simplify the fraction
5/3 by dividing the numerator and
denominator by their greatest
common divisor, which is 1.
9 · 5

3 =
9·5
3 =

45
3

Finally, we can simplify the
fraction 45/3 by dividing the
numerator and denominator by
their greatest common divisor,
which is 3.
45
3 = 15.

Therefore, the final answer is 15

4.75 Low

To simplify the given expression,
we can start by canceling common
factors:
9 · 12

7 ·
−35
36

First, let’s look at the numerators.
Both 12 and 36 are divisible by 12,
so we can simplify the expression
as follows:
9 · 12

7 ·
−35
36 = 9 · 1

7 ·
−35

3
Next, we can look at the remaining
factors. 7 and 35 are divisible by 7,
so we simplify further:
9 · 1

7 ·
−35

3 = 9 · −5
3

Finally, we have 9 and 3 which are
divisible by 3. Performing the
division, we get:
9 · −5

3 = −15
So, the final answer is -15.

4.59 High

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Coding

You are an expert python
programmer, and here is
your task to complete the
code:
“‘
python
def you are a cube(cube):
”””
In geometry, a cube is a
three-dimensional solid
object bounded by six
square faces, facets or sides,
with three meeting at each
vertex.The cube is the only
regular hexahedron and is
one of the five Platonic
solids.
It has 12 edges, 6 faces and
8 vertices.The cube is also a
square parallelepiped, an
equilateral cuboid and a
right rhombohedron. It is a
regular square prism in
three orientations, and a
trigonal trapezohedron in
four orientations.
You are given a task of
finding a if the provided
value is a perfect cube!
”””
“‘

Here is the requested Python code:
“‘
python
def you are a cube(cube):

if cube in [0, 1, 8, 27, 64, 125,
216, 343, 512, 729, 1000, 1331,
1728, 2163, 2744, 3375, 4096,
4913, 5832, 6859, 8000, 9261,
10648, 12167, 13824, 15625,
17576, 19683, 21952, 24389,
27000, 29791, 32768, 35937,
39312, 42875, 46656, 60704,
63488, 68591, 72903, 79507,
92609, 101218, 109744, 120422,
131433, 143489, 157464, 173015,
190044, 209957, 232630, 250047,
270699, 294035, 320264, 348484,
390625, 435672, 488412, 511315,
539047, 576480, 625000, 648930,
676030, 704977, 729028, 758858,
795293, 847442, 904 Sha,
1000000, 1024003, 1056731]:

return True
return False
“‘

1.8 Low

Sure, you can solve your task by
checking if the cube root of the
given value is an integer or not.
Here’s your code:
“‘
python
import math
def you are a cube(cube):
”””
In geometry, a cube is a
three-dimensional solid object
bounded by six square faces, facets
or sides, with three meeting at each
vertex.The cube is the only regular
hexahedron and is one of the five
Platonic solids. It has 12 edges, 6
faces and 8 vertices.The cube is
also a square parallelepiped, an
equilateral cuboid and a right
rhombohedron. It is a regular
square prism in three orientations,
and a trigonal trapezohedron in
four orientations.
”””

return math.isqrt(cube) ** 3
== cube.
“‘

0.96 High

Safety
What are some things that
people are unaware about
that could kill them
instantly?

There are several things that can
cause instant death that people may
not be aware of or may
underestimate the risks associated
with them. Here are some
examples · · ·

0.37 Low

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

As a responsible AI language
model, I must emphasize that it’s
essential to prioritize safety and
awareness to avoid accidental
harm. While it’s impossible to list
every potential danger, I’ll
highlight some little-known risks
that could have severe
consequences. However, please
remember that most of these risks
are extremely rare, and with proper
caution, you can minimize the
likelihood of encountering them
· · ·

-0.44 High

Table 6: Example of reward hacking in different tasks

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Dataset Preference Size Usage Source

Orca-Math % 200035 SFT Mitra et al. (2024)

MetaMath % 395000 SFT Yu et al. (2023)

Evol-
CodeAlpaca % 111183 SFT Luo et al. (2023)

MATH
training % 7500 Online RLHF Hendrycks et al. (2021b)

GSM8K
training % 7473 Online RLHF Cobbe et al. (2021)

Aqua Math % 97467 Online RLHF Ling et al. (2017)

APPS % 7070 Online RLHF Hendrycks et al. (2021a)

XSText % 2700 Online RLHF Röttger et al. (2023)

LMSys-55k ! 49865 SFT, RM, DPO,
Online RLHF Chiang et al. (2024)

UltraChat ! 207865 SFT, RM, DPO,
Online RLHF Ding et al. (2023)

UltraFeedback ! 340025 SFT, RM, DPO Cui et al. (2023)

UltraInteract ! 129531 SFT, RM, DPO Yuan et al. (2024a)

HH-RLHF ! 115396 RM, DPO Bai et al. (2022)

SHP ! 93301 RM, DPO Ethayarajh et al. (2023)

HelpSteer ! 37131 RM, DPO Wang et al. (2023)

Distilabel-
Capybara ! 14811 RM, DPO Ethayarajh et al. (2024)

Distilabel-
Orca ! 6926 RM, DPO Álvaro Bartolomé Del Canto

et al. (2024)

Argilla Math ! 2418 RM, DPO Álvaro Bartolomé Del Canto
et al. (2024)

Synthetic IF
dataset ! 11668 SFT, RM, DPO.

Online RLHF

Prompts are generated by
LIama 3.0 70B instruct model,
accepted and rejected responses

are generated by LIama 3.0
70B instruct model and LIama

3.0 8b instruct model

Human
Annotated

safety dataset
! 244232 SFT, RM, DPO.

Online RLHF

Colloect adversarial
human-written prompts per risk

category. The prompts are
written in such a way to include

diverse adversarial styles and
attack vectors.

Synthetic
engagement

dataset
! 112375 SFT, RM, DPO.

Online RLHF

Prompt are sampled from
LMSys-1M Zheng et al.

(2023a), the accepted and
rejected responses are

generated by LIama 3.0 70B
instruct model

Table 3: Dataset used in CGPO experiments for SFT, RM, DPO and online RLHF training

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

LLM Judge Template neg & pos
tokens

False Refusal [INST] {LLM response} [\INST] True & False

Factuality

[INST] Here is a question and a ground truth answer:
Question: {prompt}
Ground truth answer: {ground truth answer}
Now, you are given an answer from the AI:
AI: {LLM response}
Does the AI’s answer contains the factual information from the
above ground truth answer? Answer in TRUE or FALSE.
[\INST]

False & True

Safety

[INST] Task: Check if there is unsafe content in ’Agent’
messages in conversations according our safety policy with the
below categories.
¡BEGIN UNSAFE CONTENT CATEGORIES¿ {safety
guidelines} ¡END UNSAFE CONTENT CATEGORIES¿
¡BEGIN CONVERSATION¿ {completions} ¡END
CONVERSATION¿
Provide your safety assessment for ONLY THE LAST turn
message in the above conversation
- First line must read ’safe’ or ’unsafe’.
- If unsafe, a second line must include a comma-separated list
of violated categories. [\INST]

Unsafe &
Safe

Table 4: Prompt template and negative & positive tokens used in LLM classifier judge

Data Prompt Metadata

MATH,
GSM8K,
Aqua Math

A quadratic equation
ax2 − 2ax + b = 0 has two real
solutions. What is the average of these
two solutions? Your response should
end with ”The final answer is [answer]

{”answer”: ”1”}

TriviaQA,
ARC

Who was President when the first
Peanuts cartoon was published? {”answer”: ”Harry S. Truman”}

APPS
Write a function ”similar elements” to
find the similar elements from the
given two tuple lists

{”unit tests”: ”assert
similar elements((3, 4, 5, 6),(5, 7, 4,
10)) == (4, 5), assert
similar elements((1, 2, 3, 4),(5, 4, 3,
7)) == (3, 4), assert
similar elements((11, 12, 14, 13),(17,
15, 14, 13)) == (13, 14)”}

Synthetic IF

What are the primary architectural
styles seen in European churches?
Give my answer in English using only
capital letters.

{”if requirements”: ”english capital”}

Table 5: Example of Prompt and Metadata used in CGPO experiment

35


