STABLE. TABLE GENERATION FRAMEWORK FOR ENCODERDECODER MODELS

Michał Pietruszka, Michał Turski, Łukasz Borchmann, Tomasz Dwojak, Gabriela Pałka, Karolina Szyndler, Dawid Jurkiewicz, Łukasz Garncarek

Find us at NeurIPS

Michał Pietruszka
Snowflake

Michał Turski
Snowflake

Łukasz Borchmann
Snowflake

WHAT IS THIS ALL ABOUT?

Unification under table generation framework

Unification under table generation framework

Input Document, e.g.:

Unification under table generation framework

Complete Example

Input

Auguste and Luis Lumière were born in Besançon, France, to Charles and Jeanne.

Output

Name	Surname	Place of birth
Auguste	Lumière	Besançon
Luis	Lumière	Besançon
Charles	Lumière	NULL
Jeanne	Lumière	NULL

People

Key Observations

Context matters

Order matters

HOW DOES IT WORK?

Training

There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

```
Figures
<Column>
    Color
    <Cell>
    <Cell />
    <Cell />
</Column>
<Column>
    Shape
    <Cell> circle </Cell>
    <Cell />
    <Cell> triangle </Cell>
</Column>
```


(C) Output after current step
red </Cell>
(D) Expected output
(A) Decoder prompt

Training

Figures

<Column>
Color
<Cell> red </Cell>
<Cell />
<Cell />
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.
</Column>
<Column>
Shape
<Cell> circle </Cell>
<Cell />
<Cell> triangle </Cell> </Column>

Training

Training

Training

Training

Training

Cell dependencies

TABULAR BIAS

Encodes the relative position of table cells in which the tokens lie.

$$
\tau_{i j}= \begin{cases}R\left(r_{i}-r_{j}\right)+C\left(c_{i}-c_{j}\right) & \text { if } r_{j}>0 \\ R_{0}+C\left(c_{i}-c_{j}\right) & \text { if } r_{j}=0\end{cases}
$$

LOCAL SEQUENTIAL BIAS

Corresponds to the relative sequential position of tokens belonging to the same cell.

$$
\lambda_{i j}= \begin{cases}L(i-j) & \text { if }\left(c_{i}, r_{i}\right)=\left(c_{j}, r_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Color	Shape
red	circle
green	square
blue	triangle

Recall the Key Observations

Context matters

Order matters

Inference

Input
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

```
Probability Candidate value
Probability High-score candidate
Value kept from the previous step
```


Inference

Input
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

Legend

Probability Candidate value
 Probability High-score candidate
 Value kept from the previous step

Step 2/5

Colors
Shapes
0.9 red
0.4 square
0.9 green
0.8 square
0.8 blue
0.5 cross

Inference

Input
There are toys colored red, green, and blue on the table. The square is

Colors
0.9 red
0.9 green
0.8 blue
0.5 cross

Note that these are generated in paralle!!

Inference

Input
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

Step 3/5

Colors

red

green
1.0 blue

Shapes
0.3 hexagon
0.9 square
0.8 triangle

Legend

Probability Candidate value
 Probability High-score candidate
 Value kept from the previous step

Inference

Input
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

Legend

Probability Candidate value
 Probability High-score candidate
 Value kept from the previous step

Inference

Input
There are toys colored red, green, and blue on the table. The square is green, the triangle is blue, and the circle is in the remaining color.

Colors

red

 greenblue

Shapes

circle

square
triangle

Legend

Probability Candidate value
 Probability High-score candidate
 Value kept from the previous step

WHAT ARE THE RESULTS?

Results on public and private datasets

TL;DR

TRAINING

Permutation-based decoder training

DECODING

Decoding mechanism that is data-dependent

FRAMEWORK

Document-to-table framework that works with any backbone

THANK YOU

michal.pietruszka@snowflake.com
https://arxiv.org/abs/2206.04045

