
A Detailed iDAFNO architecture

Similar to the eDAFNO architecture shown in (6), we present the iDAFNO version by incorporating
the layer-independent parameter definition characterized in the IFNO structure (You et al., 2022c):

J [h](x) :=h(x) + τσ

(
χ(x)

(
I(χ(·)h(·);v)− h(x)I(χ(·);v) +Wh(x) + c

))
,

where I(◦;v) := F−1
[
F [κ(·;v)] · F [◦]

]
.

(11)

Here, τ =
1

L
is the reciprocal of the total number of layers employed. Note that the superscript l is

dropped because the model parameters are layer-independent in the iDAFNO architecture, which
leads to significant computational saving.

B Problem settings and additional experimental results

In order to maintain consistency with other baselines, the dimension of representation in the first
two examples is set to dh = 32, with a total of 4 Fourier layers and 12 Fourier modes being used in
each direction. The output at each point is obtained via a projection layer in the form of a 2-layer
multilayer perceptron (MLP) with width (dh, 128, du), where du is the intended number of output. In
the third example, dh is set to 16. A total of 3 Fourier layers with 32 Fourier modes in each direction
are employed. The width of the projection MLP is set to (dh, 2dh, du).

B.1 Experiment 1 – Constitutive modeling of hyperelasticity

The dataset is obtained from Li et al. (2022a), which consists of an interpolated dataset of 41× 41
point cloud on uniformly structured grids. The parameter of each method is given in the following,
where the parameter choice of each model is selected by tuning the number of layers and the width
(channel dimension) keeping the total number of parameters on the same magnitude.

• eDAFNO: In these cases, we use neural operators to construct mapping from grid location
x as the input, and the stress field as the output. To perform fair comparison with the results
reported in Li et al. (2022a), we employ the same hyperparameters here: in particular, four
Fourier layers with mode 12 and width 32 are used.

• iDAFNO: The iDAFNO cases employ the same hyperparameters as the eDAFNO cases,
with the iterative layer structure demonstrated in (11). In iDAFNO, all Fourier layers share
the same set of trainable parameters, while different layers have different parameters in
eDAFNO. Hence, iDAFNO reduces the number of trainable parameters by almost 75%,
when using the same hyperparameters as in eDAFNO.

• FNO (with mask or smooth χ): Following the same practice as in Li et al. (2022a), we
train a plain FNO model (Li et al., 2020c), with the input as [x, χ(x)] (in the “with mask”
cases) or as [x, χ̃(x)] (in the “with smoothed χ” cases). Herein, we employ the same FNO
architecture as reported in Li et al. (2022a), where four Fourier layers are used with mode
12 and width 32.

• IFNO (with mask or smooth χ): Similar to the FNO cases, we also use [x, χ(x)] (in the
“with mask” cases) or [x, χ̃(x)] (in the “with smoothed χ” cases) as the input, with four
Fourier layers, mode 12, and width 32. On the Fourier layers, the implicit architecture
proposed in You et al. (2022c) is employed, such that all four Fourier layers share the same
set of trainable parameters. Therefore, the number of trainable parameters in IFNOs is
roughly 1/4 of that in FNOs.

• Geo-FNO: As a baseline model for FNOs with various geometries, we employ the Geo-FNO
architecture from Li et al. (2022a), where an additional deformation neural network is
trained together with FNO to provide a diffeomorphism from uniform grids to the deformed
domain.

• F-FNO: Following the settings in Li et al. (2022a), we train the F-FNO model (Li et al.,
2020c) with the input [x, χ(x)]. We adopt the same F-FNO architecture as reported in Tran
et al. (2022), where four Fourier layers are used with mode 16 and width 64.

14

• GNO: The graph neural operators are flexible on the problem geometry, which have been
widely used for complex geometries (Li et al., 2020a; Liu et al., 2022). To carry out fair
comparison, we build a full graph with edge connection radius r = 0.2, width 32 and kernel
width 512. As a result, the total number of parameters in GNOs is on the same magnitude as
in FNOs.

• DeepONet: As another neural operator baseline model, the deep operator network (Lu et al.,
2022) is composed of two neural networks – a trunk net and a branch net to represent the
basis and coefficients of the operator. In this baseline, we use five layers for both the trunk
net and branch net, each with a width of 256.

• UNet: Analogous to the setup in Li et al. (2022a), we train a UNet model (Ronneberger
et al., 2015) on uniform grids, where 4 downsampling and upsampling blocks with 20 hidden
channels are employed.

The comparison of the total number of parameters of the selected models used in the hyperelasticity
problem is listed in Table 13. In addition, the average runtime for each method on the hyperelasticity
problem with 1000 training samples is provided in Table 4. All tests are performed on a NVIDIA
RTX A6000 GPU card with 48GB memory. From this table, we can see that in DAFNOs the runtime
increases slightly compared with the corresponding FNOs, but they are still substantially more
efficient than other baselines, such as Geo-FNO.

For each method, we tune the learning rate from the range [1e-3,1e-1], the decay rate from the range
[0.4,0.9], the weight decay parameter from from the range [1e-6,1e-2], and the smoothing coefficient
(where applicable) from the range [5,100], then report the model with the best validation error. A
typical training curve can be found in Figure 8. As a supplement of Table 2, the full table of all
training and testing errors from different models is provided in Table 5.

Table 4: The per-epoch runtime (in seconds) of selected models for the hyperelasticity problem.

model eDAFNO iDAFNO FNO IFNO Geo-FNO GNO DeepONet UNet F-FNO

runtime 2.00 1.70 1.81 1.62 5.12 98.37 940.12 5.04 3.41

0 100 200 300 400 500
Epoch

10-2

10-1

100

101

L
2

R
el

at
iv

e
E

rr
or

eDAFNO ntrain=100

Figure 8: Demonstration of a typical training curve for eDAFNO.

To demonstrate the effect of the smoothing level when using different smoothing coefficient β, we
illustrate the smoothed χ on an exemplar test sample in Figure 9. We also perform tests on the
hyperelasticity example with a total of 1000 training samples and show the errors on the test dataset
in Table 6. For each value of β, we search for the optimal initial learning rate, the decay rate, and the
weight decay parameter based on the validation dataset, and report the optimal values.

3We note that the numbers of trainable parameters for the “Geo-FNO” and “FNO” cases are different from
the ones provided in Li et al. (2022a). For fair comparison with methods using real-valued trainable parameters,
we count each complex-valued trainable parameter as two degrees of freedom.

15

Table 5: Results for the hyperelasticity problem, where bold numbers highlight the best method
according to the test error.

Model, Dataset # of training samples
10 100 1000

eDAFNO, train 6.800%±0.670% 2.050%±0.035% 0.664%±0.014%
eDAFNO, test 16.446%±0.472% 4.247%±0.066% 1.094%±0.012%
iDAFNO, train 7.266%±0.923% 2.038%±0.036% 0.812%±0.012%
iDAFNO, test 16.669%±0.523% 4.214%±0.058% 1.207%±0.006%
FNO w/ mask, train 2.907%±0.318% 2.277%±0.240% 0.881%±0.015%
FNO w/ mask, test 19.487%±0.633% 7.852%±0.130% 4.550%±0.062%
FNO w/ smooth χ, train 2.876%±0.152% 2.058%±0.132% 0.815%±0.012%
FNO w/ smooth χ, test 17.431%±0.536% 5.479%±0.186% 1.415%±0.025%
Geo-FNO, train 0.547%±0.336% 0.689%±0.676% 1.192%±0.232%
Geo-FNO, test 28.725%±2.600% 10.343%±4.446% 2.316%±0.283%
IFNO w/ mask, train 2.274%±0.248% 1.687%±0.047% 2.701%±0.041%
IFNO w/ mask, test 19.262%±0.376% 7.700%±0.062% 4.481%±0.022%
IFNO w/ smooth χ, train 3.704%±0.299% 1.683%±0.029% 1.013%±0.014%
IFNO w/ smooth χ, test 17.145%±0.432% 5.088%±0.146% 1.509%±0.018%
GNO, train 27.337%±0.501% 18.713%±0.669% 13.321%±0.681%
GNO, test 29.305%±0.321% 18.574%±0.584% 13.007%±0.729%
DeepONet, train 23.071%±5.963% 22.700%±0.984% 7.937%±0.309%
DeepONet, test 35.409%±0.408% 25.925%±0.724% 11.760%±0.827%
UNet, train 98.042%±0.260% 34.569%±2.676% 1.760%±0.115%
UNet, test 98.167%±0.236% 34.467%±2.858% 5.462%±0.048%

Smooth level β = 10 Smooth level β = 25 Smooth level β = 50 Smooth level β = 100Mask/Computational domain

Figure 9: An illustration of the effect of varying the smoothing coefficient on the resulting boundary
encoding. The larger the smoothing level β is, the sharper and narrower the encoded boundary
becomes. In effect, β can be treated as a hyperparameter and tuned according to the validation error
to either smoothen the boundary or keep the original boundary untouched.

Table 6: The effect of the smoothing coefficient β on test loss in the hyperelasticity example with a
total of 1000 training samples.

initial learning rate decay rate weight decay parameter β train loss test loss

4.5× 10−2 0.5 3× 10−6 5 0.564% 1.155%
4.0× 10−2 0.5 1× 10−5 10 0.637% 1.064%
2.0× 10−2 0.5 1× 10−5 20 0.454% 1.120%
1.5× 10−2 0.5 3× 10−5 30 0.516% 1.147%
2.5× 10−2 0.5 3× 10−5 40 0.608% 1.135%
1.5× 10−2 0.5 3× 10−5 50 0.504% 1.179%
1.5× 10−2 0.5 2× 10−5 60 0.498% 1.194%
1.5× 10−2 0.5 3× 10−5 70 0.508% 1.240%
1.5× 10−2 0.5 3× 10−5 80 0.515% 1.275%
1.5× 10−2 0.5 3× 10−5 90 0.529% 1.306%
3.0× 10−2 0.5 3× 10−5 100 0.675% 1.338%

16

B.2 Experiment 2 – Airfoil design

The airfoil dataset is directly taken from Li et al. (2022a), which is an interpolated dataset of 101×101
point cloud on uniformly structured grids. The analytical mapping function f and the corresponding
inverse mapping function f−1 used in Figure 5 are defined in the following:[

x
y

]
=f

([
X
Y

])
=

[
0.909 tan−1 (1.965X)

0.714 tan−1
(
3.46Y + 0.173 sin

(
0.909π tan−1 (1.965X)

))] , (12)[
X
Y

]
=f−1

([
x
y

])
=

[
0.509 tan (1.1x)

0.289 tan (1.4y)− 0.05 sin (πx)

]
, (13)

where upper- and lower-case letters indicate the coordinate systems in the physical and computational
spaces, respectively.

B.3 Experiment 3 – Crack propagation with topology change

Figure 10: An illustration of the crack propagation problem, showing the topology change in DAFNO
(left) and the physical problem setup (right), where a 2D plate with a pre-crack is subjected to external
tractions (denoted as σ with a slight abuse of notation) on the top and bottom edges.

An illustration of the time-dependent domain evolution, as well as the problem setup, is shown in
Figure 10. The governing PD equation of motion for brittle fracture used in generating the dataset is
given below:

ρ
∂2u

∂t2
= L(u) + b , L(u)(x, t) =

∫
Hx

µ(x,y, t)f(x,y, t)dy . (14)

In (14), u is the displacement field, ρ is mass density, t is time, b is the external force density (a.k.a.
the body force), and L(u) is the internal force density. L(u) is the divergence of stress in local theory,
but in PD, it is defined by the integral described in (14). Hx denotes a finite-size neighborhood
of point x. f(x,y, t) is the dual force density representing the pairwise force acting between unit
volumes at points x and y in its neighborhood Hx. f depends on the PD constitutive model, and
µ(x,y, t) is a binary history-dependent quantity representing material damage. µ is either 0 or 1 for
brittle fracture models, where µ = 0 denotes a lost interaction for material points x and y while µ = 1
implies an intact connection between the two. For the material model, we choose to work with the
linearized bond-based model, and for the damage model we adopt the pointwise energy-based model
provided in the PeriFast software. According to the employed damage model, topology evolution due
to growing crack is a function of strain energy which depends on the updated displacement field, i.e.,
Ω(t) = Ω(u(t)). Additional details regarding the PD formulation can be found in Jafarzadeh et al.
(2022b).

The physical parameters used in generating the data are: Young’s modulus E = 150 GPa, Poison’s
ratio ν = 0.33, mass density ρ = 1000 kg/m3, and fracture energy G0 = 200 J/m2. The relative
computational parameters are: PD horizon (the radius of the neighborhood for nonlocal interactions)
δ = 2.07 mm, extended domain (i.e., the periodic box) size 44.14 mm × 44.14 mm with 64 × 64
discretization, and time step ∆t = 2× 10−8 s. For the crack data subset in training, we run PeriFast
software with the above parameters and the traction magnitude of 4 MPa. We record u1, u2, χ,
L1, and L2 for 450 consecutive time steps. For the sinusoidal data subset used in training, we set
u1 = c sin

(
2mπx1

L

)
sin

(
2nπx2

L

)
, and u2 = 0 for m,n = 1, 2, · · · , 32, where L is the length of

the square box, x1 and x2 are the 2D coordinates, and c = 0.01/32 is a scaling factor to make

17

the generated displacement in the same scale as the crack data. Additionally, we set u1 = 0 and
u2 = c sin

(
2mπx1

L

)
sin

(
2nπx2

L

)
. This results in a total of 2,048 instances of sinusoidal displacement

fields. Next, we set χ = 1 for all nodes and use the PD operator in PeriFast to compute the
corresponding L1 and L2 fields.

Following the common practice in PD simulations (Ha & Bobaru, 2010), we employ the following
two additional techniques to help with training and stabilizing crack propagation. Firstly, we do not
allow damage to initiate from boundaries. This technique has been used in previous PD simulations
and is referred to as the “no-fail zone”. It effectively stops unrealistic distributed damage from
initiating on the boundaries. Secondly, given that the physical problem is symmetric, we enforce the
damage growth in the simulation with eDAFNO to be symmetric as well. Note that the whole domain
is used for training, and the predictions on the entire domain is used for next time step evaluation.
Symmetry is enforced only when the topology characteristic function χ is updated.

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Peridynamics
(higher spatial

resolution)

eDAFNO
(higher spatial

resolution)

eDAFNO
(higher spatial and

tempotal resolution)

5.82 5.82 5.82

mm

mm

Ground Truth

eDAFNO Prediction on

128x128 and Δt=0.02 μs

eDAFNO Prediction on

128x128 and Δt=0.01 μs

1

0.8

0.6

0.4

0.2

0

-5

0

5

10

x10-4

-3

3

x10-3

0

1

2

-2

-1

Figure 11: Demonstration of the resolution-independence property of eDAFNO trained using a spatial
discretization of 64×64 and time step of 0.02 µs and tested on a spatial discretization of 128×128
and time step of 0.01 µs. The three rows correspond to the χ, u1, and u2 fields, respectively.

Besides the resolution-independence property of DAFNO as shown in Figure 3, we further inves-
tigate the generalizability of DAFNO in both physical and temporal resolutions with this example.
Specifically, the eDAFNO model is trained on a spatial resolution of 64×64 and a time step of 0.02
µs, and it is here tested on both a finer spatial resolution of 128×128 and a finer time step of 0.01 µs.
As shown in Figure 11, the performance of the low-resolution-trained eDAFNO on high resolutions
is compared with the high-fidelity peridynamics simulation results, where visually identical results
are observed. Note that, although the time marching is computed with an ODE solver in this example,
the temporal resolution independence is still worth investigating because, as the number of time steps
increases, the number of times that the error accumulates in the dynamic solver increases as well.
Our results show that eDAFNO prediction remains independent of the time step employed.

B.4 Experiment 4 – Pipe flow

We perform an additional experiment of pipe flow, in which the dataset is obtained from Li et al.
(2022a). We closely follow their problem setup and briefly document the comparison against Geo-
FNO in what follows.

18

Using 1000 samples for training, eDAFNO has achieved a similar performance to Geo-FNO: when
comparing the relative L2 errors, eDAFNO’s test error on the pipe dataset is 0.71%, while the test
error of Geo-FNO is 0.67%. When comparing the maximum absolute error (cf. Figure 12), eDAFNO
has 0.051, while Geo-FNO has 0.061. This is probably due to the fact that all pipes have a very
simple geometry, which can be accurately represented with the pre-specified mapping in Geo-FNO.
Note that such a pre-specified mapping for grid deformation can be easily added in DAFNO, as
demonstrated in the airfoil experiment. In this circumstance, DAFNO becomes exactly the same as
Geo-FNO in the pipe flow setup.

eDAFNO

Geo-FNO

Figure 12: An illustration of the absolute error distribution of predictions from Geo-FNO and
eDAFNO on the pipe dataset. The maximum absolute errors of Geo-FNO and eDAFNO are 0.061
and 0.051, respectively. In the vicinity of the outlet where most errors accumulate, eDAFNO is also
more accurate compared to Geo-FNO.

19

	Detailed iDAFNO architecture
	Problem settings and additional experimental results
	Experiment 1 – Constitutive modeling of hyperelasticity
	Experiment 2 – Airfoil design
	Experiment 3 – Crack propagation with topology change
	Experiment 4 – Pipe flow

