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SSAT-Adapter: Enhancing Vision-Language Model Few-shot
Learning with Auxiliary Tasks
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ABSTRACT
Traditional deep learningmodels often struggle in few-shot learning
scenarios, where limited labeled data is available. While the Con-
trastive Language-Image Pre-training (CLIP) model demonstrates
impressive zero-shot capabilities, its performance in few-shot sce-
narios remains limited. Existing methods primarily aim to leverage
the limited labeled dataset, but this offers limited potential for
improvement. To overcome the limitations of small datasets in few-
shot learning, we introduce a novel framework, SSAT-Adapter, that
leverages CLIP’s language understanding to generate informative
auxiliary tasks and improve CLIP’s performance and adaptability
in few-shot settings. We utilize CLIP’s language understanding to
create decision-boundary-focused image latents. These latents form
auxiliary tasks, including inter-class instances to bridge CLIP’s pre-
trained knowledge with the provided examples, and intra-class
instances to subtly expand the representation of target classes. A
self-paced training regime, progressing from easier to more com-
plex tasks, further promotes robust learning. Experiments show
our framework outperforms the state-of-the-art online few-shot
learning method by an average of 2.2% on eleven image classifica-
tion datasets. Further ablation studies on various tasks demonstrate
the effectiveness of our approach to enhance CLIP’s adaptability in
few-shot image classification.

CCS CONCEPTS
• Computing methodologies → Transfer learning; Matching;
Image representations.

KEYWORDS
Vision-Language Models, Few-shot Learning, Auxiliary Learning

1 INTRODUCTION
Humans possess a remarkable ability to rapidly learn new concepts
from limited examples. After seeing just a few pictures of a stranger,
we can easily recognize them within a crowd. This ability involves
not only raw computation but also our capacity to combine past
knowledge and apply it to novel situations. Few-shot learning aims
to replicate this capability in machine learning models, enabling
them to adapt to new tasks and domains even with limited labeled
data – a scenario where traditional deep learning methods often
struggle as they often require vast quantities of labeled data [8, 47].
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Figure 1: SSAT-Adapter follows an auxiliary learning ap-
proach, learning from additional auxiliary tasks generated
from both inter-class and intra-class knowledge.

The ability of few-shot models to learn from a limited number of
examples is paramount in numerous real-world contexts where
extensive labeled datasets may be unavailable, costly to acquire, or
time-consuming to curate [31, 44]. For instance, few-shot learning
techniques have already been applied to several crucial domains
such as robotics [40, 53], health [25, 25], and agriculture [3, 54].

The fundamental goal of few-shot learning is to enable models
to learn new tasks or concepts from a limited number of labeled
examples, with the assumption of the existence of prior knowledge,
which is often in the form of pre-trained models [49]. The Con-
trastive Language-Image Pre-training (CLIP) [43] model represents
a significant advancement in machine learning, demonstrating im-
pressive versatility and generalization. Trained on a massive dataset
of image-text pairs, CLIP exhibits remarkable zero-shot image clas-
sification capabilities. It can categorize images of objects it has
never explicitly encountered by leveraging its understanding of
natural language descriptions. However, CLIP’s performance can
still falter when presented with images from novel classes, espe-
cially in scenarios where only a few examples are available [62].
This limitation highlights the need for further advancements to
enhance CLIP’s adaptability in few-shot learning scenarios.

Several strategies seek to enhance CLIP’s performance in few-
shot learning settings. While fine-tuning the entire CLIP model
is possible, it risks overfitting to the limited dataset and demands
high computational resources given the size of the CLIP model [51].
Prompt-based methods guide CLIP’s classification using natural

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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language prompts, but designing optimal prompts can be chal-
lenging. [18]. More recently, the feature-based approaches [18, 45]
have shown promise by introducing lightweight, trainable adapter
modules to CLIP. These adapters allow efficient adaptation to new
classes while preserving the majority of CLIP’s pre-trained weights.
However, these methods primarily focus on leveraging the existing
dataset, which is inherently limited in few-shot scenarios. While
traditional data augmentation techniques like rotations and color
shifts might help [7], they do not introduce fundamentally new
information the model can learn from. As demonstrated in Figure 1,
we hypothesize that augmenting the limited labeled set with exist-
ing prior knowledge to generate samples of varying complexities
could lead to greater information gains, offering diverse and novel
examples that are crucial for model generalization.

To address the challenges of few-shot learning in image clas-
sification, we propose a novel framework, SSAT-Adapter, which
leverages CLIP’s understanding of language and auxiliary learning
in a self-paced training regime to obtain additional information and
achieve greater few-shot performance improvements. Our approach
begins by utilizing the pre-trained CLIP model to generate informa-
tive image latents, including anchor instances that represent CLIP’s
understanding of the target classes.

These anchors, along with other generated inter-class and intra-
class latents, create auxiliary tasks designed to boost the perfor-
mance of the primary few-shot learning task. Inter-class instances
bridge the gap between CLIP’s pre-trained knowledge and the few
available examples. Intra-class instances, created by subtly modi-
fying the latents of labeled examples, expand the representation
of target classes. This approach to latent augmentation offers a
more compact and computationally efficient representation of vi-
sual information. Additionally, while image augmentation can intro-
duce some diversity through random transformations (e.g.,rotations,
color shifts), it is often limited in its ability to specifically target the
core challenge of few-shot learning – understanding novel classes
with minimal data. Latent augmentation allows for more precise
manipulation within the learned feature space. SSAT-Adapter trans-
forms latents in specific directions, creating new instances that
contain characteristics of the target class. It can also generate points
along smooth continuums within the latent space, effectively com-
bining aspects of different classes. This capability to produce a
range of diverse and informative instances allows the model to
distinguish between similar classes and improve its generalizability
in few-shot scenarios. To guide the auxiliary learning model effec-
tively, the training process unfolds in a self-paced manner, starting
with easier auxiliary tasks and gradually increasing difficulty as
representations move closer to decision boundaries, allowing the
model to build a strong foundation by establishing clear initial deci-
sion boundaries before refining their placement in relation to more
challenging examples, ultimately leading to improved accuracy and
adaptability in few-shot learning scenarios.

This paper makes several key contributions to the field of few-
shot learning based on pre-trained vision-language models. Firstly,
we demonstrate the value of leveraging CLIP’s language under-
standing to inform the generation of auxiliary tasks consisting of
informative image latents. Secondly, we introduce the concept of
inter-class and intra-class instance generation to subtly expand the

representation of target classes. Finally, we demonstrate the impor-
tance of self-paced training for generated instances, moving from
easier to more complex auxiliary tasks, and promoting more robust
learning even with minimal data. By combining CLIP’s pre-trained
knowledge, targeted data generation, and self-paced training, our
framework enables models to achieve superior accuracy and adapt-
ability in challenging few-shot scenarios.

In the following sections, we first discuss related literature in
Section 2. We then establish the required background and problem
formulation in Section 3. Section 4 provides a detailed explanation
of our proposed framework. Section 5 presents comprehensive ex-
perimental results, demonstrating our framework’s performance
against existing CLIP-based few-shot learning methods across di-
verse datasets. To further validate our approach, we also conduct
extensive ablation studies that highlight the impact of individual
components within our framework. Finally, Section 6 summarizes
our findings and outlines promising future research directions.

2 RELATEDWORK
Advances in large-scale pre-trained models within natural language
processing (NLP) have paved the way for extensive work on vision-
language models (VLMs), such as VisualBERT [29], OSCAR [30],
Uniter [9], often utilize transformer-based architectures like BERT
[14] for language encoding. More recently, Contrastive Language-
Image Pre-training (CLIP) [43] and similar models [27, 28] have
demonstrated the power of contrastive learning for visual language
tasks. CLIP trains two neural network-based encoders using a con-
trastive loss to match corresponding image and text pairs, resulting
in remarkable zero-shot image recognition capability.

Adapting VLMs for new tasks, especially in few-shot scenar-
ios, is essential for their real-world application. While fine-tuning
the entire VLM can be effective, it risks overfitting to limited data
and incurs high computational costs [51]. Prompt-based methods
offer a compelling alternative by reframing tasks as “fill-in-the-
blank” problems, leveraging a pre-trained language model’s knowl-
edge. Techniques like Context-Optimization (CoOp) [63] and Con-
ditional Context Optimization (CoCoOp) [62] replace hand-crafted
templates with optimizable continuous prompts. Prompt design,
whether manual or automated [11, 26, 48, 57], is crucial for the suc-
cess of these methods. Feature adapter methods [18, 45, 58] have
also proven effective in few-shot image classification. They inte-
grate few-shot knowledge with CLIP’s pre-trained representations
by introducing lightweight, trainable modules that operate on the
VLM’s output while keeping CLIP’s parameters frozen. Although
powerful, these approaches primarily focus on leveraging the ex-
isting, inherently limited few-shot dataset. Our framework takes a
novel approach by expanding beyond the constraints of the existing
dataset through targeted boundary data generation.

Data generation techniques [1, 6, 16, 22] can augment the limited
examples in few-shot scenarios. While traditional image transfor-
mations offer some benefits, they do not fundamentally expand
the information the model learns from [5, 23]. Our work focuses
on latent-space image generation specifically informed by CLIP’s
language understanding. This targeted approach introduces novel
and decision-boundary-focused training examples, enhancing the
model’s ability to learn and generalize from limited data.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SSAT-Adapter: Enhancing Vision-Language Model Few-shot Learning with Auxiliary Tasks ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Overview of the proposed SSAT-Adapter framework, which leverages the pre-trained knowledge of the frozen CLIP
visual and textual encoders to generate informative class anchors and diverse auxiliary tasks to assist in learning the primary
few-shot task. Trainable and frozen models are annotated with a “fire” symbol and an “ice” symbol, respectively.

Auxiliary learning leverages the idea of multi-task learning [60],
where a model is trained on both a primary task and one or more
auxiliary tasks. The auxiliary tasks are designed to complement the
primary goal, either by providing supplementary information or
introducing regularization to improve generalization [33]. Auxiliary
learning has been successful in various machine learning domains
[21, 50, 59], including few-shot learning [2, 10, 37] and various
applications [34, 38, 55]. To the best of our knowledge, this research
is the first to explore the potential of auxiliary learning specifically
for adapting vision-language models in few-shot settings.

Self-paced learning, which gradually increases task difficulty
during training, provides clear initial decision boundaries for the
model and allows it to progressively adapt to more challenging
examples. Self-paced learning has demonstrated success in various
domains, including self-supervised contrastive learning [32, 42, 42],
meta-learning [56], object detection [19], and domain generalization
[61]. Nonetheless, the effectiveness of self-paced learning in few-
shot learning remains largely unexplored.

3 PRELIMINARIES AND PROBLEM
FORMULATION

We first review the basic framework for image classification us-
ing pre-trained VLMs: Given an image 𝐼 ∈ R𝐻×𝑊 ×3 (where 𝐻
and𝑊 denote height and width, respectively), a neural network
backbone transforms the image into a feature vector 𝑓 (𝐼 ) ∈ R𝐷
within a 𝐷-dimensional feature space. To perform classification,
the image feature vector is then multiplied by a classifier weight
matrix𝑊 ∈ R𝐷×𝐾 (where 𝐾 is the number of classes) to obtain a

𝐾-dimensional logit. Finally, a softmax function converts the logit
into a probability distribution 𝑝 ∈ R𝐾 predicting the likelihood
of the image belonging to each of the 𝐾 classes. In contrast to su-
pervised learning with large amounts of data, we are interested in
image classification using few-shot examples. Directly fine-tuning
the neural backbone and classifier from scratch in the few-shot
setting risks overfitting and often suffers from severe performance
drops on the test split. A common approach is to first pre-train
the backbone on a large-scale dataset and then knowledge trans-
fer to downstream tasks, either by zero-shot prediction or further
fine-tuning on the few-shot examples.

CLIP adheres to the zero-shot transfer paradigm. It pre-trains
both visual and textual encoders using contrastive learning on
large-scale noisy image-text pairs, aligning image and text repre-
sentations in a shared embedding space. For image classification
tasks, CLIP constructs prompts from category names 𝐶𝑖 (e.g., “A
photo of a [CLS]”). The text encoder transforms the textual descrip-
tions into classifier weights, allowing direct prediction without
fine-tuning. Specifically, given an image classification downstream
dataset that contains𝐾 categories with their natural language name
𝐶1, . . . ,𝐶𝐾 , CLIP inserts each category name 𝐶𝑖 into a pre-defined
hard prompt template 𝐻 . Then, the language feature extractor en-
codes the resulting prompt as a classifier weight W𝑖 , which can
then be used to perform classification.

CLIP-adapter [18] enhances CLIP’s few-shot classification capa-
bilities by introducing a small, learnable adapter module on top of
the frozen CLIP backbone. Let’s denote the CLIP image encoder
as 𝑓𝐶𝐿𝐼𝑃 (·). The CLIP-adapter module 𝐴(·) is a lightweight linear
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layer. The adapted feature representation is then calculated using a
residual connection: 𝑓𝑎𝑑𝑎𝑝𝑡𝑒𝑑 (𝐼 ) = 𝑓𝐶𝐿𝐼𝑃 (𝐼 ) +𝐴(𝑓𝐶𝐿𝐼𝑃 (𝐼 )). During
fine-tuning, only the parameters of the adapter module 𝐴(·) are
updated, while the original CLIP backbone remains fixed. For both
prompt-based methods and fine-tuning, adapting to new classes
involves adjusting either classifier weights W𝑖 or image latents,
which are essential for calculating prediction probabilities.

4 SSAT-ADAPTER
While prompt-based methods offer advantages, we adopt a fine-
tuning approach within our SSAT-Adapter framework to prioritize
adaptability and finer-grained control of the pre-trained CLIP image
space. However, due to the enormous parameter space of CLIP and
the scarcity of training examples in a few-shot setting, fine-tuning
the entire backbone is computationally expensive and prone to
overfitting. Therefore, similar to that of CLIP-adapter, we only
append a small number of additional learnable bottleneck linear
layers to CLIP’s image encoder while keeping the original CLIP
backbone frozen during few-shot fine-tuning. To further enhance
the learning process and gain additional information from limited
labeled data, we aim to generate both intra and inter-class instances
to gain additional information and improve model robustness. An
overview of the SSAT-Adapter is shown in Figure 2.

4.0.1 Class Anchor Generation. Specifically, given the input image
𝐼 , the corresponding label 𝐶𝐼 and a set of categories’ natural lan-
guage names 𝐶𝑖𝐾𝑖=1, the image feature 𝑓 (𝐼 ) and classifier weightW
from the original CLIP backbone are computed. With the classifier
weights, class anchors denoted by 𝐴𝐼 are first generated. Class an-
chors are dynamically generated image representations that reflect
the key features of an input image’s ground true class. The class
anchor is generated by rejection sampling of a feature manifold
𝑓 ∈ 𝑅𝐷 that minimizes the acceptance loss 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (𝐴𝐼 ), and is
accepted if 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (𝐴𝐼 ) > 𝛿 , where 𝛿 is the anchor acceptance
threshold. Rejection sampling helps to ensure that the generated
class anchor is both highly representative of the true class with
respect to 𝛿 and distinct from other classes. The acceptance loss
𝐿𝑎𝑛𝑐ℎ𝑜𝑟 is a measure of the suitability of a generated sample as a
class anchor taking into account both the class probability as well
as the diversity of the class probability distribution, defined by:

𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (𝐴𝐼 ) = |𝑝𝐶𝐼
· D(𝐴𝐼 ) − 𝑡 | (1)

where 𝑝𝐶𝐼
is the predicted probability of the image 𝐼 belonging to

its ground truth class𝐶𝐼 and 𝑡 is a acceptance boundary width, and
D(𝐴𝐼 ) is the diversity score of the anchor 𝐴𝐼 , calculated as

D(𝐴𝐼 ) =
𝜎 (𝑆 (𝐴𝐼 ,𝐶))√︁
(𝐾 − 1)/𝐾

, (2)

(𝑆 (𝐴𝐼 ,𝐶)) represents a vector of similarity scores between the an-
chor 𝐴𝐼 and the set of natural language class names 𝐶𝑖𝐾𝑖=1.

4.0.2 Auxiliary Task Generation. To augment the limited labeled
data and guide the learning process, SSAT-Adapter generates a
series of image representations through linear extrapolation. Lin-
ear extrapolation is carried out at 𝑉 equal intervals between the
class anchor 𝐴𝐼 and the original image feature 𝑓 (𝐼 ). This results
in a set of extrapolated image features 𝑓𝐴 = {𝑓 1 (𝐼 ), . . . , 𝑓 𝑉 (𝐼 )}.
We denote each of these extrapolated features as an auxiliary task,

providing supplementary information to help the primary task of
classifying the original image. Specifically, for each extrapolated
image 𝑓𝐴 , a initialized auxiliary linear models with residual con-
nections {𝑀1

𝑎𝑢𝑥 , . . . , 𝑀
𝑉
𝑎𝑢𝑥 }. Additionally, a primary model, 𝑀𝑝𝑟𝑖 ,

is constructed as the learner for the main classification task of the
original image feature 𝑓 (𝐼 ). The extrapolated image features can be
seen as variations of the original image, positioned along a spectrum
between the ‘ideal’ class representation (the class anchor) and the
unaltered input image. These variations offer diverse perspectives
to the learning process.

4.0.3 Auxiliary Learning. SSAT-Adapter leverages both auxiliary
and primary models to enhance learning from the limited data in
a few-shot setting. Auxiliary models (𝑀1

𝑎𝑢𝑥 , . . . , 𝑀
𝑉
𝑎𝑢𝑥 ) process the

extrapolated image features generated during linear extrapolation.
Each auxiliary model focuses on a slightly different variation of the
original image, positioned between the class anchor and the original
image feature. By learning from these variations, the auxiliary
models help capture diverse aspects of the target class. The primary
model’s objective is to classify the original image. It processes
the image feature 𝑓 (𝐼 ) directly, leveraging both the pre-trained
knowledge of CLIP and the fine-tuning guided by the extrapolated
instances and their associated auxiliary models. Given the set of
auxiliary models and the primary model, the learned primary latent
and auxiliary latents are given by:

𝑓𝑝𝑟𝑖 (𝐼 ) = 𝛼𝑀𝑝𝑟𝑖 (𝑓 (𝐼 )) + (1 − 𝛼) 𝑓 (𝐼 ), (3)
𝑓 𝑣𝑎𝑢𝑥 (𝐼 ) = 𝛼𝑀𝑣

𝑎𝑢𝑥 (𝑓 𝑣 (𝐼 )) + (1 − 𝛼) 𝑓 𝑣 (𝐼 ) . (4)

where 𝛼 is the residual ratio, controlling the balance between the
model’s output and the original or extrapolated feature. Based
on these outputs, the category probability vector for each task
(both primary and auxiliary tasks) is calculated, denoted by 𝑃𝑣 =
{𝑝𝑣
𝑖
}𝐾
𝑖=1 for task 𝑣 . The final prediction within each task 𝑣 is made

by selecting the class with the highest probability: 𝑖𝑣 = argmax𝑖 𝑝𝑣𝑖 .

4.0.4 Self-paced Task Weighting. To effectively guide the learning
process in a few-shot setting, SSAT-Adapter employs a self-paced
task weighting scheduling strategy that combines a weighted cross-
entropy loss with dynamic weight adjustments for the auxiliary
models. During training, the parameters of both the primary and
auxiliary models are optimized. The loss function is a weighted sum
of the cross-entropy losses across all tasks, including the primary
task 𝐿𝑝𝑟𝑖 and tasks corresponding to the extrapolated features 𝐿𝑎𝑢𝑥 :

𝐿(𝐼 ) = −
𝑉∑︁
𝑣=1

𝐾∑︁
𝑘=1

𝑤𝑘𝑣𝑦
𝑘
𝐼 log(𝑝

𝑘
𝐼 ) (5)

The weights assigned to each auxiliary model evolve throughout
the training process. Initially, higher weights are assigned to aux-
iliary models associated with extrapolated instances closer to the
class anchor 𝐴𝐼 . Recall that the class anchor represents the input’s
true class with respect to 𝛿 . The weights gradually shift as train-
ing progresses to dynamically adjust the weights for each of the
auxiliary models with respect to training epochs. Specifically the
weight of a model𝑤𝑘𝑣 for class 𝑘 in task 𝑣 at epoch 𝑒 is given by:

𝑤𝑘𝑣 (𝑒) = 𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑘𝑣
+ (𝑤 𝑓 𝑖𝑛𝑎𝑙

𝑘𝑣
−𝑤𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑘𝑣
) · 𝑒

𝐸𝑚𝑎𝑥
, (6)
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where 𝑤 initial
𝑘𝑣

and 𝑤final
𝑘𝑣

is the initial weight and final weight re-
spectively, and 𝐸𝑚𝑎𝑥 is the predefined maximum number of epochs
where𝑤𝑘𝑣 (𝑒) = 𝑤final

𝑘𝑣
. Using the weight scheduler, higher weights

are given to auxiliary models with extrapolated instances that are
closer to the generated class anchor𝐴𝐼 , and lower weights are given
to auxiliary models with extrapolated instances that are closer to
the input image 𝐼 . Focusing on these tasks early in training helps
the model build a strong knowledge foundation of distinct initial
decision boundaries, allowing for the introduction of more difficult
tasks at a later training stage. As the training epoch progresses, the
model weight shifts to focus on auxiliary models that are closer to
the input image 𝐼 with less weight given to auxiliary models with
instances closer to the generated class anchor𝐴𝐼 . This shift in focus
helps to refine the model’s ability to distinguish subtle differences
between classes and make accurate predictions on the few-shot
image classification task.

4.0.5 SSAT-Adapter with Variation. To further enhance learning
in few-shot scenarios, we introduce a variation to SSAT-Adapter
that focuses on difficult instances lying closer to decision bound-
aries between classes. By concentrating on these challenging cases,
we aim to maximize information gain and improve the model’s
ability to discriminate between subtle differences, reducing over-
fitting. Specifically, we utilize two key mechanisms to generate
more challenging instances focused near decision boundaries. First,
when generating class anchors 𝐴𝐼 , the acceptance threshold 𝛿 is
decreased. This modification leads to class anchors that are less
‘ideal’ representatives of their class. They exhibit lower similarity
to the natural language representation of the image’s true class
and have a more uniform class probability distribution, indicating
proximity to decision boundaries. Secondly, the variational head
model𝑀𝑣𝑎𝑟 (), a linear layer with residual connection, adapts the
primary latent representation. The goal is to transform the original
image feature into a modified version 𝐼𝑣𝑎𝑟 = 𝑀𝑣𝑎𝑟 (𝑓 (𝐼 )), employ-
ing a modified contrastive triplet loss function. This loss function
promotes targeted adaptation by moving the primary instances
away from their original CLIP anchors and encourages focused
learning by considering the proximity to the nearest instance from
a different class. We first denote the nearest latent representation
from a different class as 𝑓𝑛𝑒𝑔 (𝐼 ), representing a challenging “neg-
ative” example. The triplet loss for our variation head model can
then be formulated as:

𝐿𝑛𝑒𝑔 (𝐼 ) = 𝑑 (𝑓𝑛𝑒𝑔 (𝐼 ), 𝐼𝑣𝑎𝑟 ) − 𝑑 (𝑓 (𝐼 ), 𝐼𝑣𝑎𝑟 ), (7)

where 𝑑 (·, ·) is the euclidean distance measure between represen-
tations. To determine 𝑓𝑛𝑒𝑔 (𝐼 ), the euclidean distance between the
adapted latent 𝐼𝑣𝑎𝑟 and the latent representations of images belong-
ing to classes other than the ground truth class of image 𝐼 is mea-
sured, the instance with the smallest distance is denoted as 𝑓𝑛𝑒𝑔 (𝐼 ).
This adapted representation lies closer to the decision boundaries,
making the classification task more difficult. By adapting both the
class anchor 𝐴𝐼 and the primary latent 𝑓 (𝐼 ), the extrapolated in-
stances generated between them also lie in this challenging region
near decision boundaries. These extrapolated instances provide
valuable auxiliary information, bridging the gap and enhancing the
learning process.

5 EXPERIMENTS
5.1 Dataset
To evaluate SSAT-Adapter’s performance, we adopt a methodology
similar to CLIP [43] and CLIP-adapter [18]. We utilize 11 diverse
image classification datasets: Caltech101 [17], DTD [12], EuroSAT
[20], FGVCAircraft [36], Food101 [4], OxfordFlowers [39], ImageNet
[13], OxfordPets [41], StanfordCars [24], SUN397 [52], and UCF101
[46]. Our SSAT-Adapter is trained under few-shot setups (1, 2, 4, 8,
16 shots) and evaluated on full test splits. For datasets without pre-
defined train-test splits, we create a 50/20/30 train/validation/test
split. K-shot instances are sampled from the train split, and testing
occurs on the full test split.

5.2 Training Settings
We employ ViT-B/32 [15] as the visual encoder and BERT [14] as
the textual encoder for the CLIP backbone in most experiments. We
set the hidden embedding dimensionality of both the visual and text
bottleneck layers to 256. SSAT-Adapter optimization occurs on the
training set with a batch size of 32, using the AdamW optimizer [35]
and a learning rate of 0.0001. Our framework relies on three key
hyperparameters: the anchor acceptance threshold, the max weight
epoch, and the residual ratio. We conduct hyperparameter searches
across different value selections for each dataset, reporting the best
performance within the search spaces. Following the approach of
CLIP-adapter, we utilize the same prompt template. This template
consists of hard prompts like “a photo of a CLS” for generic image
datasets, and more specific prompts for fine-grained classification
(e.g., “a photo of a CLS, a type of flower” for OxfordFlowers). All
the source code are available at https://anonymous.4open.science/
r/ACMMM24-F58C/.

5.3 Baselines
We benchmark SSAT-Adapter against three baseline models: Zero-
shot CLIP [43], Meta-Adapter [45], and CLIP-Adapter [18]. To en-
sure a fair comparison, we use the same prompt template across
Zero-shot CLIP, CLIP-Adapter, and SSAT-Adapter. Meta-Adapter
takes the textual category embeddings from pre-trained VLMs and
refines them using the information from the few-shot image sam-
ples. This is achieved through a gated multi-head attention mech-
anism. The mechanism allows the model to selectively focus on
relevant parts of the image features while processing the category
embeddings. As discussed previously, CLIP-Adapter introduces
trainable modules that operate on the VLM’s output while keeping
CLIP’s parameters frozen. Given that there are many variants of
CLIP-Adapter, we adopt the best performing CLIP-Adapter variant
for our experiments, which features additional residual linear layers
exclusively on the visual encoder.

5.4 Performance Comparison & Analysis
Figure 3 demonstrates SSAT-Adapter’s consistent performance ad-
vantage over Zero-shot CLIP, Meta-Adapter, and CLIP-adapter
across all datasets and few-shot settings. As expected, the most
accuracy gains occur in scenarios with limited labeled data (1-shot
and 2-shot), showcasing SSAT-Adapter’s effectiveness in leveraging
auxiliary tasks and self-paced learning, with less accuracy gain

https://anonymous.4open.science/r/ACMMM24-F58C/
https://anonymous.4open.science/r/ACMMM24-F58C/
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Figure 3: SSAT-Adapter demonstrates superior few-shot learning accuracy across 11 datasets, outperforming previous baselines
at various training shot levels. The average accuracy across 11 datasets is shown on the top left.

when the amount of labeled training samples increases. Compared
to Zero-shot CLIP [43], SSAT-Adapter achieves significant accu-
racy improvements over all 11 datasets. The highest accuracy gains
are observed particularly on datasets with intrinsically low zero-
shot performance like EuroSAT. The accuracy gain is smaller for
more complex and generic datasets that contain instances from dis-
jointed classes, such as ImageNet and dataset that already have high
zero-shot accuracy, such as the OxfordPets and Food101 dataset.
Compared to Meta-Adapter [45], SSAT-Adapter also shows compre-
hensive performance advantages. For many datasets, under 1-shot
and 2-shot training setups, Meta-Adapter barely reaches the ac-
curacy of Zero-shot CLIP, but SSAT-Adapter can always surpass
Zero-shot CLIP and exceed Meta-Adapter. It is also noticeable that

SSAT-Adapter also consistently achieves a significant accuracy gain
overMeta-Adapter evenwhen the number of labels training samples
is high (16-shot), achieving a 4.2% average accuracy improvement
across all 11 datasets. The most accuracy gain is also observed
on the EroSAT dataset, with an accuracy gain of 10.3% and 13.7%
at 1-shot setting and 16-shot setting, respectively. Compared to
CLIP-adapter [18], which has already gained huge improvements
over Zero-shot CLIP and Meta-Adapter, SSAT-Adapter still out-
performs CLIP-Adapter on all datasets under 1-shot and 2-shot
training setups. Both methods achieve a similar performance under
16-shot training setups. On average, SSAT-Adapter achieves 2.2%
and 0.3% accuracy increase at 1-shot setting and 16-shot setting
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respectively, with the highest accuracy gain of 5.4% observed for
the Oxfordflowers dataset under 1-shot setting.

5.5 Ablation Studies
In this section, we report a series of detailed ablation studies to
validate the effectiveness of each design in SSAT-Adapt. We provide
4 experiments to provide additional insight on: 1) The effectiveness
of the variation head model. 2) The effect of different self-paced
training strategies. 3) The choice of loss function for the adaptation
head model. 4) The performance gain from auxiliary tasks.

Figure 4: Comparison of SSAT-Adapter with (𝑤/) or without
(𝑤/𝑜) variation head model.

5.5.1 Effectiveness of Variation Head. The goal of the variational
head model𝑀𝑣𝑎𝑟 () is to adapt the primary latent representation to
be closer to the decision boundaries. This adaptation allows for the
construction of more difficult auxiliary tasks and increases model
robustness. Figure 4 demonstrates the performance advantage of
SSAT-Adapter with the variation head across four datasets. The
results show that SSAT-Adapter with the variation head consistently
outperforms the model without it across all datasets.

Additionally, we notice a higher accuracy improvement for DTD
and EuroSAT in comparison to ImageNet and Caltech101. Fig-
ure 5 shows the pairwise class similarity comparison between the
datasets. The similarity results suggest DTD and EuroSAT are more
specific datasets that exhibit a more uniform underlying data dis-
tribution within each class (e.g., DTD contains textures, EuroSAT
includes satellite imagery). In such cases, class instances are inher-
ently similar, making boundary cases especially critical for accurate
classification. By adapting the representation towards the decision
boundaries, the variation head improves the model’s ability to han-
dle these boundary instances, leading to an overall boost in accuracy.
Conversely, while we still observe increased accuracy for ImageNet
and Caltech101 when using the variation head, the magnitude of
improvement is less significant. These datasets feature a broader
range of classes with inherently more distinction between them.
Consequently, boundary cases are less frequent, and the variation
head has a comparatively smaller impact.

5.5.2 Task Weight Scheduling. To analyze the impact of self-paced
training, we experimented with three task weight scheduling strate-
gies for our auxiliary tasks. The first method serves as a baseline,
using equal weights for all auxiliary tasks throughout training. The
second strategy prioritizes difficult auxiliary tasks initially, with

Figure 5: Pairwise class similarity comparison between spe-
cific datasets (EuroSAT, DTD) and generic datasets (ImageNet,
Caltech101).

Table 1: Comparison of SSAT-Adapter with different task
weight scheduling methods under 2-shot training setting.

Dataset Equal Hard → Easy Easy → Hard

DTD 0.504±0.002 0.489±0.001 0.524±0.001
EuroSAT 0.693±0.001 0.670±0.001 0.714±0.001
ImageNet 0.611±0.002 0.603±0.002 0.638±0.001
Caltech101 0.922±0.001 0.920±0.002 0.938±0.001

weights gradually decreasing in favor of easier tasks. Conversely,
the third strategy adopts a “start easy, end hard” approach, ini-
tially emphasizing easier tasks and progressively increasing the
weights for difficult ones. Table 1 demonstrates the importance of
a self-paced strategy with an initial emphasis on easier tasks. This
approach allows the model to establish a strong foundation of clear
decision boundaries by learning the core concepts and features
relevant to the main task allowing for the adaptation of complex
concepts. In contrast, the initial focus on difficult tasks hinders the
model’s ability to grasp fundamental concepts effectively, leading
to weaker overall accuracy. These results suggest that gradually
increasing the difficulty of auxiliary tasks within a self-paced train-
ing regime can significantly benefit model performance in few-shot
learning scenarios.

Table 2: Comparison of SSAT-Adapter with different adapta-
tion strategies under 2-shot training setting.

Dataset Adaptation Strategies

Furthurest Random Average Nearest

DTD 0.523±0.002 0.512±0.012 0.516±0.002 0.524±0.001
EuroSAT 0.712±0.002 0.711±0.008 0.711±0.001 0.714±0.001
ImageNet 0.636±0.001 0.634±0.004 0.633±0.002 0.638±0.001
Caltech101 0.936±0.001 0.934±0.006 0.935±0.001 0.938±0.002

5.5.3 Adaptation Strategies. Our goal is to expand target class rep-
resentations and obtain new knowledge for improved few-shot
learning. To achieve this, we investigate several adaptation strate-
gies for the adaptation head model, each focusing on manipulating
few-shot instance representations in distinct ways. Figure 6 presents
an illustration of the four adaptation strategies. Our first strategy,
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Figure 6: Demonstration of four different adaptation strate-
gies for the variation head model of SSAT-Adapter in the
image latent space.

Furthest, focuses on moving few-shot instances away from CLIP-
generated anchors, increasing decision boundary separation. The
second strategy, Random, introduces diversity by moving few-shot
instances away from anchors and closer to randomly chosen in-
stances from different classes. We extend this concept in a third
strategy, Average, by considering all instances from different classes
during adaptation. The fourth strategy, Nearest, focuses on adapting
the few-shot instances to be closer to the nearest negative class.

As shown in Table 2, Strategy 4: Nearest, proved most success-
ful. This approach ensures that adapted instances move further
from anchors and closer to negative instances, strengthening deci-
sion boundary learning. By combining these elements, Strategy 4
achieves optimal expansion of the target class representation, ulti-
mately leading to improved few-shot accuracy. The first strategy,
moving few-shot instances further from CLIP-generated anchors,
demonstrates accuracy approaching that of Strategy 4. While this
method aims to increase decision boundary separation, it does not
directly improve the model’s understanding of different classes, lim-
iting its effectiveness and demonstrating the benefit of constraining
the adaptation towards the nearest negative class. In contrast, mov-
ing toward a random or average negative class results in the least
accuracy gain. These two approaches inject information from con-
trasting categories, aiming to broaden the representation of the
target class. However, the former often results in the few-shot in-
stances moving through CLIP latent space and closer to the anchor
instances, which leads to minimal information gain with high vari-
ations. The latter moves the few-shot instances to a latent space
containing aggregated target information, often providing noisy
information. Both ultimately hinder the model’s ability to learn
discriminative features, leading to lower few-shot accuracy.

Table 3: Comparison of SSAT-Adapter with varying number
of auxiliary tasks under 2-shot training setting.

Dataset Number of Auxiliary Tasks

2 4 10 20

DTD 0.513±0.002 0.522±0.002 0.524±0.002 0.526±0.001
EuroSAT 0.690±0.001 0.703±0.002 0.714±0.001 0.714±0.001
ImageNet 0.634±0.001 0.635±0.001 0.638±0.001 0.636±0.001
Caltech101 0.925±0.002 0.933±0.001 0.938±0.001 0.938±0.001

5.5.4 Number of Auxiliary Tasks. We also investigate how the num-
ber of auxiliary tasks influences SSAT-Adapter’s performance. Ta-
ble 3 presents the results across various datasets under the 2-shot
training setting. We observe a general trend of increasing accuracy
as the number of auxiliary tasks increases, suggesting a benefit from
the diverse perspectives these tasks offer during learning. However,
it is important to note that the accuracy gains tend to plateau and
can even slightly decrease as the number of auxiliary tasks becomes
very large (e.g., 10 vs 20 tasks in our experiments). The results show
a decrease in accuracy for the ImageNet dataset when the number
of auxiliary tasks increased to 20, which indicates a potential risk
of overfitting. When the number of auxiliary tasks increases, the
generated instances become increasingly similar, making it easier
for the model to memorize specific nuances of the training data
rather than learning broadly generalizable representations.

6 LIMITATIONS & CONCLUSION
While SSAT-Adapter demonstrates significant performance im-
provements in few-shot image classification, there are a few draw-
backs limiting its potential. The generation of anchors and auxiliary
tasks introduces additional computational overhead compared to
simpler fine-tuning of linear layers. Furthermore, the success of
instance generation within SSAT-Adapter relies on the quality of
CLIP’s pre-trained representations. If CLIP’s initial understanding
of certain classes is limited, the potential benefits of the generated
auxiliary tasks may also be reduced.

To summarize, we propose the SSAT-Adapter framework to ad-
dress the challenges of few-shot image classification. Our approach
leverages the pre-trained knowledge of the CLIP model to generate
informative class anchors and diverse auxiliary tasks. Combined
with a self-paced learning strategy, SSAT-Adapter demonstrates no-
ticeable accuracy gains over strong baselines across a wide range of
datasets. Comprehensive ablation studies highlight the importance
of class anchor generation, task adaptation, and the ‘easy-to-hard’
self-paced auxiliary learning regime. In the future, we plan to extend
SSAT-Adapter to address the challenge of handling truly unseen
classes, those absent from CLIP’s pre-training. Additionally, we
intend to investigate the potential of SSAT-Adapter within other do-
mains beyond image classification, including areas such as few-shot
object detection or natural language generation. Furthermore, we
are interested in exploring more sophisticated instance generation
methods, potentially leveraging advanced generative models like
diffusion or GANs.
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