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Abstract

Recently, there has been remarkable progress in
reinforcement learning (RL) with general function
approximation. However, all these works only pro-
vide regret or sample complexity guarantees. It is
still an open question if one can achieve stronger
performance guarantees, i.e., the uniform probably
approximate correctness (Uniform-PAC) guaran-
tee that can imply both a sub-linear regret bound
and a polynomial sample complexity for any tar-
get learning accuracy. We study this problem by
proposing algorithms for both nonlinear bandits
and model-based episodic RL using the general
function class with a bounded eluder dimension.
The key idea of the proposed algorithms is to as-
sign each action to different levels according to
its width with respect to the confidence set. The
achieved Uniform-PAC sample complexity is tight
in the sense that it matches the state-of-the-art re-
gret bounds or sample complexity guarantees when
reduced to the linear case. To the best of our knowl-
edge, this is the first work for Uniform-PAC guar-
antees on bandit and RL that goes beyond linear
cases.

1 INTRODUCTION

Designing efficient algorithms to learn and plan in the
sequential decision-making environment modeled by a
Markov decision process (MDP) is one of the main tasks in
reinforcement learning (RL). However, traditional tabular
RL algorithms suffer from the curse-of-dimensionality due
to the large size of the state and action spaces in practice. To
enable learning in high-dimensional state and action spaces,
using a predefined function class to approximate the under-
lying transition dynamic or the value function is a common
approach. Most existing works for RL with function approx-

imation focus on simple linear function classes such as the
linear mixture MDP [Modi et al., 2020, Ayoub et al., 2020,
Zhou et al., 2021b], which can replace the size of the state
and action spaces with the dimension of the linear function
class. However, these assumptions are often too restrictive
to hold in practice. Recently, a line of works [Russo and
Van Roy, 2013, Du et al., 2021, Jin et al., 2021] emerged that
studies RL with general function approximation, introduc-
ing new complexity measures for the general function class
and proposing new algorithms with regret bounds or PAC
guarantees in terms of the complexity of the general function
class. All existing results of RL with a general function class
are limited to either regret bounds or PAC sample complex-
ity, both of which cannot ensure convergence to the optimal
policy up to arbitrary accuracy. To address this, Dann et al.
[2017] proposed the strongest possible performance mea-
sure, the Uniform-PAC guarantee, which provides upper
bounds on the number of ϵ-suboptimal episodes for any ac-
curacy parameter ϵ ¡ 0 uniformly. They also proposed the
UBEV algorithm with rOpSAH4{ϵ2q Uniform-PAC sample
complexity, which guarantees convergence to the optimal
policy for any ϵ ¡ 0. Recently, He et al. [2021] proposed
the FLUTE algorithm for RL with linear function approx-
imation, which has an rOpd3H5{ϵ2q Uniform-PAC sample
complexity, where d is the dimension of the linear function
class.

In this paper, we propose new algorithms for both the bandit
problem and model-based RL problem with a general func-
tion class, focusing on a model-based RL problem called
linear mixture MDPs [Ayoub et al., 2020]. Our approach
uses the eluder dimension [Russo and Van Roy, 2013] as a
complexity measure for the general function class F , which
generalizes the linear independence relation in the standard
vector space to capture the nonlinear independence in the
function space approximately. The core of our algorithms is
to assign each action to different levels based on its width
with respect to the confidence set. For function classes with
a bounded eluder dimension, we prove that both algorithms
have Uniform-PAC guarantees and near-optimal sample
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complexity bounds. Our key contributions are highlighted
below.

• In the nonlinear bandit problem, where the reward func-
tion f is from a known class F with bounded eluder di-
mension, we propose the F-UPAC-OFUL algorithm that
achieves an rOpdKdE{ϵ2q Uniform-PAC guarantee. Here
dK relates to the metric entropy (log-covering number)
of F , dE is its eluder dimension, and ϵ is the accuracy
parameter. Our result implies a rOp?dKdEKq regret guar-
antee in the first T rounds, matching the result in Russo
and Van Roy [2013] up to a logarithmic factor. This is the
first Uniform-PAC guarantee for nonlinear bandits.

• We also consider a model-based episodic RL problem
where the transition probability P� belongs to a known
family P . We propose the F-UPAC-VTR algorithm and
obtain a rOpH3dKdE{ϵ2q Uniform-PAC sample complex-
ity, where H is the horizon length, dK relates to the met-
ric entropy and dE is the eluder dimension for the value
function class F induced by the transition probability fam-
ily P . This result also implies a rOp?dKdEH3Kq regret
bound in the first K episodes, matching the result of the
UCRL-VTR algorithm in [Ayoub et al., 2020] up to a
logarithmic factor.

For the ease of comparison, we list the results of our algo-
rithms and the most related algorithms in Tables 1 and 2.

2 RELATED WORK

2.1 RL WITH LINEAR FUNCTION
APPROXIMATION

There is a body of research on learning Markov Decision
Processes (MDPs) under the assumption of linear function
approximation, which can be divided into model-free and
model-based approaches. For model-free algorithms, Jin
et al. [2019] studied the linear MDP model, where the re-
ward function rps, aq and transition probability function
Pps1|s, aq are linear with respect to a given feature map
ϕps, aq. The LSVI-UCB algorithm proposed by Jin et al.
[2019] achieved an Op

?
d3H3Kq regret bound. Zanette

et al. [2020] extended the linear MDP assumption to the
low inherent Bellman error assumption, where the Bellman
backup can be approximated by a linear function class.

For model-based algorithms, Jia et al. [2020] investigated
linear mixture MDPs [Modi et al., 2020], where the tran-
sition probability function Pps1|s, aq is linear with respect
to a given feature mapping ϕps1|s, aq. They proposed the
UCRL-VTR algorithm, which has a regret guarantee ofrOpd?H3Kq. Zhou et al. [2021a] improved the regret guar-
antee to rOpdH?Kq by introducing a Bernstein-type bonus
in the linear mixture model.

Linear bandit problems, as a special case of RL with linear

function approximation, have also been extensively studied.
For infinite-arm linear bandit problems, Dani et al. [2008]
obtained anOpd

a
K log3Kq regret guarantee with the Con-

fidence Ball algorithm. Abbasi-Yadkori et al. [2011] pro-
posed the OFUL algorithm, which improved the result to
Opd

a
K log2Kq.

2.2 RL WITH GENERAL FUNCTION
APPROXIMATION

Recently, a line of research has emerged in RL with general
function approximation to relax the linear function assump-
tion [Russo and Van Roy, 2013, Jiang et al., 2017, Sun
et al., 2019, Dong et al., 2020, Yang et al., 2020, Wang
et al., 2020, Ayoub et al., 2020, Jin et al., 2021, Du et al.,
2021]. Jiang et al. [2017] introduced the Bellman rank, a
complexity measure that depends on the function class F
and the roll-in policy, and proposed the OLIVE algorithm
for models with low Bellman rank, which has a polynomial
PAC-bound guarantee. The AVE algorithm by Dong et al.
[2020] was proposed for learning low-Bellman-rank MDPs
and obtained the first Op?Kq-regret guarantee. Sun et al.
[2019] extended the Bellman rank to the model-based set-
ting and proposed a complexity measure called "witness
rank", which is always no larger than the Bellman rank and
obtained a polynomial PAC bound in terms of the "witness
rank".

In contrast, the eluder dimension [Russo and Van Roy, 2013]
measures the complexity of a function class F from a differ-
ent perspective, indicating how effectively the underlying
function f P F can be deduced from the current informa-
tion. UCB-type and Thompson sampling-type algorithms
for bandit problems were proposed by Russo and Van Roy
[2013], both obtaining a

?
K-regret guarantee for bandit

models with low eluder dimension. Osband and Van Roy
[2014] extended this notion to reinforcement learning mod-
els and proposed a post-sampling algorithm, while Wang
et al. [2020] and Ayoub et al. [2020] extended it to more
general model-free and model-based reinforcement learn-
ing problems. Under the assumption that the value function
or the transition probability belongs to a function class F
with low eluder dimension, both the model-free algorithm
F -LSVI [Wang et al., 2020] and the model-based algorithm
UCRL-VTR achieve Op?Kq-regret guarantees.

Recently, Jin et al. [2021] extended the eluder dimension to
the Bellman eluder dimension, which considers the general
function class and possible MDP structures simultaneously.
The low Bellman eluder dimension covers both the low
eluder dimension and the low Bellman rank, and the GOLF
algorithm by Jin et al. [2021] achieves both Op?Kq-regret
and polynomial PAC-bound guarantees. However, the Bell-
man eluder dimension does not cover the model-based RL
problem. Concurrently, Du et al. [2021] proposed the bilin-
ear class with bounded effective dimension, which contains



Table 1: Comparison of algorithms for bandits with linear or general reward function in terms of sample complexity and
regret. Note that d � rΘpdKq � rΘpdEq in the linear case. “–" means the corresponding Uniform-PAC sample complexity is
not available or not applicable. Our results are tight given the nearly matching upper and lower bounds.

Algorithm Sample Complexity Regret Uniform-PAC Reward Function

OFUL
[Abbasi-Yadkori et al., 2011]

– rOpd?Kq ✘ Linear

UPAC-OFUL
[He et al., 2021]

rOpd2{ϵ2q rOpd?Kq ✓ Linear

Linear UCB
[Russo and Van Roy, 2013]

– rOp?dKdEKq ✘ General

F-UPAC-OFUL
Our work

rOpdKdE{ϵ2q rOp?dKdEKq ✓ General

Lower bound
[Lattimore and Szepesvári, 2018]

– rΩpd?Kq – Linear

Table 2: Comparison of algorithms for model-based RL with linear or general function approximation in terms of sample
complexity and regret. Note that d � rΘpdKq � rΘpdEq in the linear case.

Algorithm Sample Complexity Regret Uniform-PAC Function Approximation

UCRL-VTR+
[Zhou et al., 2021a]

– rOpdH?Kq ✘ Linear

UCRL-VTR
[Ayoub et al., 2020]

– rOp?H3dKdEKq ✘ General

F-UCRL-VTR
Our work

rOpH3dKdE{ϵ2q rOp?H3dKdEKq ✓ General

Lower bound
[Zhou et al., 2021a]

– rΩpdH?Kq – Linear

many MDP models such as low Bellman rank and low wit-
ness rank, and the BiLin-UCB algorithm with polynomial
PAC bound. Notably, neither the bilinear class nor the low
Bellman eluder dimension class contains each other.

All these works with general function approximation con-
cern either a PAC sample complexity bound or a regret
bound. This motivates us to provide a stronger guarantee on
general function approximation, and we begin with the low
eluder dimension as a first attempt.

3 PRELIMINARIES

Notation We use lower case letters to denote scalars,
lower and upper case bold letters to denote vectors and
matrices. We use } � }8 to indicate the infinity norm. For a
probability measure P psq and a function V psq on the space
S, we use xP, V y or xP p�q, V p�qy to denote the integral³
S V psqdP psq. We also use the standard O and Ω notations.

We say an � Opbnq if and only if DC ¡ 0, N ¡ 0,@n ¡
N, an ¤ Cbn; an � Ωpbnq if an ¥ Cbn. The notation rO is
used to hide logarithmic factors.

3.1 EPISODIC MARKOV DECISION PROCESS

In this work, we consider the homogeneous, episodic
Markov Decision Process (MDP). Each episodic MDP is de-
noted by a tuple M

�
S,A, H, rp�, �q, P�p�|�, �q�. Here, S is

the state space, A is the finite action space, H is the horizon
length (i.e., length of each episode), r : S �AÑ r0, 1s is
the reward function and P�ps1|s, aq : S �AÑ ∆|S| is the
transition probability function that denotes the probability
for state s to transit to the next state s1 given action a. A
policy πhp�|sq : S�rHs Ñ ∆A is a function which maps a
state s and the current step h to a distribution over the action
space A. In addition, for any policy π and step h P rHs, we
define the action-value functionQπ

hps, aq and value function
V π
h psq as the expected total reward from step h by following

the policy π:

V π
h psq :� Eπ

�°H
h1�hrpsh1 , ah1q|sh � s

�
,

Qπ
hps, aq :� rps, aq

� Eπ

�°H
h1�h�1rpsh1 , ah1q

��sh � s, ah � a
�
,

where sh1�1 � P�p�|sh1 , ah1q and ah1 � πhpsh1q. With
this definition, the value function V π

h psq and Qπ
hps, aq are

bounded in r0, Hs.



We define the optimal value function V �
h and Q�

h as
V �
h psq � supπ V

π
h psq and Q�

hps, aq � supπ Q
π
hps, aq. For

each step h P rHs and policy π, we have the following
Bellman equation and Bellman optimality equation:

Qπ
hps, aq � rps, aq � xP�p�|s, aq, V π

h�1p�qy,
Q�

hps, aq � rps, aq � xP�p�|s, aq, V �
h�1p�qy, (3.1)

where V π
H�1ps1q � V �

H�1ps1q � 0.

We study the online RL problem where the learning agent
is given with s P S, a P A, h P rHs and reward r but does
not know the transition probability P� P P , where P is a
class of possible transition probabilities.

Generally speaking, the goal of an RL agent is to maximize
the expected total reward over all K episodes. When P is
known, the optimal policy is also known and computable
via dynamic programming. Denote πk as the policy the
agent follows at episode k, the suboptimality gap incurred
at episode k is defined as the difference between the optimal
value function and value function for policy πk: ∆k :�
V �
1 psk,1q�V πk

1 psk,1q. With this notation, the pseudo-regret
in first K episodes is

RegretpKq � °K
k�1 ∆k �

°K
k�1 V

�
1 psk,1q � V πk

1 psk,1q.
Most works in the literature focus on establishing an upper
bound on RegretpKq. In the next subsection, we introduce
the notion of a stronger guarantee.

3.2 THE UNIFORM-PAC GUARANTEE

We say an algorithm is pϵ, δq-PAC, if for any ϵ, δ P p0, 1q,
there exists a function Npϵ, δq that is polynomial in ϵ�1 and
logpδ�1q, such that

P
�°8

k�1 1t∆k ¡ ϵu ¤ Npϵ, δq� ¥ 1� δ.

Here Npϵ, δq is the sample complexity function. However,
both the regret guarantee and the PAC guarantee have their
limitations. For example, algorithms with sub-linear regret
opKq in the first K episodes may suffer ϵ-suboptimality
infinite times and fail to learn the optimal policy. For the
PAC bound, it only controls the number of times that ∆k ¡
ϵ. And the algorithm may incur a smaller ϵ1-suboptimality
gap for infinite times for ϵ1   ϵ.

To overcome these limitations, Dann et al. [2017] intro-
duced a stronger notion of guarantee called Uniform-PAC,
which provides PAC-guarantees for all accuracy parame-
ter ϵ uniformly. More specifically, we say an algorithm is
Uniform-PAC for some δ P p0, 1q, if there exists a function
Npϵ, δq polynomial in ϵ�1 and logpδ�1q, such that

P
�@ϵ ¡ 0,

°8
k�1 1t∆k ¡ ϵu ¤ Npϵ, δq� ¥ 1� δ.

Dann et al. [2017] showed that the Uniform-PAC guarantee
is strictly stronger than both the regret bound and the PAC-
guarantee:

Theorem 3.1 (Theorem 3, Dann et al. [2017]). If an algo-
rithm Alg is Npϵ, δq-Uniform-PAC with sample complex-
ity Npϵ, δq � rOpC1{ϵ � C2{ϵ2q, where C1, C2 are con-
stant parameter for the algorithm Alg and only depend on
poly

�
S,A,H, logp1{δq�, then, the algorithm Alg has the

following results:

• 1: Alg will converge to optimal policies with high proba-
bility at least 1� δ: P

�
limkÑ�8∆k � 0

� ¥ 1� δ

• 2: Algorithm Alg is also pϵ, δq-PAC with the same sample
complexity rOpC1{ϵ� C2{ϵ2q for all ϵ ¡ 0.

• 3: With probability at least 1 � δ, for each K P N, the
regret for Alg in the first K episodes is upper bounded byrO�?C2K �maxtC1, C2u

�
.

Due to the strong implication of the Uniform-PAC guarantee,
one may wonder if Uniform-PAC is also achievable under
the setting of general function approximation.

3.3 COMPLEXITY MEASURE OF A FUNCTION
CLASS

To deal with general function class F , we will use two
complexity measures. The first one is covering number,
which is formally defined as follow.

Definition 3.2. Suppose } � } is a norm on F and α ¡ 0. A
α-covering with respect to } � } is a subset G � F , such that
@f P F , Dg P G, s.t. }f � g} ¤ α. The covering number
N pF , α, } � }q is the minimal cardinality of any α-covering
of F with respect to } � }.

For many function classes, the log-covering number (a.k.a.
metric entropy) logN pF , α, } � }q is linear in the dimension
of F and only logarithmic in α�1. One such function class
tfθ|θ P Θu has been discussed in Russo and Van Roy
[2013], where fθpxq is L-Lipschitz with respect to θ and
Θ � r0, 1sd. It can be shown that logN pF , α, } � }8q ¤
d logp1 � L{αq. Therefore, we make the following mild
assumption.

Assumption 3.3. The metric entropy logN pF , α, } �}8q of
the function class F is bounded linearly by logpα�1q, i.e.,
logN pF , α, } � }8q ¤ dK logpα�1q.

We can view dK as an upper bound on the Kolmogorov
dimension of the function class F (see e.g., Osband and
Van Roy [2014]for more details).

The other complexity measure is the eluder dimension,
which is first proposed by Russo and Van Roy [2013] based
on the concept of ϵ-independence:

Definition 3.4. An input x P X is ϵ-dependent on inputs
tx1,x2, . . . ,xnu � X with respect to F if any pair of
function f1, f2 P F satisfying

°n
i�1

�
f1pxiq � f2pxiq

�2 ¤



ϵ2 also satisfies f1pxq � f2pxq ¤ ϵ. x is ϵ-independent
of tx1,x2, . . . ,xnu � X with respect to F if it is not ϵ-
dependent on tx1,x2, . . . ,xnu � X .

Then the eluder dimension is formally defined as follows.

Definition 3.5. The ϵ-eluder dimension dimEpF , ϵq is the
length d of the longest sequence of elements in X such
that, for some ϵ1 ¡ ϵ, every element is ϵ1-independent of its
predecessors.

4 UNIFORM-PAC BOUNDS FOR
NONLINEAR BANDITS

4.1 THE BANDIT PROBLEM WITH GENERAL
REWARD FUNCTIONS

In the nonlinear bandit problem, at each round k P N, the
agent selects an action xk from the action set Ak, and then
receives the reward Rk � fθ�pxkq � ηk, where the true
reward function fθ� is assumed to lie in a set of bounded,
real-valued functions F � tfθ : X Ñ r0, 1s|θ P Θu which
is indexed by θ P Θ. ηk is a conditionally unbiased 1-sub-
Gaussian noise:

@k P N, λ P R,Ereληk |x1, η1,x2, . . . ,xks ¤ eλ
2{2.

Formally speaking, an agent selecting txkukPN achieves
Uniform-PAC with complexity Npϵ, δq if and only if

P
�@ϵ ¡ 0,

°8
k�1 1t∆k ¡ ϵu ¤ Npϵ, δq� ¥ 1� δ,

where ∆k :� maxxPAk
fθ�pxq � fθ�pxkq denotes the sub-

optimality gap at round k.

4.2 ALGORITHM

We first present an F-UPAC-OFUL algorithm in Algo-
rithm 1. The high-level idea of Algorithm 1 is to split the
rounds into several disjoint sets Cl, and apply the approach
of optimistic exploration within each set.

More specifically, in each set Cl, we use the information
from the rounds k such that k P Cl to construct the con-
fidence set F l � F (Line 4), and try to find the most op-
timistic action (Lines 6-9), namely the action with largest
upper confidence bound (UCB). Line 4 defines the confi-
dence set F l with:

LClpf, pfq :� °
kPCl

�
fpxkq � pfpxkq

�2
,pf l :� argminfPF

°
kPCl

�
fpxkq �Rk

�2
,

βl
t :� 8 log

�
N pF , α, } � }8q{δ

�
� 2αt

�
8�

a
8 logp4t2{2�lδq�, (4.1)

where the metric entropy can be replaced by its upper bound.
When the action xk is chosen, the algorithm needs to decide
which level set the index k should be assigned to (Lines 10-
14). The decision is made by the scale of the width wFlpxkq
at Line 11:

wFlpxkq :� supfPFl fpxkq � inffPFl fpxkq.

Once the index k is assigned to a particular set, the algorithm
updates the total level S as the number of non-empty sets.

It can be shown that when F is a linear function class, i.e.,
fθ�pxkq � xθ�,xky, the confidence set for level l becomes
an ellipsoid tθ|}θ�pθl}Vl ¤ βl

tu, where Vl � °
kPCl xkx

J
k

is the covariance matrix of the contexts at level l. In this case,
the width wFlpxq has a closed form wFlpxq � 2βl

T }x}Vl .
This is exactly the bonus term used in LinUCB/OFUL, and
He et al. [2021] uses this term as a criterion to assign the
contexts to the appropriate level in order to achieve uniform
PAC guarantee for UPAC-OFUL.

Algorithm 1 F-UPAC-OFUL

1: Set Cl ÐH, l P N and the total level S � 1
2: for round k � 1, 2, .. do
3: for all level l P rSs do
4: Denote F l � tf |LClpf, pf lq ¤ βl

|Cl|u
5: end for
6: Receive the action set Ak

7: Choose action
8: xk Ð argmaxxPAk

supfP
�

lPrSs Fl fpxq
9: Receive the reward Rk

10: Set level l � 1
11: while wFlpxkq ¤ 2�l and l ¤ S do
12: lÐ l � 1
13: end while
14: Add the new element k to the set Cl and update F l

accordingly
15: Set the total level S � maxl:|Cl|¡0 l
16: end for

4.3 MAIN RESULTS

Before presenting the main result for Algorithm 1, we ex-
plain how βl

t in (4.1) is chosen. For each l P N, we set βl
t

as α � U�1
l , where Ul satisfies Ul � 64dKdE4

l logUl{δ.
Later in the proof, we will see that Ul serves as an upper
bound on the cardinality of Cl.

Theorem 4.1. Suppose F satisfies Assumption 3.3, and
denote ∆k :� maxxPAk

fθ�pxq � fθ�pxkq and dE :�
dimEpF , ϵ{2q. Then there exists a constant c such that with
probability 1� 2δ, for all ϵ ¡ 0, Algorithm 1 satisfies

°8
k�1 1t∆k ¡ ϵu ¤ c � dKdE

ϵ2 logpdKdE

ϵδ q.



Optimality of the Result According to Theorem 3
in Dann et al. [2017], our result in Theorem 4.1 can be
converted to the same regret bound as Russo and Van Roy
[2013], i.e., rOp?dKdEKq. Under the linear bandit setting,
this result becomes rOpd?T q because dK � dE � d and
cannot be improved without additional assumptions. An-
other evidence is that Wagenmaker et al. [2022] provided
a lower bound on fixed-epsilon PAC for linear bandits of
Ωpd2{ϵ2q (Theorem 2). Once again, Theorem 3 in Dann
et al. [2017] can convert our result into theirs since Uniform-
PAC covers both regret and PAC. Therefore, this suggests
that our result is tight (See Table 1 for details).

Computational Efficiency Generally speaking, the
most computationally expensive step is to compute
arg supfPF 1 fpxq and wFlpxq, that is to find the optimum
function on some given input x within the confidence set F 1

(e.g., Line 8 or Line 11). While these optimization problems
can be solved efficiently (or even analytically) for the linear
function class, for general function class, the computational
efficiency will be more subtly related to the structure of
the function class, as well as the optimization algorithm for
finding the maximizer.

5 UNIFORM-PAC BOUNDS FOR
EPISODIC MDPS

5.1 ALGORITHM

As described in Section 3, we study the homogeneous
episodic MDP, where the unknown, true transition prob-
ability P� lies in a known family P .

Following Ayoub et al. [2020], our results depend on the
complexity of a function class F associated with P . Let V
be the set of optimal value functions under some transition
probability in P , that is V � tV �,P

h p�q|h P rHs, P P Pu.
Note that any V P V is positive and bounded by H . Let
X � S � A � V , we can see that any triplet Xk,h �
psk,h, ak,h, Vk,h�1q P X . The function class F is the col-
lection of functions f : X Ñ R such that

F :�  
fP ps, a, V q �

@
P p�|s, aq, V p�qD��P P P

(
.

Note that any f P F is positive and bounded by H because
P p�|s, aq is a probability measure and V p�q P r0, Hs. We
also assume the metric entropy is linearly dependent on dK
as in Assumption 3.3.

We present an F-UPAC-VTR algorithm in Algorithm 2.
Similar to Algorithm 1, Algorithm 2 will maintain several
disjoint sets Cl , and construct the confidence set (Line 2)
within each set. In particular, we adapt the algorithm design
from Ayoub et al. [2020], and the confidence set Bl in Line 2

is defined using:

LCl
k
pP, pP q :� ¸

pk,hqPCl
k

�@
P p�|sk,h, ak,hq

� pP p�|sk,h, ak,hq, Vk,h�1p�q
D�2

,pP l
k :� argmin

PPP

¸
pk,hqPCl

k

�@
P p�|sk,h, ak,hq, Vk,h�1

D
� Vk,h�1psk,h�1q

�2
,

βl
t :� 2H2 log

�
N pF , α, } � }8q{δ

�
� 2αt

�
8H �

b
2H2 logp4t2{2�lδq�.

(5.1)

Based on the confidence sets, Algorithm 2 performs the
optimistic planning (Line 4-11) at the beginning of each
episode k. In particular, Algorithm 2 first chooses an opti-
mistic model Pk that belongs to the confidence sets of all
levels (Line 5). As long as the true transition probability
P� belongs to the confidence sets, the optimistic optimal
value function V �,Pk

1 psk,1q under Pk will serve as an upper
bound on the true value function V �

1 psk,1q.
Then, Algorithm 2 computes the optimal value function un-
der the optimistic model via dynamic programming (Line 6):

Vk,H�1psq � 0,

Qk,hps, aq � rps, aq � @
Pkp�|s, aq, Vk,h�1p�q

D
,

Vk,hpsq � max
aPA

Qk,hps, aq. (5.2)

Based on the value function, the policy πk is implicitly
defined as πk,hpsk,hq � argmaxaPAQk,hpsk,h, aq. The al-
gorithm will follow this policy (Line 8) and receive the
corresponding reward and the next state. We denote the
triplet of state, action, value function at step h in episode k
as Xk,h :� psk,h, ak,h, Vk,h�1q.
After the planning phase, Algorithm 2 enters the assign-
ing phase (Line 12-18). At Line 14, we utilize the width
wBlpXk,hq to determine which level l the index pk, hq
should be assigned to. The diameter of a function class
B on the triplet Xk,h is defined as

wBpXkq :� sup
PPB

@
P p�|sk,h, ak,hq, Vk,h�1p�q

D
� inf

PPB

@
P p�|sk,h, ak,hq, Vk,h�1p�q

D
.

Once all indices are assigned and the confidence sets are
updated (Line 17), the algorithm updates the maximum level
S and repeats the next episode (Line 18).

5.2 MAIN RESULTS

For each l P N, we set βl
t as α � U�1

l , where Ul satisfies
Ul � 64H2dKdE4

l logUl{δ. In Lemma A.1 in Appendix,
we will see that Ul serves as an upper bound on the cardi-
nality of Cl.



Algorithm 2 F-UPAC-VTR

Require: Confidence radius βl
tpl, t P Nq

1: Set Cl ÐH, l P N and the total level S � 1
2: Denote Bl � tP P P|LClpP, pP lq ¤ βl

|Cl|u
3: for episode k � 1, 2, .. do
4: Receive the initial state sk,1
5: Choose the optimistic model Pk Ð argmaxPP

�
lPrSs Bl V

�,P
1 psk,1q

6: Compute value functions Qk,h and Vk,h, h P rHs for Pk according to Equation (5.2).
7: for h � 1, 2, . . . ,H do
8: Choose the current action ak,h Ð argmaxaPAQk,hpsk,h, aq
9: Receive the reward and the next state sk,h�1

10: Denote Xk,h � psk,h, ak,h, Vk,h�1q for h   H
11: end for
12: for h � 1, 2, . . . ,H � 1 do
13: Set level l � 1
14: while wBlpXk,hq ¤ H2�l and l ¤ S do
15: lÐ l � 1
16: end while
17: Add the new element pk, hq to the set Cl (and update Bl accordingly)
18: Set S � maxl:|Cl|¡0 l
19: end for
20: end for

Theorem 5.1. Suppose F satisfies Assumption 3.3, and
denote dE :� dimEpF , ϵ{8Hq. Then there exists a constant
c such that with probability 1�3δ, for all ϵ ¡ 0, Algorithm 2
satisfies

8̧

k�1

1
 
V �
1 psk,1q � V πk

k,1psk,1q ¡ ϵ
(

¤ c � H
3dKdE log

�
H2dKdE{pϵδq

�
ϵ2

.

Relation to the Regret Bound in Ayoub et al. [2020] Our
result rOpH3dKdEϵ

�2q can be converted into a regret bound
of order rOp?H3dKdEKq, where K is the total number of
episodes. This matches the regret bound rOp?H3dKdEKq
from Theorem 1 in Ayoub et al. [2020] up to logarithmic
factors.
Additionally, Zhou et al. [2021a] shows that the regret bound
of Ayoub et al. [2020] is nearly tight, off by a factor of

?
H

from optimal, in the setting of linear mixture MDPs. This
suggests that our results under Uniform-PAC guarantee can
no longer be improved in terms of dK , dE and K (see
Table 2 for details).

5.3 POTENTIAL EXTENSIONS TO MORE
GENERAL RL CLASSES

One may ask whether our results can be extended to more
general RL classes such as Bellman eluder (BE) dimension
[Jin et al., 2021] and bilinear classes [Du et al., 2021]. Here,
we discuss the possibility of establishing Uniform-PAC guar-
antees for these RL classes.

First of all, we would like to clarify that our model-based
setting cannot be covered by the BE dimension, because
the BE dimension cannot cover linear mixture MDPs (see
e.g., Figure 1 by Chen et al. [2022] for a detailed classifica-
tion), let alone the nonlinear generalization of linear mixture
MDPs considered in our work.

For low BE dimension Jin et al. [2021], the original pa-
per considers two different distribution families, DF and
D∆. DF generalizes the notion of Bellman rank, while D∆

generalizes the eluder dimension. The “low BE dimension”
actually means one of the distribution families has a low
BE dimension. The multi-level partition scheme can be ap-
plied to the GOLF algorithm proposed by Jin et al. [2021],
in the sense that we can use the instance-wise Bellman er-
ror |rfkh � Thfk�1

h spskh, akhq| P p2�l, 2�l�1s (here h stands
for the h-th step and k stands for the k-th episode) as the
criterion to assign step pk, hq to level l. By doing so, we
can establish the Uniform-PAC guarantee in terms of the
BE dimension of the single state-action pair distribution
family D∆. On the other hand, it is hard to establish the
Uniform-PAC guarantee for the family DF , because we can-
not access the expected Bellman error from a single sample.
The difference between the expected Bellman error and the
instance-wise Bellman error will cause error in the level
assignment, which needs to be carefully controlled in order
to achieve ϵ�2 sample complexity.

For bilinear class, Du et al. [2021] assumed the expected
Bellman error for some hypothesis f has a bilinear form of
|xWhpfq �Whpf�q, Xhpfqy|. Intuitively, at episode k and
step h, the quantity }Xhpfkq}Σ�1

k;h
can be used as a criterion



for level assignment. However, in most cases, Xhpfkq is
defined as an expectation over the stationary distribution
(see e.g., Section 4.3 by Du et al. [2021]), which cannot be
computed exactly and has to be estimated using a single
sample. Therefore, we again face the challenge of control-
ling the estimation error of the criterion, which may need a
more delicate technique to achieve ϵ�2 PAC bound.

We leave both extensions as future work.

6 PROOF OVERVIEW FOR NONLINEAR
BANDITS

In this section, we show the proof of Theorem 4.1, which
will illustrate the key idea of achieving Uniform-PAC guar-
antee for bandits and model-based RL with small eluder
dimension.

We will use Cl
k to denote the level set Cl before insert the

index k into any level set. Bl
k and pP l

k are defined based on
Cl
k accordingly. lk is the level that the index k is assigned

to.

The proof relies on the following two lemmas. The first
lemma states that each level set only contains bounded num-
ber of indices.

Lemma 6.1. Suppose we set α � U�1
l for βl

t �
8 logpN pF , α, } � }8q{δq � 2αtp8 �

a
8 logp4t2{2�lδqq,

where Ul is defined via the equality Ul �
64dKdE4

l logUl{δ. Then for each level l ¡ 0 and
each round k ¡ 0, the total number of actions in the set Cl

k

is bounded as |Cl
k|   Ul, which also means

|Cl
k|   128dKdE4

l logp64dKdE4l{δq.

Here, dE � dimEp2�lq.

The second lemma states the designed confidence set con-
tains the true parameter with high probability.

Lemma 6.2. Suppose βl
t � 8 logpN pF , α, } � }8q{δq �

2αtp8 �
a
8 logp4t2{2�lδqq, and F l

k � tf P
F |LCl

k
pf, pf lkq ¤ βl

|Cl
k|
u With probability 1 � 2δ, we have

for all k ¡ 0 and l P rSks, f� P F l
k.

Now we proceed to prove the main result.

Proof of Theorem 4.1. Denote x�k � argmaxxPAk
f�pxq.

Under the event of Lemma 6.2, we have

max
xPAk

f�pxq � f�pxkq � f�px�kq � f�pxkq
¤ max

fP
�

lPrSs Fl
k

fpx�kq � min
fPFlk

k

fpxkq

¤ max
fPFlk

k

fpxkq � min
fPFlk

k

fpxkq

� wFlk
k

pxkq,
where the first inequality is by Lemma 6.2; the second in-
equality is by the definition of xk that is the optimistic
action. The last equality is by the definition of wFlk

k

p�q.

Therefore, by choosing the level l0 such that 2�l0   ϵ ¤
2�pl0�1q, we have°8

k�1 1
 
maxaPAk

fθ�pxq � fθ�pxkq ¡ ϵ
(

¤ °8
k�1 1

 
wFlk

k

pxkq ¡ ϵ
(

¤ °8
k�1 1

 
wFlk

k

pxkq ¡ 2�l0
(

¤ °8
k�1

°l0
l�1 1

 
lk � l

( ¤ °l0
l�1 Ul,

where the first line is by the inequality we established above;
the second one is by ϵ ¡ 2�l0 ; the third inequality is by the
design of the level set Cl and the last inequality is due to
Lemma 6.1.

From Lemma 6.1, we can further bound
°l0

l�1 Ul by

l0̧

l�1

128dKdimEp2�lq4l logp64dKdimEp2�lq4l{δq

¤ 128dKdimEpϵ{2q
l0̧

l�1

4lplogp64dKdimEpϵ{2q{δq � 2lq

¤ 128dKdEp4l0�1 logp64dKdE{δq � 4l0�1l0q
¤ c � dKdE

ϵ2
logpdKdE{ϵδq,

where the first line is due to Lemma 6.1;the second line holds
because 2�l ¥ 2�l0 ¥ ϵ{2 (recall that dE � dimEpϵ{2q);
the third line relies on

°l0
l�1 4

l   4l0�1 and
°l0

l�1 l4
l  

l04
l0�1; the last line holds because 2�l0   ϵ ¤ 2�pl0�1q,

thus 2l0   2ϵ�1. c in the last line is some constant.

7 CONCLUSION AND DISCUSSION

In this work, we consider online decision-making with
general function approximations and propose two new al-
gorithms for nonlinear bandits and episodic MDPs. With
the help of the multi-level partition scheme, our F-UPAC-
OFUL algorithm and F-UPAC-VTR algorithm obtain the
Uniform-PAC guarantee to find the near-optimal policy with
the state-of-the-art sample complexity. To the best of our
knowledge, these results for the first time show that it is
possible to achieve a Uniform-PAC guarantee in bandits and
RL problems with general function approximation.
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A PROOF OF THEOREM 5.1

We will use Cl
k,h to denote the level set Cl before assign the tuple Xk,h � psk,h, ak,h, Vk,h�1q into any level set. Bl

k,h andpP l
k,h are defined based on Cl

k,h accordingly. lk,h denotes the level to which pk, hq is assigned to. Note that F l
k,h is defined as:

F l
k,h :�

"
f : X Ñ R

����DP P Bl
k,h, s.t. fps, a, V q �

»
s1
P ps1|s, aqV ps1q

*
,

where X � S �A� B8pS, Hq and B8pS, Hq is all measurable real-valued functions on S that are bounded by H .

Similar as in the bandit case, the proof relies on two facts: 1) each level consists finite number of steps; 2) the true transition
probability belongs to the confidence sets with high probability.

Lemma A.1. If we set α � U�1
l for βl

t :� 2H2 logpN pF , α, } � }8q{δq � 2αtp8H �
a
2H2 logp4t2{2�lδqq, where Ul is

defined via the equality Ul � 64dKdE4
l logpUl{δq. Then for each level l ¡ 0 and each episode k ¡ 0 and time step h ¡ 0,

the total number of actions in the set Cl
k,h is bounded as

|Cl
k|   Ul,

which also means

|Cl
k|   128dKdE4

l logp64dKdE4l{δq.

Here, dE � dimEpF , H2�lq.

Proof. See Section C.1.

The next lemma shows the designed confidence set will contain the true transition probability. The proof of this lemma will
follow Ayoub et al. [2020], while only differs in the definition of the filtration for each level set.

Lemma A.2. [A restatement of Theorem 5 in Ayoub et al. [2020]] With probability 1� 2δ, we have for all k, h ¡ 0 and
l P Sk,h,

P� P Bl
k,h.

Proof. The proof will be almost same as in Ayoub et al. [2020], except the martingale design will be multiplied by the
indicator 1tlk,h � lu for some fixed l. Since the proof in Ayoub et al. [2020], also follows that in Russo and Van Roy [2013],
we avoid repeating the proof here.

The next lemma decomposes the pseudo-regret of an episode.

Lemma A.3 (Lemma 4 in Ayoub et al. [2020]). Assuming P� P Bl, we have

V �
1 psk,1q � V πk

k,1psk,1q ¤
H�1̧

h�1

@
Pkp�|sk,h, ak,hq � P�p�|sk,h, ak,hq, Vk,h�1

D� H�1̧

h�1

ξk,h�1,

where

ξk,h�1 :� @
P�p�|sk,h, ak,hq, Vk,h�1p�q � V πk

k,h�1p�q
D� pVk,h�1psk,h�1q � V πk

k,h�1psk,h�1qq.

Notice that for any given sub-sequence of episodes k1, k2, . . . , km,
�pξki,h�1qhPrH�1s

�
iPrms

forms a sequence of martingale
differences.

The following lemma is simply an application of the Azuma’s inequality.



Lemma A.4. For a fixed l ¡ 0, denote k1, k2, . . . , km as the indices of the episodes whose pseudo-regret is above 2�l so
far. With probability 1� δ{2l, we have

m̧

i�1

H�1̧

h�1

ξki,h�1 ¤ 2H
b
2mH logp2lδ�1q.

By a union bound, we have the above inequality for all l with probability 1� δ.

Proof of Theorem 5.1. First, for any given ϵ ¡ 0, we choose L such that H2�L   ϵ ¤ H2�pL�1q. We will bound the
number of episodes that has pseudo-regret above H2�L. This scheme will cover all ϵ ¡ 0 since V �

1 psk,1q�V πk

k,1psk,1q   H .

At the end of any certain episode, we use k1, k2, . . . , km to denote the indices of the episodes whose pseudo-regret is above
H2�L.

Under the event of Lemma A.2, we have

mH2�L ¤
m̧

i�1

�
V �
1 pski,1q � V

πki

ki,1
pski,1q

�

¤
m̧

i�1

H�1̧

h�1

@
Pki

p�|ski,h, aki,hq � P�p�|ski,h, aki,hq, Vki,h�1

D� m̧

i�1

H�1̧

h�1

ξki,h�1

¤
m̧

i�1

H�1̧

h�1

�
sup

PPB
lk,h
k,h

@
P p�|ski,h, aki,hq, Vki,h�1

D� inf
PPB

lk,h
k,h

@
P p�|ski,h, aki,hq, Vki,h�1

D�� m̧

i�1

H�1̧

h�1

ξki,h�1

�
m̧

i�1

H�1̧

h�1

w
B

lk,h
k,h

pXk,hq �
m̧

i�1

H�1̧

h�1

ξki,h�1 (A.1)

where the second inequality holds due to Lemma A.3; the third holds under the event of Lemma A.2.

Under the event of Lemma A.4, we have

m̧

i�1

H�1̧

h�1

ξki,h�1 ¤ 2H
b
2mH logp2Lδ�1q. (A.2)

Meanwhile, denote l0 such that H2�l0   2�L{2 ¤ H2�pl0�1q (for simplicity we denote wk,h � w
B

lk,h
k,h

pXk,hq)

m̧

i�1

H�1̧

h�1

wk,h ¤
m̧

i�1

H�1̧

h�1

�
1

"
wk,h ¡ 2�L

2

*
wk,h � 2�L

2

�

¤
m̧

i�1

H�1̧

h�1

1

"
wk,h ¡ 2�L

2

*
wk,h � mH2�L

2

¤
m̧

i�1

H�1̧

h�1

1tlk,h ¤ l0uwk,h � mH2�L

2

¤
m̧

i�1

H�1̧

h�1

1tlk,h ¤ l0u2�plk,h�1q � mH2�L

2
,

where the first inequality is from splitting the case where wk,h ¡ 2�L{2 and wk,h ¤ 2�L{2; the third holds because
wk,h ¡ 2�L{2 ¡ H2�l0 implies wk,h belongs to the level equal to or lower than l0.

For some constant c1, we have the first term further bounded as:

m̧

i�1

H�1̧

h�1

1

"
lk,h ¤ l0

*
2�plk,h�1q ¤

l0̧

l�1

m̧

i�1

H�1̧

h�1

1tlk,h � lu2�pl�1q



�
l0̧

l�1

|Cl
k,h|2�pl�1q

¤
l0̧

l�1

256dKdimEpH2�lq2l logp64dKdE4l{δq

¤
l0̧

l�1

256dKdimEp2�L{4q2l logp64dKdE4l{δq

¤ 256dKdEp2l0�1 logp64dKdE{δq � 2l02
l0�1q

¤ 256dKdEp8 � 2LH logp64dKdE{δq � 32 � 2LH logp2LHqq
¤ c1 �HdKdE2L logpHdKdE2L{δq,

where the third line is due to Lemma A.1; the fourth line holds because dimEpF , ϵq is decreasing with ϵ andH2�l0 ¥ 2�L{4;
the fifth relies on

°l0
l�1 2

l   2l0�1 and
°l0

l�1 l2
l   l02

l0�1; the sixth is a substitution of l0 by L.

Together we have

m̧

i�1

H�1̧

h�1

w
B

lk,h
k,h

pXk,hq ¤ c1 �HdKdE2L logpHdKdE2L{δq � mH2�L

2
. (A.3)

Along with (A.1) and (A.2), we have

mH2�L ¤ mH2�L

2
� c1 �HdKdE2L logpHdKdE2L{δq � 2H

b
2mH logp2Lδ�1q,

Since m ¤ A�?
Bm implies m ¤ 2A� 2B, we have

m ¤ 4c1dKdE4
L logpHdKdE2L{δq � 64H4L logp2L{δq

¤ p4c1 � 64qHdKdE4L logpHdKdE2L{δq.

Finally, since H2�L   ϵ ¤ H2�pL�1q, we have dimEp2�L{4q   dimEpϵ{8Hq and

8̧

k�1

1

"
V �
1 psk,1q � V πk

k,1psk,1q ¡ ϵ

*
¤ p4c1 � 64qHdKdE4L logpHdKdE2L{δq

¤ c � H
3dKdE logpH2dKdE{ϵδq

ϵ2
,

for some constant c, and dE � dimEpϵ{8Hq. This inequality holds for all ϵ ¡ 0 uniformly with probability 1� 3δ.

B PROOF OF LEMMAS IN SECTION 6

B.1 PROOF OF LEMMA 6.1

The proof relies on Proposition 3 in Russo and Van Roy [2013]. A restatement is as follows:

Lemma B.1 (Proposition 3 in Russo and Van Roy [2013]). Let txtutPrT s denote a series of actions for some T ¡ 0. If
tβtut¡0 is a non-decreasing series and Ft � tf P F |LCtpf, pftq ¤ βtu, then

Ţ

t�1

1twFtpxtq ¡ ϵu ¤
�
βT
ϵ2

� 1



dimEpF , ϵq.

Proof of Lemma 6.1. First, note that

βl
t :� 2 logpN pF , α, } � }8q{δq � 2αtp8�

b
2 logp4t2{2�lδqq



� 2 logpN pF , U�1
l , } � }8q{δq � 2

t

Ul
p8�

b
2 logp4t2{2�lδqq

¤ 2dK logpUl{δq � 2
t

Ul
p8�

b
2 logp4t2{2�lδqq.

Suppose there are T actions stored in Cl
k at round k, denote them by the index pk1, k2, . . . , kT q. Notice that each action in

level l satisfies 2�l   wFl
ki

pxki
q ¤ 2�l�1 for i P rT s. Setting ϵ � 2�l, we have by Lemma B.1

T ¤ 2dimEpF , 2�lqβl
T 4

l.

Now we prove by contradiction. If at some round k1, |Cl
k1 | � Ul, by setting T � Ul, we have

Ul ¤ 2dimEpF , 2�lqβl
Ul
4l

¤ 2dE4
l

�
2dK logpUl{δq � 2p8�

b
2 logp4U2

l {2�lδqq



  2dE4
l

�
2dK logpUl{δq � 2p8�

b
2 logpU2

l {2�lδqq


,

and meanwhile

Ul � 64dKdE4
l logpUl{δq. (B.1)

Combining the two together and rearranging terms, we get

15 logpUl{δq   8�
a
2p2plogp4Ul{δq � l � 2q.

From (B.1), we see Ul{δ ¡ 64dKdE4
l{δ ¡ 64 � 4l. Substituting Ul{δ to the inequality above leads to a contradiction.

The additional conclusion comes from the fact that T � A log T implies T   2A logA if A ¡ e.

B.2 PROOF OF LEMMA 6.2

The proof follows Russo and Van Roy [2013]. We include this proof mainly for completeness and to show how the
level-partition scheme affects the martingale design.

Consider random variables pZn|n P Nq adapted to the filtration pHn|n ¥ 0q. Assume ErexppλZiqs is finite for any λ.
Define the conditional mean µi � ErZi|Hi�1s and the conditional cumulant generating function of the centered random
variable pZi � µiq by ψipλq � logErexp �λpZi � µiq

�|Hi�1s. Then we have

Lemma B.2 (Lemma 4 in Russo and Van Roy [2013]). For all x ¥ 0 amd λ ¥ 0,

Pp
Ķ

i�1

λZi ¤ x�
Ķ

i�1

rλµ� ψipλqs,@K P Nq ¥ 1� e�x.

Another lemma regarding the discretization error is:

Lemma B.3 (Lemma 5 in Russo and Van Roy [2013]). If fα satisfies }f � fα}8 ¥ α, then with probability at least 1� δ,
(denote t � |Cl

k| )����12LCl
k
pfα, fθ�q � 1

2
LCl

k
pf, fθ�q �

¸
kPCl

k

�
fpxkq �Rk

�2 � ¸
kPCl

k

�
fαpxkq �Rk

�2���� ¤ αt
�
8�

a
8 logp4t2{δq�,

for any given rounds.



Proof of Lemma 6.2. Now, we consider all those rounds added to the level set Cl (with l fixed), and in the end will use a
union bound to prove the results for all level.

First we transform our problem to apply the general martingale result. We set Hk�1 to be the σ-algebra generated
by Hk � pA1,x1, R1, . . . ,Ak�1,xk�1, Rk�1,Akq and xk. By previous assumptions, ϵk :� Rk � fθ�pxkq satisfies
Erϵk|Hk�1s � 0 and Erexppλϵkq|Hk�1s ¤ exppλ2{2q since ϵk is 1-sub-Gaussian.

Define

Zk : � 1t2�l   wFl
k
pxkq ¤ 2�pl�1qu��fθ�pxkq �Rk

�2 � �
fpxkq �Rk

�2�
� 1tlk � lu�� �

fpxkq � fθ�pxkq
�2 � 2

�
fpxkq � fθ�pxkq

�
ϵk
�
,

and we have

µk � ErZk|Hk�1s � �1tlk � lu�fpxkq � fθ�pxkq
�2
,

ψkpλq � logE
�
exp

 
2λrfpxkq � fθ�pxkq|Hk�1sϵk

(� ¤ 1tlk � lu�2λrfpxkq � fθ�pxkqs
�2

2
.

Here, 1t2�l   wFl
k
pxkq ¤ 2�pl�1qu � 1tlk � lu because it is just a notation change. Note that this indicator function is

deterministic on Hk�1. Applying Lemma B.2 and set x � log δ�1 and λ � 1{4, we have

P
� Ķ

k�1

Zk ¤ 4 log δ�1 � 1

2

Ķ

k�1

1tlk � lu�fpxkq � fθ�pxkq
�2
,@K P N



¥ 1� δ.

Rearranging terms (note LCl
K
pf, fθ�q �

°
kPCl

K

�
fpxkq � fθ�pxkq

�2
),

P
� ¸

kPCl
K

�
fpxkq �Rk

�2 ¥ ¸
kPCl

K

�
fθ�pxkq �Rk

�2 � 4 log δ�1 � 1

2
LCl

K
pf, fθ�q,@K P N



¥ 1� δ.

Let Fα be a α-covering of F , by a union bound we have with probability 1� δ,

¸
kPCl

K

�
fαpxkq �Rk

�2 ¥ ¸
kPCl

K

�
fθ�pxkq �Rk

�2 � 4 logp|Fα|{δq � 1

2
LCl

K
pfα, fθ�q,@K P N,@fα P Fα.

The inequality above, combined with Lemma B.3, gives that with probability at least 1� 2δ,

¸
kPCl

K

�
fpxkq �Rk

�2 � αt
�
8�

a
8 logp4t2{δq� ¥ ¸

kPCl
K

�
fθ�pxkq �Rk

�2 � 4 logp|Fα|{δq � 1

2
LCl

K
pf, fθ�q,@K P N,@f P F .

By setting f � pfCl
K

, which minimize
°

kPCl
K

�
fpxkq �Rk

�2
, and rearranging terms, we have with probability 1� 2δl

¸
kPCl

K

LCl
K
p pfCl

K
, fθ�q ¤ 8 logpN pF , α, } � }8q{δlq � 2αt

�
8�

a
8 logp4t2{δlq

�
.

Now by setting δl � δ2�l, and applying union bound, we have with probability 1� 2δ,

LCl
K
p pfCl

K
, fθ�q ¤ βl

|Cl
K |,@K P N,@l P N.



C PROOF OF LEMMAS IN SECTION A

C.1 PROOF OF LEMMA A.1

Proof. Note that

βl
t :� 2H2 logpN pF , α, } � }8q{δq � 2αtp8H �

b
2H2 logp4t2{2�lδqq

� 2H2 logpN pF , U�1
l , } � }8q{δq � 2

t

Ul
p8H �

b
2H2 logp4t2{2�lδqq

¤ 2H2dK logpUl{δq � 2
t

Ul
p8H �

b
2H2 logp4t2{2�lδqq.

Denoting T � |Cl
k,h| at any fixed time step pk, hq, by Lemma B.1, we know that (set ϵ � H2�l)

T ¤ 2dimEpF , H2�lqβl
T 4

lH�2.

Now, we prove by contradiction. If at some point T � Ul, this means

Ul ¤ 2dimEpF , H2�lqβl
Ul
4l

¤ 2dE4
lH�2

�
2H2dK logpUl{δq � 2p8H �

b
2H2 logp4U2

l {2�lδqq



  2dE4
lH�2

�
2H2dK logpUl{δq � 2p8H �

b
2H2 logp4U2

l {2�lδqq


,

and meanwhile

Ul � 64dKdE4
l logpUl{δq.

After some rearrangement we see this suggests

15dK logpUl{δq ¤ 8�
a
2p2 logpUl{δq � l � 2q,

which cannot hold because Ul{δ ¡ 64dKdE4
l{δ ¡ 64 � 4l.

The additional conclusion comes from the fact that T � A log T implies T   2A logA if A ¡ e.
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