
A Proof of the strong duality (4)

In this section, we explain why the equalities (4) hold when the problem (r, c,B′, ν) is feasible for
some B′ < B. We restate first these inequalities for the convenience of the reader:

OPT(r, c,B) = sup
π:X→P(A)

inf
λ⩾0

EX∼ν

[∑
a∈A

r(X, a)πa(X) +

〈
λ, B −

∑
a∈A

c(X, a)πa(X)

〉]
(⋆)
= min

λ⩾0
sup

π:X→P(A)

EX∼ν

[∑
a∈A

πa(X)
(
r(X, a)−

〈
c(X, a)−B, λ

〉)]

= min
λ⩾0

EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)−B, λ

〉}]
.

We deal here with a linear program, with primal variables in functional space X → RA and dual
variables in the finite-dimensional space Rd.

The first and third equalities are straightforward. The first equality holds because in OPT(r, c,B),
we want to consider only policies with expected cost smaller than or equal to B; the infimum over
λ ⩾ 0 equals −∞ for policies with expected costs strictly larger than B and is achieved at λ = 0
otherwise. The third inequality follows from identifying that for a given λ, the best policy may be
defined pointwise as the argument of the maximum written in the expectation. Thus, only the middle
equality (⋆) deserves a proof. We obtain it by applying a general theorem of strong duality (which
requires feasibility for slightly smaller cost constraints).

Statement of a general theorem of strong duality. We restate a result extracted from the mono-
graph by Luenberger [1969]. It relies on the dual functional φ, whose expression we recall below.
Theorem 2 (stated as Theorem 1 in Section 8.6, page 224 in Luenberger, 1969). Let f be a real-
valued convex functional defined on a convex subset Ω of a vector space X , and let G be a convex
mapping of X into a normed space Z. Suppose there exists an x1 such that G(x1) < θ and that
µ0 = inf

{
f(x) : G(x) ⩽ θ, x ∈ Ω

}
is finite. Then
inf

G(x)⩽θ
x∈Ω

f(x) = max
z⋆⩾θ

φ(z⋆)

and the maximum on the right is achieved by some z⋆0 ⩾ θ.

The dual function φ is defined as follows (Luenberger, 1969, pages 215, 223, and 224, which
we quote). We denote by P a positive convex cone P ⊂ Z, and let P ⋆ =

{
z⋆ ∈ Z⋆ : ∀ z ∈

P, ⟨z, z⋆⟩ ⩾ 0
}

be its corresponding positive cone in the dual space Z⋆. The dual functional is
defined, for each element z⋆ ∈ P ⋆, as

φ(z⋆) = inf
x∈Ω

{
f(x) + ⟨G(x), z⋆⟩

}
.

Application. To prove the middle equality (⋆), we apply Theorem 2 with the vector space X of all
functions X → RA, its convex subset Ω formed by functions X → P(A), and note that the function
f is actually linear in our situation:

f(π) = −EX∼ν

[∑
a∈A

r(X, a)πa(X)

]
.

(We take a − sign to match the form of the minimization problem over π in Theorem 2.) We take
Z = Rd = Z⋆ with positive cones P = P ⋆ = [0,+∞)d. The mapping G is a linear mapping from
X to Z = Rd:

G(π) = EX∼ν

[∑
a∈A

c(X, a)πa(X)

]
−B ,

and we take θ = 0. We have that µ0 = OPT(r, c,B) is indeed finite. We note that the condition
“(r, c,B′, ν) is feasible for some B′ < B” is required to apply the theorem. The result follows from
noting that we exactly have, for z = λ ∈ P ⋆,

φ(λ) = inf
π:X→P(A)

EX∼ν

[
−
∑
a∈A

r(X, a)πa(X) +
∑
a∈A

〈
c(X, a)−B, λ

〉
πa(X)

]
.
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B Proofs of Lemmas 1 and 2

In both proofs, we will use the following deviation inequalities, holding on an event EH-Az ∩ Eβ of
probability at least 1− δ/2, where the event Eβ is defined in Assumption 2 with a confidence level
1− δ/4 and the event EH-Az is defined below: on EH-Az ∩ Eβ ,

∀ 1 ⩽ t ⩽ T,

t∑
τ=1

cτ ⩽
(
αt,δ/4 + 2βt,δ/4

)
1+

t∑
τ=1

ĉ lcb
δ/4,τ−1(xτ , aτ ) (7)

and
t∑

τ=1

rτ ⩾ −
(
αt,δ/4 + 2βt,δ/4

)
+

t∑
τ=1

r̂ ucb
δ/4,τ−1(xτ , aτ ) , (8)

where βt,δ/4 is also defined in Assumption 2 and

αt,δ/4 =

√
2t ln

2(d+ 1)T

δ/4
.

These inequalities come, on the one hand, by the Hoeffding-Azuma inequality applied (d + 1)T
times on the range [−1, 1]: it ensures that on an event EH-Az with probability at least 1− δ/4, for all
1 ⩽ t ⩽ T ,wwwww

t∑
τ=1

cτ −
t∑

τ=1

c(xτ , aτ )

wwwww
∞

⩽ αt,δ/4 1 and

∣∣∣∣∣
t∑

τ=1

rτ −
t∑

τ=1

r(xτ , aτ )

∣∣∣∣∣ ⩽ αt,δ/4

(where we denoted by ∥ · ∥∞ the supremum norm). On the other hand, Assumption 2 and the
clipping (3) entail, in particular, that on an event Eβ of probability at least 1− δ/4, for all 1 ⩽ t ⩽ T ,
t∑

τ=1

c(xτ , aτ ) ⩽
t∑

τ=1

(
ĉ lcb
δ/4,τ−1(xτ , aτ ) + 2ετ−1(xτ , aτ , δ/4)1

)
= 2βt,δ/4 1+

t∑
τ=1

ĉ lcb
δ/4,τ−1(xτ , aτ )

and (similarly)
t∑

τ=1

r(xτ , aτ ) ⩾ −2βt,δ/4 +

t∑
τ=1

r̂ ucb
δ/4,τ−1(xτ , aτ ) .

B.1 Proof of Lemma 1

For τ ⩾ 1, by definition of λτ in Box B,

λτ − λτ−1 =
(
λτ−1 + γ

(
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1)

))
+
− λτ−1

⩾ γ
(
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1)

)
.

For t ⩾ 1, as λ0 = 0 and λt ⩾ 0, we get, after telescoping and taking non-negative parts,

λt ⩾ γ

(
t∑

τ=1

(
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1)

))
+

,

thus

wwwww
(

t∑
τ=1

(
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1)

))
+

wwwww ⩽
∥λt∥
γ

. (9)

Up to the deviation terms (7), ∥λt∥/γ bounds how larger the cost constraints till round t are from
t(B − b1). Most of the rest of the proof, namely, the Steps 1–4 below, thus focus on upper bounding
the ∥λt∥, while Step 5 will collect all bounds together and conclude.

Step 1: Gradient-descent analysis. We introduce

∆ĉτ = ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1) (10)

and prove the following deterministic inequality: for all 1 ⩽ t ⩽ T ,

∀λ ⩾ 0, ∥λt − λ∥2 ⩽ ∥λ∥2 + 4d γ2t+ 2γ

t∑
τ=1

〈
∆ĉτ , λτ−1 − λ

〉
. (11)
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To do so, we proceed as is classical in (projected) gradient-descent analyses; see, e.g., Zinkevich
[2003]. Namely, for all 1 ⩽ τ ⩽ T ,

2
〈
−∆ĉτ , λτ−1 − λ

〉
=

1

γ

(
∥λτ−1 − λ∥2 +

wwγ∆ĉτ
ww2 −

wwλτ−1 − λ+ γ∆ĉτ
ww2
)

= γ
ww∆ĉτ

ww2
+

1

γ

(
∥λτ−1 − λ∥2 −

wwλτ−1 + γ∆ĉτ − λ
ww2
)

⩽ γ
ww∆ĉτ

ww2
+

1

γ

(
∥λτ−1 − λ∥2 − ∥λτ − λ∥2

)
,

where the inequality comes from the definition λτ =
(
λτ−1 + γ∆ĉτ

)
+

and the fact that

∀x ∈ R, ∀ y ⩾ 0,
∣∣(x)+ − y

∣∣ ⩽ |x− y|
(which may be proved by distinguishing the cases x ⩽ 0 and x ⩾ 0).

We note that

B − b1 ∈ [0, 1]d and ĉ lcb
δ/4,τ−1(xτ , aτ ) ∈ [−1, 1]d , so that

ww∆ĉτ
ww2

⩽ 4d .

Collecting all bounds above, we get, after summation and telescoping,
t∑

τ=1

〈
−∆ĉτ , λτ−1 − λ

〉
⩽ 2d γt+

1

2γ

(
∥λ0 − λ∥2 − ∥λt − λ∥2

)
.

Rearranging and substituting λ0 = 0 yields the claimed inequality (11).

Step 2: Relating estimated costs (and rewards) to true conditional expectations. In this part,
we upper bound the right-hand side of (11) by showing that on the event Eβ ,

∀λ ⩾ 0, ∀ 1 ⩽ t ⩽ T,

t∑
τ=1

〈
∆ĉτ , λτ−1 − λ

〉
⩽ 2
(
1 + ∥λ∥1

)
βt,δ/4 +

t∑
τ=1

(
gτ (λ)− gτ (λτ−1)

)
, (12)

where gτ (λ) = max
a∈A

{
r(xτ , a)−

〈
c(xτ , a)− (B − b1), λ

〉}
and where we recall that ∥ · ∥1 denotes the ℓ1–norm.

Adding and subtracting r̂ ucb
δ/4,τ−1(xτ , aτ ), here, we deal with

t∑
τ=1

〈
∆ĉτ , λτ−1 − λ

〉
=

t∑
τ=1

(
r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1), λ

〉)
−

t∑
τ=1

(
r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1), λτ−1

〉)
.

Now, for each τ , by (3) and the fact that λ ⩾ 0,

r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1), λ

〉
⩽ r(xτ , aτ ) + 2ετ−1(xτ , aτ , δ/4)−

〈
c(xτ , aτ )− (B − b1), λ

〉
+ 2ετ−1(xτ , aτ , δ/4) ∥λ∥1

⩽ gτ (λ) + 2
(
1 + ∥λ∥1

)
ετ−1(xτ , aτ , δ/4) .

On the other hand, by definition of aτ for the equality, and then by the other inequalities in (3), for
each τ , and the fact that λτ−1 ⩾ 0,

r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1), λτ−1

〉
(13)

= max
a∈A

{
r̂ ucb
δ/4,τ−1(xτ , a)−

〈
ĉ lcb
δ/4,τ−1(xτ , a)− (B − b1), λτ−1

〉}
⩾ max

a∈A

{
r(xτ , a)−

〈
c(xτ , a)− (B − b1), λτ−1

〉}
= gτ (λτ−1) .

Collecting the two series of bounds concludes this part.
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Step 3: Application of a Bernstein-Freedman inequality. We recall that we denoted by λ⋆
B−b1

the optimal dual variable in (4) for OPT(r, c,B − b1); it exists because we assumed feasibility of a
problem with average cost constraints B′ < B − b1.

We now upper bound the sum appearing in the right hand side of (12) at λ = λ⋆
B−b1 by showing that

on an event EBern-c of probability at least 1− δ/4, for all 1 ⩽ t ⩽ T ,
t∑

τ=1

(
gτ (λ

⋆
B−b1)− gτ (λτ−1)

)
⩽ (1 + 2Λt)

√
2t ln

T 2

δ/4
+ 2Kt ln

T 2

δ/4
, (14)

where Λt = max
1⩽τ⩽t

∥λ⋆
B−b1 − λτ−1∥1 and Kt = 4

(
1 + ∥λ⋆

B−b1∥1 + 2dγt
)
.

We will do so by applying a version of the Bernstein-Freedman inequality for martingales stated in
Cesa-Bianchi et al. [2005, Corollary 16] involving the sum of the conditional variances (and not only
a deterministic bound thereon); it is obtained via peeling based on the classic version of Bernstein’s
inequality (Freedman, 1975). We restate it here for the convenience of the reader (after applying
some simple boundings).
Lemma 4 (a version of the Bernstein-Freedman inequality by Cesa-Bianchi et al., 2005). Let
X1, X2, . . . be a martingale difference with respect to the filtration F = (Fs)s⩾0 and with incre-
ments bounded in absolute values by K. For all t ⩾ 1, let

St =

t∑
τ=1

E
[
X2

τ

∣∣Fτ−1

]
denote the sum of the conditional variances of the first t increments. Then, for all δ ∈ (0, 1) and all
t ⩾ 1, with probability at least 1− δ,

t∑
τ=1

Xτ ⩽

√
2St ln

t

δ
+ 2K ln

t

δ
.

We introduce, for all λ ⩾ 0, the common expectation of the gτ (λ), namely,

G(λ) = E
[
gτ (λ)

]
= EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)− (B − b1), λ

〉}]
,

and consider the martingale increments

Xτ =
(
gτ (λ

⋆
B−b1)− gτ (λτ−1)

)
−
(
G(λ⋆

B−b1)−G(λτ−1)
)
.

As B − b1 ∈ [0, 1]d and c takes values in [−1, 1]d, for all x ∈ X , all a ∈ A, and all v ∈ Rd, the
quantities r(x, a)−

〈
c(x, a)− (B − b1), v

〉
take absolute values smaller than 1 + 2∥v∥1. Using

that a difference of maxima is smaller than the maximum of the differences, we get, in particular,∣∣gτ (λ⋆
B−b1)− gτ (λτ−1)

∣∣ ⩽ 1 + 2∥λ⋆
B−b1 − λτ−1∥1 a.s. (15)

and
∣∣G(λ⋆

B−b1)−G(λτ−1)
∣∣ ⩽ 1 + 2∥λ⋆

B−b1 − λτ−1∥1 .
Now, given the update step in Step 3 of Box B, we have the deterministic bound ∥λt∥1 ⩽ 2dγt for
all 1 ⩽ t ⩽ T . Therefore, by a triangle inequality, the martingale increments are bounded in absolute
values by Kt, as

2
(
1 + 2∥λ⋆

B−b1∥1 + 1 + 2max
τ⩽t

∥λτ−1∥1
)
⩽ 4
(
1 + ∥λ⋆

B−b1∥1 + 2dγt
)
= Kt .

The conditional variance of Xτ is smaller than the squared half-width of the conditional range
(Popoviciu’s inequality on variances); in particular, (15) thus entails

St ⩽
t∑

τ=1

(
1 + 2∥λ⋆

B−b1 − λτ−1∥1
)2

⩽ (1 + 2Λt)
2t .

We now get the claimed inequalities (14) first by noting that by (4), for all τ ⩽ T ,

G(λ⋆
B−b1)−G(λτ−1) ⩽ 0 ,

and second, by applying Lemma 4 for each 1 ⩽ t ⩽ T , using a confidence level δ/(4T ). By a union
bound, this indeed defines an event EBern-c of probability at least 1− δ/4.
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Step 4: Induction to bound the Λt. In this step, we show by induction that, with high probability,
the norms ∥λ⋆

B−b1 − λt∥ satisfy the bound (18) stated below.

To do so, we combine the outcomes of Steps 1–3 and obtain that on the event Eβ ∩ EBern-c, for all
1 ⩽ t ⩽ T ,

∥λ⋆
B−b1 − λt∥2

⩽ ∥λ⋆
B−b1∥2 + 4d γ2t+ 2γ

(
2
(
1 + ∥λ⋆

B−b1∥1
)
βt,δ/4 +

t∑
τ=1

(
gτ (λ

⋆
B−b1)− gτ (λτ−1)

))

⩽ ∥λ⋆
B−b1∥2 + 4d γ2t+ 4γ

(
1 + ∥λ⋆

B−b1∥1
)
βt,δ/4 + 2γ(1 + 2Λt)

√
2t ln

T 2

δ/4
+ 4γKt ln

T 2

δ/4
,

where we recall that norms not indexed by a subscript are Euclidean norms, and

Λt = max
1⩽τ⩽t

∥λ⋆
B−b1 − λτ−1∥1 and Kt = 4

(
1 + ∥λ⋆

B−b1∥1 + 2dγt
)
.

We upper bound ∥λ⋆
B−b1∥1 and Λt in terms of Euclidean norms,

∥λ⋆
B−b1∥1 ⩽

√
d ∥λ⋆

B−b1∥ and Λt ⩽
√
d max

1⩽τ⩽t
∥λ⋆

B−b1 − λτ−1∥ ,

perform some crude boundings like
√
t ⩽

√
T and βt,δ/4 ⩽ βT,δ/4, and obtain the following

induction relationship: on the event Eβ ∩ EBern-c, for all 1 ⩽ t ⩽ T ,

∥λ⋆
B−b1 − λt∥2 ⩽ A+B t+ C max

1⩽τ⩽t
∥λ⋆

B−b1 − λτ−1∥ , (16)

where

A = ∥λ⋆
B−b1∥2 + γ

(
4
(
1 +

√
d ∥λ⋆

B−b1∥
)
βT,δ/4 + 2

√
2T ln

T 2

δ/4
+ 16

(
1 +

√
d ∥λ⋆

B−b1∥
)
ln

T 2

δ/4

)
,

B = 4dγ2 + 4× 4× 2dγ2ln
T 2

δ/4
=

(
4 + 32 ln

T 2

δ/4

)
dγ2 ⩽ 36 dγ2 ln

T 2

δ/4
,

C = 4γ

√
2dT ln

T 2

δ/4
.

We now show that (16) implies that on Eβ ∩ EBern-c,

∀ 0 ⩽ t ⩽ T, ∥λ⋆
B−b1 − λt∥ ⩽ M

def
=

C

2
+

√
A+BT +

C2

4
. (17)

Indeed, for t = 0, given that λ0 = 0, we have ∥λ⋆
B−b1 − λt∥ = ∥λ⋆

B−b1∥ ⩽
√
A. Now, if the

bound (17) is satisfied for all 0 ⩽ τ ⩽ t, where 0 ⩽ t ⩽ T − 1, then (16) implies that

∥λ⋆
B−b1 − λt+1∥ ⩽ A+B (t+ 1) + CM ⩽ A+B T + CM ⩽ M2 ,

where the final inequality follows from the fact that (by definition of M , and this explains how we
picked M )

M2 − CM =

(
M − C

2

)2
+

C2

4
= A+BT .

Below, we will make repeated uses of
√
x+ y ⩽

√
x+

√
y, of xy ⩽ 2(x2+ y2), and of

√
x ⩽ 1+x,

for x, y ⩾ 0. From (17), we conclude that on the event Eβ ∩ EBern-c,

∀ 0 ⩽ t ⩽ T, ∥λ⋆
B−b1 − λt∥ ⩽

√
A+

√
BT + C

=
√
A+ 6γ

√
dT ln

T 2

δ/4
+ 4γ

√
2dT ln

T 2

δ/4
⩽

√
A+ 6γβ′

T,δ/4 ,

where we denoted

β′
T,δ/4 = max

{
βT,δ/4, 2

√
dT ln

T 2

δ/4

}
⩾ ln

T 2

δ/4
.
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For the sake of readability, we may further bound
√
A as follows (in some crude way):

√
A ⩽ ∥λ⋆

B−b1∥+
√
γ

√√√√4
(
1 +

√
d ∥λ⋆

B−b1∥
)
βT,δ/4 + 2

√
2T ln

T 2

δ/4
+ 16

(
1 +

√
d ∥λ⋆

B−b1∥
)
ln

T 2

δ/4

⩽ ∥λ⋆
B−b1∥+

√
γ
√
22β′

T,δ/4 + 20
√
d ∥λ⋆

B−b1∥β′
T,δ/4

⩽ ∥λ⋆
B−b1∥+ 1 + 6γβ′

T,δ/4 + ∥λ⋆
B−b1∥+ 5γ

√
d β′

T,δ/4 ,

where we used the facts that
√
20xy = 2

√
5xy ⩽ x+ 5y and

√
22x = 2

√
22x/4 ⩽ 1 + 6x.

All in all, we proved that on the event Eβ ∩ EBern-c,

∀ 0 ⩽ t ⩽ T, ∥λ⋆
B−b1 − λt∥ ⩽ 2∥λ⋆

B−b1∥+ 17γ
√
d β′

T,δ/4 + 1 . (18)

Step 5: Conclusion. We combine the bound (18) with the bound (9) of Step 1 and the bound (7):
on the intersection of events Eβ ∩ EBern-c ∩ EH-Az, which has a probability at least 1 − 3δ/4, for all
1 ⩽ t ⩽ T ,wwwww

(
t∑

τ=1

cτ − t(B − b1)

)
+

wwwww ⩽
√
d
(
αT,δ/4 + 2βT,δ/4

)
+

∥λt∥
γ

⩽
√
d
(
αT,δ/4 + 2βT,δ/4

)
+

∥λ⋆
B−b1∥
γ

+
∥λ⋆

B−b1 − λt∥
γ

⩽
3∥λ⋆

B−b1∥+ 1

γ
+

√
d
(
αT,δ/4 + 19β′

T,δ/4

)
.

This entails in particular the stated result, given the definition of ΥT,δ as max
{
β′
T,δ/4, αT,δ/4

}
.

B.2 Proof of Lemma 2

The proof is similar to (but much simpler and shorter than) the one of Lemma 1 and borrows some of
its arguments. We use throughout this section the notation introduced therein; we also define a new
event EBern-r of probability at least 1− δ/4.

We start from (8) and introduce the same ∆ĉt quantity as in (10): on the event EH-Az ∩ Eβ , for all
1 ⩽ t ⩽ T ,

t∑
τ=1

rτ ⩾ −
(
αt,δ/4 + 2βt,δ/4

)
+

t∑
τ=1

r̂ ucb
δ/4,τ−1(xτ , aτ )

⩾ −
(
αt,δ/4 + 2βt,δ/4

)
+

t∑
τ=1

(
r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
∆ĉτ , λτ−1

〉)
+

t∑
τ=1

〈
∆ĉτ , λτ−1

〉
.

On the one hand, the result (11) with λ = 0 exactly states that
t∑

τ=1

〈
∆ĉτ , λτ−1

〉
⩾

∥λt∥2

2γ
− 2d γt ⩾ −2d γt .

On the other hand, the result (13) states that on Eβ , for all 1 ⩽ τ ⩽ T ,

r̂ ucb
δ/4,τ−1(xτ , aτ )−

〈
∆ĉτ , λτ−1

〉
= r̂ ucb

δ/4,τ−1(xτ , aτ )−
〈
ĉ lcb
δ/4,τ−1(xτ , aτ )− (B − b1), λτ−1

〉
⩾ gτ (λτ−1) .

A similar application of Lemma 4 as in the proof of Lemma 1 shows that on a new event EBern-r of
probability at least 1− δ/4, for all 1 ⩽ t ⩽ T ,

t∑
τ=1

gτ (λτ−1) ⩾
t∑

τ=1

G(λτ−1)−

√√√√2

t∑
τ=1

(
1 + 2∥λτ−1∥1

)2
ln

T 2

δ/4
− 8(1 + 2γt) ln

T 2

δ/4
.
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We relate ℓ1–norms to Euclidean norms, resort to a triangle inequality, and substitute (18) to get that
on EBern-c, for all 1 ⩽ t ⩽ T ,

−

√√√√2

t∑
τ=1

(
1 + 2∥λτ−1∥1

)2
ln

T 2

δ/4
⩾ −

(
1 + 2

√
d max
0⩽τ⩽t−1

∥λτ−1∥
)√

2t ln
T 2

δ/4

⩾ −
(
1 + 2

√
d ∥λ⋆

B−b1∥+ 2
√
d max
0⩽τ⩽t−1

∥λ⋆
B−b1 − λτ−1∥

)√
2t ln

T 2

δ/4

⩾ −
(
8
√
d ∥λ⋆

B−b1∥+ 34γd β′
T,δ/4 + 2

√
d+ 1

)√
2t ln

T 2

δ/4

⩾ −
(
8
√
d ∥λ⋆

B−b1∥+ 34γd β′
T,δ/4 + 4

√
d

)√
2t ln

T 2

δ/4

⩾ −6∥λ⋆
B−b1∥β′

T,δ/4 − 25γ
√
d
(
β′
T,δ/4

)2 − 2
√
2β′

T,δ/4

⩾ −6∥λ⋆
B−b1∥β′

T,δ/4 − 28γ
√
d
(
β′
T,δ/4

)2
,

where we performed some crude boundings using the definition of 1 ⩽ β′
t,δ/4 ⩽ β′

T,δ/4. We also
note that

8(1 + 2γt) ln
T 2

δ/4
⩽ 8 ln

T 2

δ/4
+ 4γ

(
β′
T,δ/4

)2
.

By (4), we have OPT(r, c,B − b1) = G(λ⋆
B−b1) ⩽ G(λ), for all λ ⩾ 0. Also,

G(λ⋆
B−b1) + b ∥λ⋆

B−b1∥1

= EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)− (B − b1), λ⋆

B−b1

〉}]
+ b ∥λ⋆

B−b1∥1

= EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)−B, λ⋆

B−b1

〉}]
⩾ OPT(r, c,B) ,

where we used again (4). In particular,

t∑
τ=1

G(λτ−1) ⩾ t OPT(r, c,B)− t b ∥λ⋆
B−b1∥1 ⩾ t OPT(r, c,B)− t b

√
d ∥λ⋆

B−b1∥1 .

Collecting all bounds above and using the definition of ΥT,δ as max
{
β′
T,δ/4, αT,δ/4

}
and the fact

that dt ⩽ (ΥT,δ)
2, we proved the following. On EH-Az ∩Eβ ∩EBern-c ∩EBern-r, which is indeed an event

with probability at least 1− δ, for all 1 ⩽ t ⩽ T ,

t∑
τ=1

rτ

⩾ −3ΥT,δ − 2d γt+

t∑
τ=1

G(λτ−1)−

√√√√2

T∑
t=1

(
1 + 2∥λt−1∥1

)2
ln

T 2

δ/4
− 8 ln

T 2

δ/4
− 4γ

(
β′
T,δ/4

)2
⩾ t OPT(r, c,B)− ∥λ⋆

B−b1∥
(
t b
√
d+ 6ΥT,δ

)
− 36γ

√
d
(
ΥT,δ

)2 − 8 ln
T 2

δ/4
.

This entails in particular the stated result.

C Proof of Theorem 1

The proof is divided into three steps: on a favorable event Emeta of probability at least 1− δ,
(i) we bound by ilog T the index of the last regime achieved in Box C;
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Algorithm 1: Pseudo-code for the Box C strategy
Input: number of rounds T ; confidence level 1− δ; margin b on the average constraints;

estimation procedure and error functions εt of Assumption 2; optimistic estimates (2)
Initialization: T0 = 1; sequence γk = 2k/

√
T of step sizes;

sequence MT,δ,k = 4
√
T + 20

√
dΥT,δ/(k+2)2 of cost deviations

1 for k ⩾ 0 do // Box C part

2 λTk−1 = 0;
3 for t ⩾ Tk do // Box B part

4 if t = T then
5 Terminate algorithm;
6 end
7 Observe the context xt;
8 Pick an action

at ∈ argmax
a∈A

{
r̂ ucb
δ,t−1(xt, a)−

〈
ĉ lcb
δ,t−1(xt, a)− (B − b1), λt−1

〉}
;

9 Observe the payoff rt and the costs ct;

10 Compute λt =
(
λt−1 + γk

(
ĉ lcb
δ,t−1(xt, at)− (B − b1)

))
+

; // make PGD update

11 Compute the estimates r̂ ucb
δ,t and ĉ lcb

δ,t ;

12 if

wwwww
(

t∑
τ=Tk

cτ − (t− Tk + 1) (B − b1)

)
+

wwwww > MT,δ,k then // Box C part

13 Break inner for loop; // finish phase k and move to phase k + 1
14 Tk+1 = t+ 1; // record beginning of phase k + 1

15 end
16 end
17 end

(ii) we bound by (1+ilog T )
√
T the excess cumulative costs with respect to T (B−bT1) and deduce

that the cumulative costs are smaller than B;
(iii) we provide a regret bound, by summing the bounds guaranteed by Lemma 1 over each regime.

The favorable event Emeta is defined as follows. By construction, and thanks to the assumption of
feasibility for B− 2bT1, the results of Lemmas 1 and 2 hold with probability at least 1− δ/(k+2)2

at each round of each regime k ⩾ 0 that is actually achieved. Given that

∑
k⩾0

1

(k + 2)2
⩽
∑
k⩾0

1

(k + 1)(k + 2)
= 1 ,

we may define Emeta as the event indicating that the (uniform-in-time) bounds of Lemmas 1 and 2 are
satisfied within each of the regimes achieved.

C.1 Step 1: Bounding the number of regimes achieved

We show that, on Emeta, if regime K = ilog ∥λ⋆
B−bT 1∥ is achieved, then this regime does not stop.

Hence, on Emeta, at most K + 1 ⩽ 1 + ilog ∥λ⋆
B−bT 1∥ regimes take place.

Indeed, in regime K = ilog ∥λ⋆
B−bT 1∥, if it is achieved, the meta-strategy resorts to the Box B

strategy with

γK =
2K√
T

⩾
max

{
∥λ⋆

B−bT 1∥, 1
}

√
T

.
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Therefore, the bound of Lemma 1 entails that on Emeta, for all t ⩾ TK ,wwwwww
(

t∑
τ=TK

cτ − (t− Tk + 1) (B − bT1)

)
+

wwwwww ⩽
1 + 3∥λ⋆

B−bT 1∥
γK

+ 20
√
dΥT,δ/(K+2)2

⩽ 4
√
T + 20

√
dΥT,δ/(K+2)2 = MT,δ,K .

This is exactly the contrary of the stopping condition of regime K: the latter thus cannot be broken.

In some bounds, we will further bound ilog ∥λ⋆
B−bT 1∥ by ilog T : this holds because the assumption

of (B − 2bT1)–feasibility entails, by Lemma 3 and as OPT is always smaller than 1, the crude bound

∥λ⋆
B−bT 1∥ ⩽

OPT(r, c,B − bT1)− OPT
(
r, c,B − (3/2)bT1

)
bT /2

⩽
2

bT
⩽

√
T

7
⩽ T ,

where we used that bT ⩾ 14/
√
T given its definition. (Of course, sharper but more complex bounds

could be obtained; however, they would only improve logarithmic terms in the bound, which we do
not try to optimize anyway.)

C.2 Step 2: Bounding the cumulative costs

We still denote by K the index of the last regime and recall that K ⩽ ilog ∥λ⋆
B−bT 1∥ ⩽ ilog(T ), and

that for k ⩾ 0, regime k starts at Tk and stops at Tk+1−1. By convention, T0 = 1 and TK+1 = T+1.

By the very definition of the stopping condition of regime k ⩾ 0,wwwwww
Tk+1−2∑

t=Tk

ct − (Tk+1 − Tk − 1) (B − bT1)


+

wwwwww ⩽ MT,δ,k .

For rounds of the form t = Tk+1 − 1, we bound the Euclidean norm of ct − (B − bT1) by 2
√
d.

Therefore, by a triangle inequality, satisfied both by the non-negative part ( · )+ and the norm ∥ · ∥
functions, we havewwwww

(
T∑

t=1

ct − T (B − bT1)

)
+

wwwww
⩽

K∑
k=0

wwwwww
Tk+1−2∑

t=Tk

ct − (Tk+1 − Tk − 1) (B − bT1)


+

wwwwww+

K∑
k=0

wwcTk+1−1 − (B − bT1)
ww

⩽ (K + 1)
(
MT,δ,ilog T + 2

√
d
)
⩽ T bT ,

where we used the fact that MT,δ,k increases with k, the bound K ⩽ ilog T proved in Step 1 and
holding on the event Emeta, as well as the definition of bT . Therefore, on Emeta, no component of(

T∑
t=1

ct − T (B − bT1)

)
+

can be larger than T bT , which yields the desired control
T∑

t=1

ct ⩽ TB.

C.3 Step 3: Computing the associated regret bound

The total regret is the sum of the regrets suffered over each regime:

RT =

K∑
k=0

(Tk+1 − Tk)OPT(r, c,B)−
Tk+1−1∑
t=Tk

rt

 .
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On the favorable event Emeta, the bound of Lemma 2 holds in particular at the end of each regime;
i.e., given the parameters γk = 2k/

√
T and δ/

(
4(k + 2)2

)
to run the Box B strategy in regime

k ∈ {0, . . . ,K}, it holds on Emeta that

(Tk+1 − Tk) OPT(r, c,B)−
Tk+1−1∑
t=Tk

rt ⩽ ∥λ⋆
B−bT 1∥

(
(Tk+1 − Tk) bT

√
d+ 6ΥT,δ/(k+2)2

)
+ 36

√
d
(
ΥT,δ/(k+2)2

)2 2k√
T

+ 8 ln
T 2

δ/
(
4(k + 2)2

) .
We now sum the above bounds and use the (in)equalities ΥT,δ/(k+2)2 ⩽ ΥT,δ/(K+2)2 ,

K∑
k=0

(Tk+1 − Tk) bT = T bT , and
K∑

k=0

2k ⩽ 2K+1 ⩽ 21+ilog ∥λ⋆
B−bT 1∥ ⩽ 4 ∥λ⋆

B−bT 1∥

to get

RT ⩽ ∥λ⋆
B−bT 1∥

(
T bT

√
d+ 6KΥT,δ/(K+2)2

)
+ 144

√
d ∥λ⋆

B−bT 1∥
(
ΥT,δ/(K+2)2

)2
√
T

+ 8K ln
T 2

δ/
(
4(K + 2)2

) .
The final regret bound is achieved by substituting the inequality K ⩽ ilog T proved in Step 1:

RT ⩽ ∥λ⋆
B−bT 1∥

(
144

√
d

(
ΥT,δ/(2+ilog T )2

)2
√
T

+ T bT
√
d+ 6ΥT,δ/(2+ilog T )2 ilog T

)

+ 8 ln
T 2

δ/
(
4(2 + ilog T )2

) ilog T . (19)

The order of magnitude is
√
T , up to poly-logarithmic terms, for the quantity ΥT,δ/(2+ilog T )2 , thus

for MT,δ,ilog T , thus for T bT , therefore, the order of magnitude in
√
T of the above bound is, up to

poly-logarithmic terms, (
1 + ∥λ⋆

B−bT 1∥
)√

T ,
as claimed.

D Proofs of Lemma 3 and Corollary 1

Proof of Lemma 3. For λ ⩾ 0 and C ∈ [0, 1]d, we denote

L(λ,C) = EX∼ν

[
max
a∈A

{
r(X, a)−

〈
c(X, a)−C, λ

〉}]
so that by (4) and the feasibility assumption, we have, at least for C = B̃ and C = B − b1:

OPT(r, c,C) = min
λ⩾0

L(λ,C) = L(λ⋆
C ,C) .

The function L is linear in C, so that
OPT

(
r, c, B̃

)
= L

(
λ⋆
B̃
, B̃
)
⩽ L

(
λ⋆
B−b1, B̃

)
= L

(
λ⋆
B−b1,B − b1

)
−
〈
λ⋆
B−b1, B − b1− B̃

〉
= OPT

(
r, c,B − b1

)
−
〈
λ⋆
B−b1, B − b1− B̃

〉
.

The result follows from substituting〈
λ⋆
B−b1, B − b1− B̃

〉
⩾ ∥λ⋆

B−b1∥1 min
(
B − b1− B̃

)
⩾ ∥λ⋆

B−b1∥ min
(
B − b1− B̃

)
and from rearranging the inequality thus obtained.

Proof of Corollary 1. We apply Lemma 3 with B̃ = ε1 for some ε > 0 sufficiently small and obtain

∥λ⋆
B−b1∥ ⩽

OPT(r, c,B − b1)− OPT
(
r, c, ε1

)
min

(
B − (b+ ε)1

) .

We conclude by substituting OPT(r, c,B − b1) ⩽ OPT(r, c,B) and OPT
(
r, c, ε1

)
⩾ OPT

(
r, c,0

)
as well as min(B − b1) ⩾ minB/2, and by letting ε → 0.
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E Additional (sketch of) results concerning optimality

We detail here two series of claims made in Section 4 .

E.1 A proof scheme for problem-dependent lower bounds

We provide the proof scheme for proving the problem-dependent lower bound of order
(
1+∥λ⋆

B∥
)√

T
announced in Section 4.

Step 0: Considering strict cost constraints. Our aim, as described in Box A, is to make sure that
with high probability the cumulative costs are smaller than T B. If we considered softer constraints,
of the form T B + Õ

(√
T
)
, then Õ

(√
T
)

regret bounds would be possible (see Appendix F); i.e.,
the factor ∥λ⋆

B−bT 1∥ of Theorem 1 could be replaced by a constant. Thus, lower bounds are only
interesting in the case of hard constraints stated in Box A.

Step 1: Necessity of a margin bT of order 1/
√
T . First, a classical lemma in CBwK (see, e.g.,

Agrawal and Devanur, 2016, Lemma 1) indicates that a sequence of adaptive cannot perform better
than an optimal static policy. Denote by π⋆

B′ a (quasi-)optimal policy for the average cost constraints
B′. Provided that costs are truly random (i.e., do not stem from Dirac distributions, which in
particular, does not cover the cases where there is a null-cost action, see Limitation 2 in Section 4),
then the law of iterated logarithm shows that when playing π⋆

B′ at each round, the cumulative costs
must (almost-surely, as T → +∞) be larger than T B′ plus a positive term of the order of

√
T ln lnT .

Therefore, to meet the hard constraints, one should pick B′ of the form B − bT1, where bT is of
order 1/

√
T up to logarithmic terms.

Step 2: Consequences in terms of regret. Therefore, the largest average reward a strategy may
target is OPT(r, c,B − bT1). Deviations of the order

√
T are also bound to happen. Therefore, up to

logarithmic terms, the regret lower bound is approximatively larger than something of the order

T
(

OPT(r, c,B)− OPT(r, c,B − bT1)
)
+

√
T .

Now, an argument similar to the one used in the proof of Lemma 3 shows that

OPT(r, c,B)− OPT(r, c,B − bT1) ⩾ L(λ⋆
B,B)− L(λ⋆

B,B − bT1) = bT ∥λ⋆
B∥ .

All in all, the regret lower bound is thus approximatively larger than something of the order of(
1 + ∥λ⋆

B∥
)√

T .

This matches the form of the bound of Theorem 1, but the dual vector λ⋆
B−bT 1 present in the upper

bound is replaced by λ⋆
B in our lower bound.

E.2 Faster rates may be achievable in some specific cases

We explain here why, in some specific cases, faster rates would be achievable—with
√
T in the regret

bound of Theorem 1 replaced by
√
TB for a problem with scalar costs and total-cost constraints B.

Indeed, consider a problem similar to Example 1: with scalar costs, total-cost constraint B > 0,
featuring a baseline action anull with null cost but also null reward, and additional actions with larger
rewards and expected costs c(x, a) ⩾ α > 0. Let NT denotes the number of times non-null cost
actions are played within the first T rounds. Deviation inequalities have it that

T∑
t=1

ct ⩾ αNT − Õ
(√

NT

)
,

where we recall that Õ is up to poly-logarithmic factors; as a consequence, the total-cost constraint
enforces that

NT ⩽
TB

α
+ Õ

(√
TB

α

)
.
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In particular, the margin bT only needs to be of order
√
NT /T , i.e.,

√
B/(αT ) , instead of 1/

√
T .

Similarly, since at most NT non-null actions are played, the regret should be lower bounded by
something of the order of

T
(

OPT(r, c, B)− OPT(r, c, B − bT )
)
+
√
NT ,

where, as in Step 2 above,(
OPT(r, c, B)− OPT(r, c, B − bT )

)
⩾ bT |λ⋆

B | = Õ

(√
B

αT

)
|λ⋆

B |.

This suggests a lower bound on the regret of the order (up to poly-logarithmic factors) of(
|λ⋆

B |+ 1
)√

TB/α instead of
(
1 + |λ⋆

B |
)√

T .

The difference between the two bounds is significant when B is small, i.e., B ≪ 1. While proving a
matching upper bound with the Box B and Box C strategies looks a bit tricky, we feel that it must be
possible to do so with the primal approach of Appendix F, at least when the context space X is finite.
If our intuition holds, then it would be possible to get an upper bound

RT ⩽ Õ
(
TbT

(
1 + |λ∗

B−bT |
))

= Õ

(√
TB

α

(
1 +

OPT(r, c, B)− OPT(r, c, 0)

B

))
= Õ

(√
TB/α3

)
,

where the last bound follows from OPT(r, c, B)− OPT(r, c, 0) ⩽ B/α, as explained in Example 1.

F Primal strategy

This section studies the primal strategy stated in Box D, which, at every round, solves an approxi-
mation of the primal optimization problem (1). The key issue in running such a primal approach is
estimating ν, see comments after Notation 1; this primal approach is essentially worth for the case of
finite context sets X . The aim of this section is threefold:

1. In Appendix F.1, we provide a theory of “soft” constraints, when total-cost deviations from
TB of order

√
T up to logarithmic terms are allowed; at least when X is a finite set, the

regret bound then becomes proportional to
√
T up to logarithmic terms.

2. In Appendix F.2, we revisit and extend the results by Li and Stoltz [2022]. The extension
consists of dealing with possibly signed constraints, and the revisited analysis (of the same
strategy as in Li and Stoltz, 2022) consists in not directly dealing with KKT constraints
(which, in addition, imposed the finiteness of X ) but in only relating optimization problems—
defined with the true r and c or estimates thereof. We also offer a modular approach and
separate the error terms coming from estimating ν and from estimating r and c.

3. In Appendix F.3, we generalize the results of Appendix F.2, which rely on the existence of
a null-cost action, and get guarantees that correspond quite exactly to the combination of
Theorem 1 and the interpretation thereof offered by Lemma 3, at least in the case of a finite
X . Actually, in our research path, we had first obtained these primal results, before trying to
obtain them in a more general case of a continuous X , by resorting to a dual strategy. The
proof technique in Appendix F.3 also inspired our approach to proving problem-dependent
lower bounds presented in Appendix E.1.

Throughout this appendix, we will assume that the context distribution ν can be estimated in some
way. We provide examples and pointers below.
Notation 1. Fix δ ∈ (0, 1). We denote by ν̂δ,t a sequence of estimators of ν, each constructed on the
contexts x1, . . . ,xt, and by ξt,δ a sequence of estimation errors such that, with probability at least
1− δ, for all bounded functions f : X → [−1, 1],∣∣∣EX∼ν

[
f(X)

]
− EX∼ν̂δ,t

[
f(X)

]∣∣∣ ⩽ ξt,δ .

We also denote ΞT,δ =

T∑
t=1

ξt−1,δ .
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We consider the strategy described in Box D, whether X is finite (as in Li and Stoltz, 2022, where it
was first considered) or not. Our simplified analyses do not rely on explicit KKT inequalities and
therefore do not require anymore that X is finite. In Box D, by “when the empirical cost constraints
are feasible”, we mean that there exists some policy π such that

EX∼ν̂δ,t−1

[∑
a∈A

ĉ lcb
δ,t−1(X, a)πa(X)

]
⩽ B + bt1 .

We need to guarantee the existence of a policy achieving the constrained maximum of Step 2 in
Box D. This is immediate when X is finite, as the problem then corresponds to a finite-dimensional
linear program. In general, we may note that when (4) holds, we read therein the optimal policy,
as a pointwise maximum involving the optimal dual variables. The proofs reveal that up to slightly
augmenting the ξt−1,δ of Notation 1, we may assume that the strict feasibility sufficient for (4) indeed
holds.

We also note that even if the argument of the maximum πt is guaranteed to exist, it may be difficult to
compute: the linear program of Box D cannot be solved exactly if the ν̂δ,t are not finitely supported
(which happens in general when X is not finite). We do not see this as a severe issues as the Box D
strategy is an ideal strategy anyway, that we study for the sake of shedding lights on our results for
the dual approach in the main body of the article.

A final remark on the Box D strategy is that the margins on the average cost constraints B can now
be signed, which is why they will be referred to as signed slacks.

BOX D: PRIMAL CBWK STRATEGY, GENERALIZED FROM LI AND STOLTZ [2022]

Inputs: confidence level 1− δ; estimation procedure and error functions εt of Assumption 2;
optimistic estimates (2); estimation procedure for ν as in Notation 1

Hyperparameter: signed slacks b1, b2, . . . , bT ∈ R

Initialization: initial estimates r̂ ucb
δ,0 (x, a) and ĉ lcb

δ,0(x, a), as well as ν̂δ,0

For rounds t = 1, 2, 3, . . . , T :
1. Compute a policy πt achieving

max
π:X→P(A)

EX∼ν̂δ,t

[∑
a∈A

r̂ ucb
δ,t−1(X, a)πa(X)

]

under EX∼ν̂δ,t−1

[∑
a∈A

ĉ lcb
δ,t−1(X, a)πa(X)

]
⩽ B + bt1

when the empirical cost constraints are feasible, and pick an arbitrary policy πt

otherwise;
2. Observe xt and draw an action at ∼ πt(xt);
3. Compute the estimate r̂ ucb

δ,t (x, a) and ĉ lcb
δ,t (x, a), as well as ν̂δ,t.

Discussion of the estimation of ν. The simplest case is when X is a finite set; in this case, we may
take

ξt,δ of order

√
|X | ln(1/δ)

t
,

where X denotes the cardinality of X ; see [Ai et al., 2022, Section 4.1], see also a less sharp bound
based on Hoeffding’s inequality in [Li and Stoltz, 2022, Section 5]. This leads to a total error term
ΞT,δ of order

√
T up to poly-logarithmic term.

When X is a continuous subset of Rn, some regularity conditions are put on ν, which is typically
assumed to have some smooth density with respect to the Lebesgue measure m. Estimates ν̂δ,t are
obtained by estimating the density dν/dm: the criterion in Notation 1, which is proportional to the
total-variation distance between ν and ν̂δ,t, is then given by the L1(m) distance between the two
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densities. To control the latter with uniform convergence rates, so as to obtain deviation terms ξt,δ
only depending on t and δ, heavy assumptions on the model to which ν belongs are in order, e.g.,
some Hölderian regularity, and uniform estimation rates obtained degrade with the ambient dimension
n; they are generally much slower than 1/

√
t. The total error terms ΞT,δ then prevent the bounds

stated below in Proposition 1 and Theorems 3 and 4 from sharing the same orders of magnitude than
the bounds proved with our dual approach in Theorem 1 and interpreted in Section 3.3. On this topic,
see also [Ai et al., 2022, Section 4.1] for the estimation rates as well as a similar description in Han
et al. [2022, end of Section 1] of the limitation of the primal approach in CBwK due to the estimation
of densities. General references on density estimations are the monographs by Devroye and Györfi
[1985] in L1 and Tsybakov [2008] in L2.

Note that in the dual approach, the knowledge of (the possibly complex) ν is replaced by the
knowledge of the (finite-dimensional) optimal dual variables λ⋆

B ∈ Rd, which is easier to learn. This
explains the fundamental efficiency of the dual approach compared to the primal approach.

F.1 Analysis with “soft” constraints

We first provide an analysis for a version of the Box D strategy that may possibly breach the total-cost
constraints TB. More precisely, we allow deviations to TB of the order of

√
T times poly-log

factors: this is what we refer to as “soft” constraints. Our result is that the regret may then be bounded
by a quantity of order

√
T times poly-log factors, at least when X is finite.

We do so for two reasons: first, because we do not think that this is a well-known result, and second,
for pedagogic reasons, as the proof for “hard” constraints follows from adapting the proof scheme for
soft constraints (see Appendix F.2).
Proposition 1 (soft constraints). Fix δ ∈ (0, 1). Under Assumption 2 and with Notation (1), the
strategy of Box D, run with δ/4 and positive slacks bt = ξt−1,δ/4, ensures that with probability at
least 1− δ,
T∑

t=1

ct ⩽ TB +
(
2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4

)
1 and RT ⩽ 2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4 ,

where αT,δ/4 =
√
2T ln

(
(d+ 1)/(δ/4)

)
.

In particular, when X is finite, the deviation terms 2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4 are of order
√
T up

to poly-logarithmic terms, so that the bound of Proposition 1 reads: with high-probability,
T∑

t=1

ct ⩽ TB + Õ
(√

T
)

and RT ⩽ Õ
(√

T
)
.

Put differently, soft-constraint satisfaction allows for Õ
(√

T
)

regret bounds when X is finite.

Proof. As in the proofs of Lemmas 1 and 2 in Appendix B, we consider four events, each of
probability at least 1− δ/4: two events EH-Az1 and EH-Az2, defined below, following from applications
of the Hoeffding-Azuma inequality, the favorable event ETVD of Notation 1 with δ/4, and the favorable
event Eβ of Assumption 2 with δ/4. Namely, given the value for αT,δ/4 proposed in the statement
(note this value is slightly different from the one considered in Appendix B), we have, on the one
hand, on EH-Az1,

T∑
t=1

ct ⩽ αT,δ/41+

T∑
t=1

c(xt, at) and
T∑

t=1

rt ⩾ −αT,δ/4 +

T∑
t=1

r(xt, at) , (20)

and on the other hand, on EH-Az2,
T∑

t=1

ĉ lcb
δ/4,t−1(xt, at) ⩽ αT,δ/41+

T∑
t=1

EX∼ν

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]

and
T∑

t=1

r̂ ucb
δ/4,t−1(xt, at) ⩾ −αT,δ/4 +

T∑
t=1

EX∼ν

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]
. (21)
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The first two inequalities are obtained by considering conditional expectations with respect to the
past, xt and at, while the second two inequalities follow from taking conditional expectations with
respect to the past and xt; we crucially use that, by definition, xt ∼ ν is independent from πt and
the estimates r̂ ucb

δ/4,t−1 and ĉ lcb
δ/4,t−1.

We first note that by B–feasibility of the problem, by (3), and by Notation (1), a policy πt satisfying
the constraints stated in Box D exists at each round t ⩾ 1 on the event Eβ ∩ ETVD. Indeed, denoting
by πfeas such a B–feasible policy, this existence follows from the inequalities

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πfeas

a (X)

]
⩽ EX∼ν̂δ/4,t−1

[∑
a∈A

c(X, a)πfeas
a (X)

]

⩽ ξt−1,δ/4 + EX∼ν

[∑
a∈A

c(X, a)πfeas
a (X)

]
︸ ︷︷ ︸

⩽B

(22)

and from the choice bt = ξt−1,δ/4.

Cost-wise, we then successively have, by (20), then (3) and Assumption 2, and finally (21) and
Notation (1), on the event EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD of probability at least 1− δ,

T∑
t=1

ct ⩽ αT,δ/41+

T∑
t=1

c(xt, at)

⩽
(
αT,δ/4 + βT,δ/4

)
1+

T∑
t=1

ĉ lcb
δ/4,t−1(xt, at)

⩽
(
2αT,δ/4 + βT,δ/4

)
1+

T∑
t=1

EX∼ν

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]

⩽
(
2αT,δ/4 + βT,δ/4 + ΞT,δ/4

)
1+

T∑
t=1

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]
︸ ︷︷ ︸

⩽B+bt1

,

where the inequalities ⩽ B + bt1 follow from the definition of πt in Box D. Substituting the choice
bt = ξt−1,δ/4, we thus proved that on EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD,

T∑
t=1

ct ⩽ TB +
(
2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4

)
1 ,

as claimed.

The control for rewards mimics the steps above for costs (and then resorts to an additional argument).
We obtain first that on EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD,

T∑
t=1

rt ⩾ −
(
2αT,δ/4 + βT,δ/4 + ΞT,δ/4

)
+

T∑
t=1

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]
.

We denote by π⋆
B an optimal static policy for the average cost constraints B—when it exists, e.g.,

by (4), as soon as the problem is feasible for some B′ < B; otherwise, we take a static policy
achieving OPT(r, c,B) up to some small e > 0, which we let vanish in a final step of the proof. As
in (22), we have, on Eβ ∩ ETVD,

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)π⋆

B,a(X)

]
⩽ EX∼ν̂δ/4,t−1

[∑
a∈A

c(X, a)π⋆
B,a(X)

]

⩽ ξt−1,δ/41+ EX∼ν

[∑
a∈A

c(X, a)π⋆
B,a(X)

]
︸ ︷︷ ︸

⩽B

,
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where the ⩽ B inequality follows from the definition of π⋆
B . Thanks to the choice bt = ξt−1,δ/4, we

have, by definition of πt as some optimal policy in Box D and on Eβ ∩ ETVD,

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]
⩾ EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)π⋆

B,a(X)

]
.

Again by (3) and Notation (1), we have, on Eβ ∩ ETVD,

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)π⋆

B,a(X)

]
⩾ EX∼ν̂δ/4,t−1

[∑
a∈A

r(X, a)π⋆
B,a(X)

]

⩾ −ξt−1,δ/4 + EX∼ν

[∑
a∈A

r(X, a)π⋆
B,a(X)

]
︸ ︷︷ ︸

=OPT(r,c,B)

.

Collecting all bounds, we proved that on EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD,

T∑
t=1

rt ⩾ TOPT(r, c,B)−
(
2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4

)
,

which corresponds to the claimed regret bound.

F.2 Analysis with “hard” constraints and a null-cost action

We now turn our attention to the main kind of result that we want to achieve: when constraints must
be strictly satisfied—which we refer to as “hard” constraints. For the sake of simplicity, we do so for
now in the presence of a null-cost action; Appendix F.3 explains how the analysis may be generalized
to cases without such null-cost actions.

The following result corresponds to the combination of Theorem 1 with Corollary 1, and also, to Li
and Stoltz [2022, main result: Theorem 2].
Theorem 3 (hard constraints). Fix δ ∈ (0, 1). We consider the strategy of Box D, run with δ/4 and
negative slacks all equal to

bt ≡ −∆T,δ/4 , where ∆T,δ/4
def
=

2αT,δ/4 + βT,δ/4 + ΞT,δ/4

T

and αT,δ/4 =
√
2T ln

(
(d+ 1)/(δ/4)

)
. Assume that a null-cost action exists, that ∆T,δ/4 < minB,

that Assumption 2 holds, and use Notation (1). Then, with probability at least 1− δ,

T∑
t=1

ct ⩽ TB and RT ⩽
(
2αT,δ/4+βT,δ/4+2ΞT,δ/4

)(
1 +

OPT(r, c,B)− OPT(r, c,0)

minB

)
.

Proof. We explain how the proof of Proposition 1 may be adapted. We first justify the existence
at each round t ⩾ 1 of a policy πt satisfying the cost constraints stated in Box D: for the null-cost
action anull, we may impose that, for all x ∈ X , all t ⩾ 0, and all δ ∈ (0, 1),

ĉt(x, anull) = 0 and εt(x, anull, δ) = 0 , so that ĉ lcb
δ,t (x, anull) = 0 a.s.;

this shows that at least the static policy πnull always playing anull satisfying the defining cost-constraints
for πt. (Alternatively, we may note that the policy πt defined below also satisfies the cost constraints
stated in Box D, on the high-probability event considered.)

We then handle total-cost constraints similarly as in the proof of Proposition 1 and obtain that on the
event EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD of probability at least 1− δ,

T∑
t=1

ct ⩽
(
2αT,δ/4 +βT,δ/4 +ΞT,δ/4

)
1+

T∑
t=1

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]
︸ ︷︷ ︸

⩽B−∆T,δ/41

⩽ TB ,
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where this time, the slacks bt = −∆T,δ/4 are negative and were set to cancel out the positive deviation
terms. Similarly, on EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD,

T∑
t=1

rt ⩾ −T∆T,δ/4 +

T∑
t=1

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]
. (23)

Now, the main modification to the proof of Proposition 1 is that (with its notation) we rather consider
the policy

πt = (1− wt)π
⋆
B + wtπ

null , where wt = min

{
∆T,δ/4 + ξt−1,δ/4

minB
, 1

}
.

As in (22), we see that this policy satisfies, on Eβ ∩ ETVD:

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]
⩽ EX∼ν̂δ/4,t−1

[∑
a∈A

c(X, a)πt,a(X)

]

⩽ ξt−1,δ/41+ EX∼ν

[∑
a∈A

c(X, a)πt,a(X)

]
︸ ︷︷ ︸

⩽(1−wt)B

.

By using B ⩾ (minB)1 and since we assumed that ∆T,δ/4 < minB, we may continue the series
of inequalities as follows:

ξt−1,δ/41+ (1− wt)B ⩽ B + ξt−1,δ/41− wt(minB)1

= B −min
{
∆T,δ/4, minB − ξt−1,δ/4

}
1

⩽ B −min
{
∆T,δ/4, ∆T,δ/4 − ξt−1,δ/4

}
1 = B + bt1 ,

meaning that πt is a policy satisfying the constraints stated in Step 2 of Box D on round t ⩾ 1. The
consequence is that, first by definition of πt as a maximizer and then by the optimistic estimates (3)
and Notation (1), on Eβ ∩ ETVD,

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]

⩾ EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]

⩾ −ξt−1,δ/4 + EX∼ν

[∑
a∈A

r(X, a)πt,a(X)

]
= −ξt−1,δ/4 + (1− wt)OPT(r, c,B) + wtOPT(r, c,0)

= OPT(r, c,B)− ξt−1,δ/4 −min

{
∆T,δ/4 + ξt−1,δ/4

minB
, 1

}(
OPT(r, c,B)− OPT(r, c,0)

)
,

where OPT(r, c,0) refers to the expect reward achieved by the null-cost action anull. After combination
with (23) and summation, we get that on EH-Az1 ∩ Eβ ∩ EH-Az2 ∩ ETVD:

T∑
t=1

rt − T OPT(r, c,B)

⩾ −T∆T,δ/4 − ΞT,δ/4 −
T∑

t=1

min

{
∆T,δ/4 + ξt−1,δ/4

minB
, 1

}(
OPT(r, c,B)− OPT(r, c,0)

)
⩾ −

(
T∆T,δ/4 + ΞT,δ/4

)(
1 +

OPT(r, c,B)− OPT(r, c,0)

minB

)
,

which corresponds to the stated regret bound.

29



F.3 General analysis with “hard” constraints

We finally generalize Theorem 3 and get a result corresponding to Theorem 1 combined with
Lemma 3.

Here, we “mix” the slacks +ξt−1,δ/4 and −∆T,δ/4 of Appendices F.1 and F.2, with a slight modifi-
cation of ∆T,δ/4 to compensate for the ξt−1,δ/4: we rather have a 2ΞT,δ/4 term in the numerator of
∆

′
T,δ/4, compared to the ΞT,δ/4 term in the numerator of ∆T,δ/4.

Theorem 4 (hard constraints). Fix δ ∈ (0, 1). We consider the strategy of Box D, run with δ/4 and
signed slacks (depending on t ⩾ 1)

bt = −∆
′
T,δ/4 + ξt−1,δ/4 where ∆

′
T,δ/4 =

2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4

T
and αT,δ/4 =

√
2T ln

(
(d+ 1)/(δ/4)

)
. Assume that the problem is (B − m)–feasible for some

m that does not need to be known by the strategy, with B − m ⩽ B − ∆
′
T,δ/41. Then, under

Assumption 2 and with Notation (1), with probability at least 1− δ,
T∑

t=1

ct ⩽ TB

and RT ⩽
(
2αT,δ/4 + βT,δ/4 + 2ΞT,δ/4

)(
1 +

OPT(r, c,B)− OPT(r, c,B −m)

minm

)
.

Proof. We rather sketch the differences to the proofs of Theorem 3 and Proposition 1. We denote by
Eall the event of probability at least 1 − δ obtained as the intersection of four convenient events of
probability each at least 1− δ/4. All inequalities below hold on Eall but for the sake of brevity, we
will not highlight this fact each time.

We denote by πfeas a (quasi-)optimal static policy among the ones achieving expected costs smaller
than B −m; it therefore ensures that its expected costs are smaller than B −m and achieves an
expected reward of OPT(r, c,B −m)− e, possibly up to a small factor e ⩾ 0 which we let vanish.
We note that for each round t ⩾ 1,

EX∼ν̂δ,t−1

[∑
a∈A

ĉ lcb
δ,t−1(X, a)πfeas

a (X)

]
⩽ ξt−1,δ/T1+ EX∼ν

[∑
a∈A

c(X, a)πfeas
a (X)

]
⩽ ξt−1,δ/T1+B −m1 ⩽ B + bt1 ,

given the definition bt = −∆
′
T,δ/4 + ξt−1,δ/4 and the assumption B −m ⩽ B −∆

′
T,δ/41. Thus,

on Eall, the strategy πt is indeed defined at each round t ⩾ 1 by the optimization problem stated in
Step 2 of Box D (and not in an arbitrary manner).

Cost-wise, we thus have
T∑

t=1

ct ⩽
(
2αT,δ/4 + βT,δ/4 + ΞT,δ/4

)
1+

T∑
t=1

⩽B+bt1︷ ︸︸ ︷
EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]
⩽ TB +

(
2αT,δ/4 + βT,δ/4 + ΞT,δ/4

)
1− T∆

′
T,δ/4 + ΞT,δ/4 = TB ,

where the final equality follows from the definition of ∆
′
T,δ/4, which involves a 2ΞT,δ/4 term in its

numerator.

Reward-wise, we introduce for each t ⩾ 1,

πt = (1− wt)π
⋆
B + wtπ

feas , where wt = min

{
∆

′
T,δ/4

minm
, 1

}
,

whose empirical expected cost at round t ⩾ 1 is smaller than

EX∼ν̂δ/4,t−1

[∑
a∈A

ĉ lcb
δ/4,t−1(X, a)πt,a(X)

]
⩽ ξt−1,δ/41+ EX∼ν

[∑
a∈A

c(X, a)πt,a(X)

]
⩽ ξt−1,δ/41+ (1− wt)B + wt(B −m)

= B + ξt−1,δ/41− wtm .
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By using m ⩾ (minm)1 and thanks to the assumption B − m ⩽ B − ∆
′
T,δ/41, which can be

equivalently formulated as minm ⩾ ∆
′
T,δ/4, we may continue this series of inequalities by

B + ξt−1,δ/41− wtm ⩽ B −min
{
∆

′
T,δ/4 − ξt−1,δ/4, minm− ξt−1,δ/4

}
1

⩽ B −min
{
∆

′
T,δ/4 − ξt−1,δ/4, ∆

′
T,δ/4 − ξt−1,δ/4

}
1 = B + bt1 ,

meaning that πt is a policy satisfying the constraints stated in Step 2 of Box D on round t ⩾ 1. In
particular, by definition of πt as a maximizer,

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]

⩾ EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]

⩾ −ξt−1,δ/4 + EX∼ν

[∑
a∈A

r(X, a)πt,a(X)

]
⩾ −ξt−1,δ/4 +

(
(1− wt)OPT(r, cB) + wtOPT(r, cB −m)

)
= OPT(r, cB)−min

{
∆

′
T,δ/4

minm
, 1

}(
OPT(r, cB)− OPT(r, cB −m)

)
− ξt−1,δ/4 . (24)

Finally, by combining (23) and (24),

T∑
t=1

rt ⩾ −
( =T∆

′
T,δ/4−ΞT,δ/4︷ ︸︸ ︷

2αT,δ/4 + βT,δ/4 + ΞT,δ/4

)
1+

T∑
t=1

EX∼ν̂δ/4,t−1

[∑
a∈A

r̂ ucb
δ/4,t−1(X, a)πt,a(X)

]

⩾ T OPT(r, cB) + ΞT,δ/4 − T∆
′
T,δ/4

(
1 +

OPT(r, cB)− OPT(r, cB −m)

minm

)
− ΞT,δ/4,

as claimed.

G Numerical experiments: full description

This appendix reports numerical simulations performed on simulated data with the motivating
example described in Chohlas-Wood et al. [2021] and alluded at in Section 2.1. These simulations
are for the sake of illustration only.

A brief summary of the applicative background in AI for justice is the following. The learner wants
to maximize the total number of appearances to court for people of concern. To achieve this goal, the
learner is able to provide, or not, some transportation assistance: rideshare assistance (the highest
level of help), or a transit voucher (a more modest level of help). There are of course budget limits on
these assistance means, and the learner also wants to control how (un)fair the assistance policy is,
in terms of subgroups of the population, while maximizing the total number of appearances. Some
subgroups take a better advantage of assistance to appear in court, thus, without the fairness control,
all assistance would go to these groups. The fairness costs described in Section 2.1 force the learner
to perform some tradeoff between spending all assistance on most reactive subgroups and spending it
equally among subgroups.

Outline of this appendix. We first recall the experimental setting of Chohlas-Wood et al. [2021]—
in particular, how contexts, rewards, and costs are generated in their simulations (we cannot replicate
their study on real data, which is not accessible). We then specify the strategies we implemented and
how we tuned them—this includes describing the estimation procedure discussed in Section 2.2. We
finally report the performance observed, in terms of (average) rewards and costs.
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G.1 The experimental setting of Chohlas-Wood et al. [2021]

We follow strictly the experimental setting of Chohlas-Wood et al. [2021] as provided in the public
repository https://github.com/stanford-policylab/learning-to-be-fair. This exper-
imental setting, as reverse-engineered from the code, deals with purely simulated data and seems
actually inconsistent with the description made in Chohlas-Wood et al. [2021, Section 5.4 and
Appendix E], which would anyway rely on proprietary data that could not be made public.

Context generation. Each individual is described by four variables x: age, proximity, poverty, and
group, which are to be read in x in its components, referred to as xage, xprox, xpov and gr(x) = xgroup.
The first three variables are assumed to be normalized and are simulated independently, according to
uniform distributions on [0, 1]. Groups are also simulated independently of these three variables: two
groups are assumed, with respective probabilities of 1/2. This defines the context distribution ν.

As we describe now, assistance has stronger impact on group 0 than in group 1.

Cost generation. We recall that three actions are available: offering some rideshare assistance
(action aride), providing a transportation voucher (action avoucher), or providing no help (which is a
control situation: action acontrol). The associated spending costs are deterministic and do not depend
on x, and there are two separate budgets for rideshares and vouchers. More precisely, at round t,
upon taking action at, the following deterministic spending costs are suffered:

cride(xt, at) = 1{at=aride} and cvoucher(xt, at) = 1{at=avoucher} ,

where the corresponding average budgets are Bride = 0.05 and Bvoucher = 0.20.

We measure the extent of unfair allocation of spendings among groups with the following eight
fairness costs: a first series of four fairness costs is given by

21{at=aride}1{gr(xt)=0} − 1{at=aride} , 21{at=aride}1{gr(xt)=1} − 1{at=aride} ,

21{at=avoucher}1{gr(xt)=0} − 1{at=avoucher} , 21{at=avoucher}1{gr(xt)=1} − 1{at=avoucher} ,

and the second series is given by the opposite values of these costs. We denote by τ the corresponding
average cost constraints τ , and set τ = 10−7 or τ = 0.025 in our experiments.

All in all, the global (spending and fairness) vector costs ct takes deterministic values in R10. The
vector cost function c is fully known to the learner, and no estimation is needed.

Reward generation. The rewards are binary: rt = 1 if the t–individual appeared in court, and
rt = 0 otherwise. That is, the expected reward equals the probability of appearance. A logistic
regression model is assumed: denoting by Φ(u) = 1/(1 + eu), we assume

r(x, acontrol) = Φ(−xage),

r(x, avoucher) = Φ(−xage + 2xprox)1{gr(x)=0} +Φ(−xage + xprox)1{gr(x)=1} ,

r(x, aride) = Φ(−xage + 4xpov)1{gr(x)=0} +Φ(−xage + 2xpov)1{gr(x)=1} .

We may write these six equalities in a compact format as:
r(x, a) = Φ

(
φ(x, a)T µ⋆

)
where φ(x, a) =


xage

xprox 1{a=avoucher}
xprox 1{a=avoucher} 1{gr(x)=0}
xpov 1{a=aride}
xpov 1{a=aride} 1{gr(x)=0}

 and µ⋆ =


−1
1
1
2
2

 .

The learner ignores the coefficients µ⋆ of this structure and only knows that expected rewards are of
the form Φ

(
φ(x, a)T θ

)
for some parameter θ ∈ R5. The learner will estimate the reward function r

by estimating µ⋆.

Reward estimation. We deal with a logistic model and follow the methodology described in Li
and Stoltz [2022]; see Modeling 2 in Section 2.2. In particular, the parameters µ⋆ are estimated, after
each round t ⩾ 1, thanks to the maximum likelihood estimator

µ̂t ∈ argmax
µ∈R5

t∑
s=1

rsΦ
(
φ(as,xs)

T µ
)
+ (1− rs) ln

(
1− Φ

(
φ(as,xs)

T µ
))

− λlogistic

2
∥µ∥2 ,
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where λlogistic ⩾ 0 is a regularization factor. We define as r̂t(x, a) = Φ
(
φ(x, a)T µ̂t

)
the estimated

expected rewards, and the associated uniform estimation errors (see Assumption 2) are of the form

εt(x, a, δ) = Cδ

(
1 + ln t

)√
φ(a,x)T V −1

t φ(a,x)

where Vt =

t∑
s=1

φ(as,xs)φ(as,xs)
T + λlogisticI5 ,

where I5 is the 5× 5 identity matrix.

In our simulations, we tested a range of values and picked (in hindsight) the well-performing values
Cδ = 0.025 and λlogistic = 0.

G.2 Strategies implemented in this numerical study

We run all these strategies not with the total-cost constraints

B = (0.05, 0.2, τ, τ, τ, τ) , where τ ∈ {10−7, 0.025} ,
but take a margin b = 0.005 and use B′ = B − (b, b, 0, 0, 0, 0) instead. This is a slightly different
way of taking some margin on the average cost constraint: we do so because we are not aiming for a
strict respect of the fairness constraints but rather want to report the level of violation on it. Again,
we tried a range of values for b (between 0.001 to 0.01) and this value of 0.005 led to a good balance
between (lack of) total-cost constraint violations and rewards.

Performance of optimal static policies. We use OPT(r, c,B) as the benchmark in the definition
of regret; our methodology also reveals that OPT(r, c,B′) is another benchmark, see the discussion
in Section 4. We report both values on our graphs. To compute them, we proceed as follows, e.g.,
for B. As computing directly the minimum stated in (4) is difficult, even when fully knowing the
distribution ν, we compute 100 estimates

OPT(j)(r, c,B) , which we average out into ÔPT(r, c,B) =
1

100

100∑
j=1

OPT(j)(r, c,B) .

For each j, we sample S = 10,000 contexts from the distribution ν, and denote by ν̂
(j)
S the associated

empirical distribution; we then solve numerically the problem (4) with ν replaced by this empirical
distribution:

OPT(j)(r, c,B) = min
λ⩾0

E
X∼ν̂

(j)
S

[
max
a∈A

{
r(X, a)−

〈
c(X, a)−B, λ

〉}]
.

Mixed policy knowing λ⋆
B′ but estimating r. For the sake of illustration, we report the perfor-

mance of a policy that would have oracle knowledge of λ⋆
B′ , which is a finite-dimensional parameter

that summarizes ν, but would ignore r, i.e., the underlying logistic model. That is, this mixed policy
would pick, at each round,

max
a∈A

{
r̂ ucb
δ,t−1(xt, a)−

〈
ĉ lcb
δ,t−1(xt, a)−B′, λ⋆

B′
〉}

,

(and would omit the λ update in Box B).

To compute (an approximation of) λ⋆
B′ , we proceed 100 times as described below to compute

estimates

λ
⋆,(j)
B′ , which we average out into λ̂

⋆

B′ =
1

100

100∑
j=1

λ
⋆,(j)
B′ ,

where we noted that the numerical values obtained for the λ
⋆,(j)
B′ are rather similar. With the notation

above, for each j, we sample S = 10,000 contexts from the distribution ν, and solve

λ
⋆,(j)
B′ ∈ argmin

λ⩾0
E
X∼ν̂

(j)
S

[
max
a∈A

{
r(X, a)−

〈
c(X, a)−B, λ

〉}]
.

(These estimations are independent from the estimations used to compute the OPT values, i.e., we use
different seeds.)
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PGD γ. We refer to the Box B strategy as PGD γ, for which we report the performance for values
γ ∈ {0.01, 0.02, 0.04, 0.05, 0.1}.

We also implemented the Box C strategy, with an alternative value of MT,δ,k, given that the one
exhibited based on the theoretical analysis was too conservative, so that no regime break occurred.
We resort to a value of the same order of magnitude:

M ′
T,δ,k = c d

√
T ln

(
T (k + 2)

)
,

for a numerical constant c that we set to 0.01 in our simulations. We call this strategy PGD Adaptive
in Figure 1 and Table 1.

G.3 Outcomes of the simulations

We take T = 10,000 individuals (instead of T = 1,000 as in the code by Chohlas-Wood et al., 2021)
and set initial 50 rounds as a warm start for strategies (mostly because of the logistic estimation).
We were limited by the computational power (see Appendix G.4) and could only perform N = 100
simulations for each (instance of each) strategy. We report averages (strong lines in the graphs) as
well as ±2 times standard errors (shaded areas in the graphs or values in parentheses in the table).

Graphs. In the first line of graphs in Figure 1, we report the average rewards (over the N runs) of
the strategy under scrutiny as a function of the sample size. More precisely, with obvious notation,
we plot

t 7→ 1

N

N∑
n=1

(
1

t

t∑
s=1

r(n)s

)
.

We report the values of OPT(r, c,B) and OPT(r, c,B′) as dashed horizontal lines.

In the second and third lines of graphs in Figure 1, we report the average costs suffered; again, with
obvious notation, we plot

t 7→ 1

N

N∑
n=1

(
1

t

t∑
s=1

1{a(n)
s =aride}

)
and t 7→ 1

N

N∑
n=1

(
1

t

t∑
s=1

1{a(n)
s =avoucher}

)
.

We include the average budget constraints Bride = 0.05 and Bvoucher = 0.20 as dashed horizontal lines.

Finally, the fourth line of the graphs in Figure 1 reports the fairness costs; we average their absolute
values and draw, again with obvious notation,

t 7→ 1

N

N∑
n=1

1

4

∑
a∈{aride,avoucher}

∑
g∈{0,1}

∣∣∣∣∣1t
t∑

s=1

(
21{a(n)

s =a}1{gr(x(n)
s )=g} − 1{a(n)

s =a}

)∣∣∣∣∣
 .

We include the fairness tolerance τ as a dashed horizontal line.

Table. We also report the performance of the strategies at the final round T in following table, with
±2 times standard errors in parentheses. We note that the performance of the mixed policy is poor, in
particular in terms of fairness costs, which is why we omitted it on the graphs, to keep them readable.

Comments. When γ is well set, i.e., large enough (see the bound of Lemma 1), the PGD strategies
control spending costs thanks to targeting B′ instead of B. We observe that for γ = 0.01, the PGD
strategy does not control the rideshare costs, but for all larger values of γ, the associated strategies
control the three costs considered. The average rewards achieved are coherent with the average
spendings: the smaller the average spendings, the smaller the average rewards. There is some lag:
the strategies tuned with γ parameters in {0.04, 0.05, 0.1} could use costly actions more. We also
observe that fairness costs remain under the target limits.

The mixed policy does not success in controlling the costs, in particular, the fairness costs. While the
optimal dual variables λ⋆

B′ summarize the distribution ν, it seems that λ⋆
B′ has to be used with care:

only with the exact values r and c, and not with estimates. On the contrary, the PGD strategies of
Box B are more stable, as the dual variables are learned based also on the estimated reward and cost
functions.
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Figure 1: Performance of the PGD strategies.
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Table 1: Performance of the strategies as computed at the final round T .

Average rewards Rideshare costs Voucher costs Fairness costs

Fairness tolerance τ = 10−7

OPT(r, c,B) 0.4688 (0.0002)
OPT(r, c,B′) 0.4648 (0.0002)

PGD γ = 0.01 0.4651 (0.0002) 0.0519 (<0.0001) 0.1984 (<0.0001) 0.0006 (<0.0001)
PGD γ = 0.02 0.4613 (0.0002) 0.0492 (<0.0001) 0.1967 (0.0004) 0.0004 (<0.0001)
PGD γ = 0.04 0.4571 (0.0002) 0.0479 (<0.0001) 0.1962 (0.0002) 0.0004 (<0.0001)
PGD γ = 0.05 0.4554 (0.0002) 0.0476 (<0.0001) 0.1961 (0.0002) 0.0003 (<0.0001)
PGD γ = 0.1 0.4502 (0.0002) 0.0471 (<0.0001) 0.196 (0.0002) 0.0003 (<0.0001)
PGD Adaptive 0.4581 (0.0002) 0.0498 (0.0002) 0.1971 (0.0002) 0.0005 (<0.0001)
Mixed Policy 0.4402 (0.0056) 0.0499 (0.0058) 0.1056 (0.017) 0.0411 (0.0052)

Fairness tolerance τ = 0.025

OPT(r, c,B) 0.4731 (0.0002)
OPT(r, c,B′) 0.4691 (0.0002)

PGD γ = 0.01 0.4698 (0.0002) 0.0518 (0.0002) 0.1983 (<0.0001) 0.0246 (0.0002)
PGD γ = 0.02 0.4663 (0.0002) 0.0492 (<0.0001) 0.1966 (0.0006) 0.0242 (0.0002)
PGD γ = 0.04 0.4621 (0.0004) 0.0478 (<0.0001) 0.1958 (0.001) 0.0223 (0.0004)
PGD γ = 0.05 0.4604 (0.0004) 0.0476 (<0.0001) 0.1955 (0.0014) 0.0208 (0.0004)
PGD γ = 0.1 0.4538 (0.0002) 0.0471 (<0.0001) 0.1958 (0.0004) 0.0128 (0.0004)
PGD Adaptive 0.4634 (0.0002) 0.0499 (0.0002) 0.1972 (0.0002) 0.0228 (0.0002)
Mixed Policy 0.4466 (0.0054) 0.0566 (0.0052) 0.1053 (0.0164) 0.0473 (0.0054)

Finally, we note that in our experiments, the regimes in PGD Adaptive strategy typically covered range
from k = 0 (corresponding to γ0 = 1/

√
T = 0.01) to k = 2 (corresponding to γ2 = 22/

√
T = 0.04).

The PGD Adaptive strategy performs well and is (only) outperformed by the PDG strategy with a
fixed γ = 0.02 (of course difficult to pick in advance). In particular, the PGD Adaptive strategy
controls costs, and does so by switching to larger step sizes when needed.

G.4 Computation time and environment

As requested by the NeurIPS checklist, we provide details on the computation time and environment.
Our experiments were ran on the following hardware environment: no GPU was required, CPU is 3.3
GHz 8 Cores with total of 16 threads, and RAM is 32 GB 4800 MHz DDR5. We ran 100 simulations
with 10 different seeds on parallel each time. In the setting and for the data described above, the
average time spend on each algorithm for a single run was inferior to 10 minutes.
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