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Style-conditional Prompt Token Learning for Generalizable Face
Anti-spoofing
Anonymous Authors

ABSTRACT
Face anti-spoofing (FAS) based on domain generalization (DG) has
attracted increasing attention from researchers. The reason for
the poor generalization is that the model is overfitted to salient
liveness-irrelated signals. However, the previous methods alleviate
the overfitting by mapping the images from multiple domains into
a common feature space or promoting the separation of image fea-
tures from domain-specific features and task-related features. This
direct manipulation of image features inevitably destroys the se-
mantic structure. If the text features of vision-language pre-trained
(VLP) models (e.g., CLIP) are used to dynamically adjust the image
features to gain a better generalization, we can not only explore
a wider feature space but also avoid the potential degradation of
semantic information. Specifically, we propose a FAS method of
Style-Conditional Prompt Token Learning (S-CPTL), which aims
to generate generalized text features by training the introduced
prompt tokens to carry visual styles and use them as weights for
classifiers to improve the model’s generalization. Compared to the
inherently static prompt token, we propose the dynamic prompt
token, which can adaptively capture live-irrelevant signals from
the instance-specific styles and increase their diversity through
mixed feature statistics to further reduce the overfitting of the
model. Thorough experimental analysis demonstrates that S-CPTL
exceeds current top-performing methods in four distinct cross-
dataset benchmarks.

CCS CONCEPTS
• Computing methodologies→ Computer Vision.

KEYWORDS
Face Anti-Spoofing, Domain Generalization,CLIP, Prompt Learning,
Style Condition

1 INTRODUCTION
Face Anti-Spoofing (FAS) plays a crucial role in safeguarding face
recognition systems from presentation attacks (e.g., print attacks,
digital replay and 3D synthetics masks etc.). Previous FAS [10,
12, 21, 36, 38, 39, 41, 43] have shown effectiveness in intra-domain
scenarios, but may suffer from dramatic degradation when adapting
to unseen domains.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: (a) Existing method (i.e.CoOp [49, 50]) utilize
prompt learning strategies to refine CLIP representations as
prompts are exclusively developed through non-semantic
vectors. (b) S-CTPL introduces style conditional prompts to-
ken that makes full use of the multi-level aligned vision-
language knowledge to assist FAS tasks and achieve stronger
generalization capabilities.

To improve the generalization, the basic idea of existing methods
always focus on learning domain-invariant representation from
face images. Some methods [2, 8, 13, 27] aims to learn a generalized
feature space by aligning the distributions among multiple source
domains. The other methods [45, 53] utilize disentangled represen-
tation learning to isolate the liveness-related features from image
features. However, such direct manipulation only on images will
lead to insufficient semantic information and the destruction of
semantic structure during the training.

We note that the core issue affecting the model’s domain gener-
alization is the classifiers are unable to effectively eliminate pertur-
bation from liveness-irrelevant signals.Inspired by vision-language
pretraining (VLP) (such as CLIP [26]), we propose to use text repre-
sentations as weights for visual classifiers to enhance the general-
ization of FAS systems, which brings two benefits: 1) preventing
the absence of semantic information and disruption of semantic
structure, 2) enabling the learning of more refined visual repre-
sentations and exploration of a broader feature space. Although
CLIP demonstrates significant generalization capabilities, its exten-
sive scale makes it inadvisable to engage in full model fine-tuning

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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for downstream task adaptation. This is attributed to the possi-
bility that such fine-tuning could lead to the erosion of valuable
knowledge obtained during the extensive large-scale pretraining
phase and may introduce the risk of overfitting. Currently, the com-
mon methods for CLIP adapting to downstream tasks are CoOp [?
] and CoCoOp [? ], which are achieved by prompt learning, as
shown in Figure 1. Compared to effectiveness in discriminating
between fundamental categories such as "cat" and "dog" in image
classification tasks that have explicit category semantics, FAS has
no semantic meaning in the determination of whether a face is
’real’ or ’fake’, which restricts the direct use of prompt learning to
obtaining representations with context categories. Due to liveness-
irrelevant signals leading to poor generalization being entangled
in image features, methods based on prompting learning(e.g. Co-
CoOp), which adjust prompts based on complete visual features, fail
to precisely support the classifier in avoiding interference derived
from liveness-irrelevant signals.

Instead of prompt learning, we adapt CLIP to the FAS task via
fixed prompt templates combined with prompt token learning,
which makes full use of the aligned vision-language knowledge to
assist FAS tasks and achieve stronger representation capabilities.
Furthermore, since liveness-irrelevant cues are lying within style
features, the key to FAS domain generalization is to prevent the
models from overfitting to instance-specific styles. Furthermore,
since liveness-irrelevant cues are lying within style features, the
key to FAS domain generalization is to prevent the models from
overfitting to instance-specific styles. In this paper, we provide
the corresponding solution S-CPTL(Style-conditional Prompt Token
Learning) for the generalizable representation learning problem:
1)Constructing prompt token learning framework for FAS tasks.
Reducing the semantic gap in the model by transferring general-
ized language guidance from large-scale models as classification
weights for visual features. 1) Constructing prompt token learn-
ing framework for FAS tasks. Reducing the semantic gap in
the model by transferring generalized language guidance from
large-scale models as classification weights for visual features. 2)
Generating instance-specific style condition. We extract learn-
able style information, which can benefit the model by adaptively
capturing live-irrelevant signals. Compared to the inherently static
methods, S-CPTL can dynamic mix feature statistics with text repre-
sentations to further reduce the overfitting of the model. The main
contributions presented in this research are detailed as follows:

• We propose a novel style-conditional prompt token learning
approach to achieve generalized face antispoofing by em-
ploying visual style as a learnable prompt token condition.

• we propose the instance-aware dynamic style condition gen-
eration module, which can adaptively capture live-irrelevant
signals from the instance-specific styles, thereby reduce the
overfitting of the model.

• We validate the proposed method under various settings,
including zero-shot cross-domain generalization and unseen
attack detection. Experimental results show that S-CPTL
consistently achieves stronger effectiveness than competing
methods.

2 RELATEDWORK
2.1 FAS Methods on Intra-dataset
The essence of FAS is a defensive measure for face recognition
systems and has been studied for over a decade. Some CNN-based
methods [7, 22–24, 31] design a unified framework of feature ex-
traction and classification in an end-to-end manner. Intuitively, the
live faces in any scene have consistent face-like geometry. Inspired
by this, some works [21, 28, 38, 44] leverage the physical-based
depth information instead of binary classification loss as supervi-
sion, which are more faithful attack clues in any domain. With the
popularity of high-quality 2d attacks, i.e., OULU-NPU [1], SiW [21],
CelebA-Spoof [47] and high-fidelity mask attacks, i.e., MARsV2 [16],
WMCA [6, 25], and HiFiMask [15? ] with more realistic in terms
of color, texture, and geometry structure, it is very challenging to
mine spoofing traces from the visible spectrum alone. Methods
based on multimodal fusion [5, 6] have proven to be effective in
alleviating the above problems. The motivation for these methods
is that indistinguishable fake faces may exhibit quite different prop-
erties under the other spectrum. In order to alleviate the limitation
of consistency between testing and training modalities, flexible
modality based methods [40] aims to improve the performance
on any single modality by leveraging available multimodal data.
However, above methods are not specially designed to solve the
domain generalization.

2.2 Domain Generalization for FAS
To address this issue, Domain Adaptation (DA) [19, 20, 32] aims
to minimize the distribution discrepancy between the source and
target domain by leveraging the unlabeled target data. However, the
target data is difficult to collect, or even unknown during training.
Domain Generalization (DG) can conquer this by taking the advan-
tage of multiple source domains without seeing any target data.
Currently, there is a consensus that minimizing the discrepancy
of feature distributions between the source and target domains
is a core factor in generalization. As such, most works based on
adversarial learning [8, 27] or meta-learning [17, 18, 37] focus on
learning domain-invarient representation from face images. Meth-
ods [30, 33, 45, 53] utilize disentangled representation learning
to exploit the domain-specific features. However, most of these
methods require domain labels, with the attendant efforts of label
annotation. The domain labels of FAS tasks lacks semantics, while
the diversity of domain criteria simultaneously blurs the boundaries
of the domain. IADG [52] is the proposed as an alternative without
need for domian labels, it improve generalization by reducing the
sensitivity of instance-specific style features. In summary, existing
methods mentioned above are typically developed in the situation
that models are only guided by image data and corresponding im-
age labels during training. Such an operation imposes the limitation
of insufficient representative ability.

In the FAS scenario, FLIP [29] as an end-to-end finetune CLIP
framework with an ensemble of prompt templates on FAS tasks was
proposed. Nevertheless, we note that the prompt templates need to
bemanually adjust while the set of prompt template will cause large-
scale pretraining phase. In addition, such fine-tune strategy will
overlook the useful knowledge acquired in the pretraining phase
and will potentially result in overfitting. In contrast, we prefer to
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Figure 2: Overall architecture of our proposed Style-Conditional Prompt Token Learning (S-CTPL) framework for DG FAS. Our
S-CTPL is built on CLIP and realizes adaption to FAS tasks by leveraging prompt token learning with two main contributions:
(1) Prompt Token Learning. S-CTPL generate generalized text features by training the introduced prompt tokens to carry visual
styles and use them as weights for classifiers to improve the model’s generalization.(2) Style Condition Module (SCM). SCM,
which consists of bypass convolutional adapter and hybrid style augmentation module (HSAM), can dynamic mix feature
statistics with text representations to further reduce the overfitting of the model.

efficiently adapt from general images to detect more intricate face
spoofing. We introduce a simple yet pioneering approach to prompt
token learning to establish robust and extensive baselines for FAS.

2.3 Prompt Learning in VLP models
With increasingly strong application demands for visual language
pre-trained(VLP) model, how to use a small number of learnable
parameters to adapt large models to downstream tasks has been
an important topic. Motivated by prompt learning in NLP, many
studies have suggested adapting V-L models by training prompt
tokens in an end-to-end approach. CoOp [50] and CoCoOp [49]
are currently the common methods for CLIP adapt to downstream
tasks. CoOp optimizes a continuous set of prompt vectors at its
language branch to fine-tune CLIP for fewshot transfer. However,
CoCoOp reveals that CoOp underperforms on novel classes. This
issue is solved by conditioning prompts on image instances to
ensure better generalization. MaPLe [11] is designed to enhance the
alignment between vision and language representations through
its implementation in both branches.

In summary, previous studies have established their efficacy in
distinguishing basic classifications in image classification tasks that
have explicit category semantics. However, the semantic meaning
of FAS is not relevant in discerning whether a face is real or fake.
In the FAS, blindly pushing FAS tasks towards generic large-scale
VLP models will lead to suboptimal transfer outcomes.

3 S-CPTL: STYLE-CONDITIONAL PROMPT
TOKEN LEARNING

3.1 Review of CLIP
CLIP [26] has revolutionized the field of visual representation learn-
ing, showcasing remarkable capabilities in capturing the intricate
relationship between image and corresponding textual description.
This model is uniquely characterized by using an image encoder
and a text encoder to predict the correct image-text sample pairs.
Formally, we define D = {(𝑥𝑖 , 𝑡𝑖 )}𝐵𝑖=1 as the collection of image-text
sample pairs with 𝐶 categories, and 𝐵 is the number of images
in a mini-batch . 𝑥𝑖 ∈ R𝐻×𝑊 ×3 is the image and 𝑡𝑖 indicate the
corresponding text description.

Encoding Image: Image encoder initially divides the image into𝑁𝑣
fixed-size patches which are projected to create patch embeddings
𝑬
𝑝

𝑖
∈ R𝑁𝑣×𝑑 , where 𝑑 is the hidden dimension of CLIP. Each patch

embedding, along with a learnable token [CLS], passes sequentially
through a Transformer or ResNet to obtain image representation
𝑣𝑖 ∈ R𝑑𝑣 , where 𝑑𝑣 is the visual feature dimension,such as 768
for ViT-B/16 and 2048 for ResNet50. To obtain the final image
representation, the class token of last layer is projected to a common
V-L latent embedding space via a image projector.

Encoding Text: In CLIP, prompt tuning adapts the model to down-
stream tasks by using manually crafted templates to form the
prompt while keeping the pre-trained image and text encoders fixed.
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Given the dataset with category names {[CLASS]𝑐 }𝐶𝑐=1, each class-
wise text description is denoted as 𝑡𝑐𝑙𝑖𝑝𝑐 = {A photo of a [CLASS]𝑐 }
. Text encoder first tokenizes each word of the description 𝑡𝑐𝑙𝑖𝑝𝑐 by
assigning a specific numeric ID. Each sequence of tokens, which is
enclosed within [SOS] and [EOS] tokens and limited a fixed length
of 77, is further project to the word embedding 𝑬𝑤𝑐 ∈ R77×𝑑𝑙 and
then passed on to a Transformer to generate textual representa-
tion 𝑙𝑐𝑙𝑖𝑝𝑐 ∈ R𝑑𝑙 , where 𝑑𝑙 is the textual feature dimension, such
as 512 for text Transformer. Similar as encoding image, The final
text representation is obtained by projecting the text embeddings
corresponding to the last token of the last transformer block er to
a common V-L latent embedding space via a text projector.

Zero-shot Classification: Based on the visual feature 𝒗 𝒊 and tex-
tual feature 𝑙𝑐𝑙𝑖𝑝𝑐 , the prediction probability is calculated as:

𝑝 (𝑦 = 𝑐 | 𝑣𝑖 ) =
exp

(
sim

(
𝒗𝒊, 𝒍

𝑐𝑙𝑖𝑝
𝑦

)
/𝜏
)

∑𝐶
𝑐=1 exp

(
sim

(
𝒗𝒊, 𝒍

𝑐𝑙𝑖𝑝
𝑐

)
/𝜏
) (1)

where the sim(·) refers specifically to cosine similarity and 𝜏 is a
temperature parameter. Our method involves the direct utilization
of a pre-trained CLIP model.

3.2 Style-conditional prompt token learning
3.2.1 Overview. To efficiently steer a VLP to tackle downstream
FAS tasks, we explore the novel prompt token learning framework.
We reason that prior works [49, 50] that endeavor emphasizing
prompt learning approaches are less suitable as the classification
weights are dependent on a pre-defined category name set, leading
to subpar performance when dealing with non-semantic category
names (e.g., real/fake face). Furthermore, FAS is amuchmore refined
vision task, the model needs to learn to characterize each instance
rather than to serve only for some specific category. Therefore, we
note that employing prompt tokens in the deeper transformer layers
can systematically capture more stage-wise feature representations.

Fig. 2 presents an overview architecture of our proposed Style-
Conditional Prompt Token Learning (S-CTPL) framework. Our
S-CTPL is built on CLIP consists of frozen image encoder V(·)
and text encoder T (·) with 𝐾 transformer layers {V𝑖 }𝐾𝑖=1,{T𝑖 }

𝐾
𝑖=1,

and adapts to FAS tasks via the learnable prompt token and a style
condition module (SCM) to weaken the features’ sensitivity to
instance-specific styles. In the textual branch, we introduce learn-
able tokens {𝑷𝑖 }𝐽𝑖=1 in first 𝐽 transformer layers. When 𝐽 = 1 the
learnable token 𝑷1 concat with fixed input token as the input to
first transformer layer, and then new learnable tokens {𝑷𝑖 }𝐽𝑖=2 are
further introduced in each subsequent transformer layers {T𝑖 }𝐽𝑖=1
of the text encoder up to a specific depth 𝐽 . To adaptively cap-
ture live-irrelevant signals from the instance-specific styles, we
propose SCM to dynamic mix feature statistics with text represen-
tations to further reduce the overfitting of the model. Concretely,
SCM consists of bypass convolutional adapter and hybrid style
augmentation module (HSAM). Firstly, in the visual branch, we
use bypass convolutional adapter, which is placed parallel to the
Multi-Headed Self-Attention and MLP blocks. Some of the features
output from the Adapter continue to be passed on to the next layer

of transformers, while others are fed into HSAM for diversity en-
hancement.Below, we will describe the design of prompt token
learning and the process of style condition module.

3.2.2 Prompt Token Learning. To obtain hierarchical contextual
representation, we introduce learnable prompt tokens in the first
𝐽 (where 𝐽 < 𝐾) layers of language branches. Through word to-
kenization and subsequent projection into word embeddings, the
CLIP text encoder generates feature representations𝑊0 for textual
descriptions,𝑊0 ∈ R𝑑𝑙 . During each stage,𝑊𝑖 as the input for the
subsequent (𝑖 + 1) transformer block in the text encoder. In the

meantime,𝑀 learnable tokens
{
𝑃𝑖 ∈ R𝑑𝑡

}𝑀
𝑖=1

is concatenated with
𝑊𝑖 to learn the context prompts in the language branch of CLIP.
The input embeddings now follow the

[
𝑃1, 𝑃2, · · · , 𝑃𝑚,𝑊0

]
, where

𝑊0 corresponds to fixed input tokens. New learnable tokens are
further introduced in each transformer block T𝑖 of the text encoder,
the stage will be defined as:[

__,𝑊𝑗

]
= T𝑖

( [
𝑃 𝑗−1,𝑊𝑗−1

] )
𝑗 = 1, 2, · · · , 𝐽 (2)

The concatenation operation is denoted by [·, ·]. After the 𝐽 − 𝑡ℎ
transformer layer, the following layers process prompts from the
previous layer:[

𝑃 𝑗 ,𝑊𝑗

]
= T𝑗

( [
𝑃 𝑗−1,𝑊𝑗−1

] )
𝑗 = 𝐽 + 1, · · · , 𝐾 (3)

When 𝐽 = 1 the learnable token 𝑷𝑖 concat with fixed input token
transformed into text features by text encoder. In the case of 𝐽 = 1,
the application of learnable prompt tokens are restricted to the
input of the first transformer layer, which is same as CoOp.

3.2.3 Style ConditionModule. With liveness-irrelevant cues present
in style, the primary focus for FAS domain generalization is to curb
model overfitting to instance-specific styles. The potential method
not only can convert original image embeddings into a new space
specifically tailored for FAS, but also reduce the contribution of
liveness-irrelevant representations and pay more attention to task-
related features during the V-L space alignment process. We intro-
duce an adapter(i.e. Convpass [9]]) to style condition generation
module, which can capture discriminative local information that
are sensitive to domian shift. The adapter reconstructs the spatial
structure of the token sequence and performs convolution on image
patch embed token and class embed token individually. Benefits
from the inherent locality of convolutional layers, the adapter can
help to capture fine-grain visual information.

While adapter adapt base model to FAS task, it remains sus-
ceptible to domain shifts. In term of domain shifts is hidden in
style variances, extracting the style feature and weaking it’s influ-
ence can improve the domain generalization. Therefore, we refine
style features through the normalization of feature tensors using
instance-specific mean and standard deviation. Our method draws
inspiration from Mixstyle [51], which suggest that mixing styles
among training instances leads to the implicit synthesis of mixed
novel style. The improved diversity in styles contributes to in-
creased resilience against variations specific to individual domains,
which inspires us to introduce style extraction.

However, theMixstyle is implemented in the end-to-end finetune
fundamental image classification, whose scenario is vastly different
from ours in twoways. Firstly, Mixstyle reveals the relation between
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Figure 3: The proposed Style Condition Module (SCM). SCM
consists of bypass convolutional adapter and hybrid style
augmentation module (HSAM)

visual domian and image style, while we need to construct the link
between visual domian, prompt and image style to fit into the CLIP
fashion . Then, instead of application in general classification tasks,
adapting CLIP for FAS need to new design to capture discriminative
local information. The style condition generation module is placed
side by side with the last convolutional layer of adapter. From the
convolution with the same input and output channel, we get the
image feature representation𝑋 ∗ ∈ R𝐻×𝑊 ×𝐶 ,where H, W, C denote
the height, width, and number of channels respectively. Then, we
permute dimensions to obtain 𝑋𝑆 ∈ R𝐶×𝐻×𝑊 . Style extractor 𝑆
executes a type of style normalization through the normalization
of feature statistics, which can be expressed as:

𝑆 (𝑋𝑆 ) = 𝛾
(
𝑋𝑆 − 𝜇𝑐 (𝑋𝑆 )
𝜎𝑐 (𝑋𝑆 )

)
+ 𝛽 (4)

𝜇𝑐 (.) and 𝜎𝑐 (.) are mean and standard deviation computed across
the dimension within each channel of each image instance:

𝜇𝑐 (𝑋𝑆 ) =
1

𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

(
𝑋𝑆
𝑐ℎ𝑤

)
(5)

𝜎𝑐 (𝑋𝑆 ) =

√√√
1

𝐻𝑊

𝐻∑︁
ℎ=1

𝑊∑︁
𝑤=1

(
𝑋𝑆
𝑐ℎ𝑤

− 𝜇𝑐 (𝑋𝑆 )
)2

+ 𝜖. (6)

In cases where domain labels are unknown,𝑋𝑆 is randomly sampled
from the training data, and is simply obtained by shuffle operation.
We computes the mixed feature statistics by

𝛾 = 𝜆𝜎 (𝑋𝑆 ) + (1 − 𝜆)𝜎 (𝑋𝑆 ) (7)
𝛽 = 𝜆𝜇 (𝑋𝑆 ) + (1 − 𝜆)𝜇 (𝑋𝑆 ), (8)

where 𝛾, 𝛽 ∈ R𝐶 and 𝜆 are instance-wise weights sampled from
the Beta distribution. Subsequently, the style features are passed
through a projector to get the final style condition weight.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets & Protocols. Following the protocols established in prior
works [29], we employ two distinct methods to evaluate the model’s

generalization performance. In Protocol 1, we utilize four benchmark
datasets: Idiap-Replay-Attack (I)[3], CASIA-FASD (C)[48], MSU-
MFSD (M)[4], and OULU-NPU (O)[1] for cross-dataset testing. In
Protocol 2, we assess themodel’s effectiveness on the large-scale face
anti-spoofing (FAS) datasets: CASIA-SURF (S)[46], CASIA-SURF
CeFA (C)[14], and WMCA (W)[6]. Additionally, we report the
experimental results obtained when using CelebA-Spoof [47] as a
supplementary source dataset.
Evaluation Metrics. Two key metrics are utilized for assessing
model performance: (1) Half Total Error Rate (HTER), which cal-
culates the mean of the False Rejection Rate (FRR) and the False
Acceptance Rate (FAR). (2) Area Under Curve (AUC), assessing the
model’s theoretical effectiveness.
Implementation Details.We pre-process all face images to a size
of 224×224×3 and split them into patches of size 14×14. The image
and text encoders are adapted from the pre-trained ViT-B/16 model
of CLIP. For the text input, we set a text prompt template for each
of the real and fake classes. Prompt token vectors and the adapter
network are both initialized withN(0, 0.01). We have established 77
as the maximum number of textual tokens, with a vector dimension
𝑑𝑡 = 512. The dimension of the image representations is 𝑑𝑣 = 768.
Our approach is implemented using PyTorch and trained using the
Adam optimizer with a learning rate of 10−6 and a batch size of 32.

4.2 Comparisons to Prior Arts
To illustrate our model’s ability to adapt to unseen domains, we
employ Leave-One-Out (LOO) validation and give the Protocol 1
result summarizes in Tab. 1. This process involves executing cross-
domain generalization within four typical LOO scenarios for the
FAS task. In this framework, we randomly choose three datasets as
source domains, and the fourth dataset is designated as the unseen
target domain. Tab. 1 categorizes the comparison methods into two
distinct groups: conventional DG FAS approaches [2, 8, 17, 18, 27, 28,
31, 34, 35, 37, 42] and CLIP-based techniques [26, 49, 50]. Notably,
all outcomes are derived without employing the CelebA-Spoof [47]
dataset as an additional resource. All results obtain without using
CelebA-Spoof as the supplementary dataset.

From the Tab. 1, we have the following observations. (1) S-CPTL
achieves the lowest average Half Total Error Rate (HTER) of 3.33%
across all four cross-dataset testing scenarios, outperforming the
second-best method, CoOp, by a significant margin of 1.04%. This
highlights the robustness and generalization ability of your pro-
posed approach. Furthermore, S-CPTL obtains the best HTER and
AUC values in three out of four testing scenarios (OCI → M,
OMI → C, and ICM → O), demonstrating its strong performance
across different domain combinations. (2) It is worth noting that
even in the OCM → I scenario, where S-CPTL does not achieve
the best HTER, it still outperforms most of the compared methods
and obtains the highest AUC of 98.63%.

In Table 2, we present a comparative analysis of our proposed S-
CPTL method against several state-of-the-art baseline methods, in-
cluding ViT [7], CLIP-V [26], CLIP [26], CoOp [50] andCoCoOp [49],
on Protocol 2. CLIP-V represents a variant of CLIP with the text
encoder removed. Our S-CPTL method demonstrates superior per-
formance across all sub-protocols, significantly reducing the Half
Total Error Rate (HTER) compared to CoOp for the target domains
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Table 1: Comparison with state-of-the-art FAS methods across Idiap-Replay-Attack (I), CASIA-FASD (C), MSU-MFSD (M) and
OULU-NPU (O) datasets of Protocol 1. The bold numbers highlight the best performance.

Method OCI → M OMI → C OCM → I ICM → O avg.

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%)

MADDG(CVPR’19) [27] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09
DR-MD-Net(TFIS’2020) [34] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64
RFMata(AAAI’20) [28] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.97
NAS-FAS(TPAMI’20) [42] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43 16.09
D2AM(AAAI’21) [2] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87 16.09
SDA(AAAI’21) [35] 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30 19.65
DRDG(IJCAI’21) [18] 12.43 95.81 19.05 88.79 15.56 91.79 16.63 91.75 15.66
ANRL(ACM MM’21) [17] 10.83 96.75 17.83 89.26 16.03 91.04 15.67 91.90 15.09
SSDG-R(CVPR’20) [8] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54 11.28
SSAN-R(CVPR’22) [37] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.81
PatchNet(CVPR’22) [31] 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07 10.91
SA-FAS(CVPR’23) [30] 5.95 96.55 8.78 95.37 6.58 97.54 10.00 96.23 7.82
IADG(CVPR’23) [52] 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14 8.39

CLIP-V(PMLR’2021) [26] 4.29 98.76 5.00 98.89 7.14 97.92 6.09 98.12 5.63
CLIP(PMLR’2021) [26] 4.04 99.13 5.00 98.89 6.57 98.45 6.09 98.12 5.43
CoOp(IJCV’2022) [50] 3.86 99.08 2.33 98.92 6.07 98.52 5.83 98.97 4.37
CoCoOp(CVPR’2022) [49] 4.16 99.01 5.17 98.19 6.21 98.50 6.00 98.49 5.39
S-CPTL(Ours) 1.43 99.17 0.89 99.00 6.86 98.63 4.12 99.02 3.33

Table 2: Comparison with state-of-the-art FAS methods across results on CASIA-SURF (S), CASIA-SURF CeFA (C), and WMCA
(W) datasets of Protocol 2. Note that the ∗ indicates the corresponding method using CelebA-Spoof as the supplementary source
dataset. Bold numbers highlight the best performance.

Method CS → W SW → C CW → S avg.

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%)

ViT [7] 22.18 89.76 17.59 89.71 17.11 90.46 18.96
CLIP-V [26] 21.88 88.49 17.00 90.24 17.05 92.97 18.64
CLIP [26] 16.74 89.99 15.31 88.75 14.01 96.45 15.35
CoOp [50] 12.00 93.74 15.12 89.05 10.46 96.73 12.53
CoCoOp [49] 13.89 90.74 15.49 89.40 13.76 95.59 14.38
S-CPTL(Ours) 8.99 94.01 12.78 91.64 9.48 95.83 10.42

ViT∗ [7] 7.98 97.97 11.13 95.46 13.35 94.13 10.82
FLIP-MCL∗ [29] 4.46 99.16 9.66 96.69 11.71 95.21 8.61
S-CPTL∗(Ours) 4.42 99.30 9.59 96.73 10.97 97.40 8.33

Table 3: Ablation study of each component across four datasets on Protocol 1. The bold numbers highlight the best performance.

Components OCI → M OMI → C OCM → I ICM → O avg.

PTL AD HSAM HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%)

6.69 95.06 7.02 97.56 9.86 94.37 6.78 97.89 7.59
✓ 2.62 98.57 3.43 97.88 8.57 97.00 4.72 98.01 4.84
✓ ✓ 1.43 99.13 1.44 98.14 6.98 98.45 4.23 98.88 3.52

✓ 4.35 98.54 3.46 97.99 7.08 97.99 5.77 99.01 5.21
✓ ✓ 4.29 98.76 3.40 98.89 6.97 97.92 5.19 98.05 4.96

✓ ✓ ✓ 1.43 99.17 0.89 99.00 6.86 98.63 4.12 99.02 3.33
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Table 4: Ablation study of depth of prompt token across four datasets on Protocol 1. The bold numbers highlight the best
performance.

Deepth OCI → M OMI → C OCM → I ICM → O avg.

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%)

𝐽 = 2 1.43 99.41 2.11 99.43 10.36 96.09 3.25 98.44 4.29
𝐽 = 5 1.43 99.46 1.44 99.25 8.93 97.1 4.2 98.89 4.00
𝐽 = 9 1.43 99.17 0.89 99.00 6.86 98.63 4.12 99.02 3.33
𝐽 = 12 1.43 99.73 1.22 99.54 9.71 96.43 4.32 99.15 4.17

CS→W, SW→C, and CW→S from 12.00%, 15.12%, and 10.46% to
8.99%, 12.78%, and 9.48%, respectively. S-CPTL achieves an average
HTER of 10.42%, outperforming all baseline methods. Interestingly,
CoCoOp exhibits suboptimal performance compared to CoOp, with
average HTERs of 14.38% and 12.53%, respectively. While CoCoOp
typically excels in recognition tasks with well-defined semantic
categories, we hypothesize that in FAS tasks, the ambiguous se-
mantic categories and lack of semantic information for CLIP lead
to CoCoOp’s inferior performance compared to CoOp. By incor-
porating the CelebA-Spoof [47] dataset into the training data, our
S-CPTL∗ variant maintains its superior performance, achieving
an HTER of 4.42% and an AUC of 99.30% for the target domain
W, surpassing ViT∗[7] and FLIP-MCL∗[29]. The average HTER of
S-CPTL∗ is 8.33%, which is lower than both ViT∗ (10.82%) and FLIP-
MCL∗ (8.61%), further validating the effectiveness of our proposed
approach.

4.3 Ablation Studies
Effectiveness of each component. We conducted several exper-
iments to show the advantage of each component in our S-CTPL
using the same protocol as above. The experimental results of vari-
ous combinations are listed in Tab. 3. In the first row, no anything
means that we just employ the CLIP to capture spoof feature for
FAS, which we define as baseline. The baseline only MLP head is
fine-tuned, the rest is frozen. It is a pity that the perform not well
in unseen domains. The performance of the baseline with prompt
token learning (PTL) is substantially better than the baseline in all
cases, i.e., for in HTER, +4.07% (OCI → M), +3.59% (OMI → C),
+1.92%(OCM → I),+1.98%(ICM → O). PTL plays an indispensable
role in the application of CLIP to downstream FAS tasks because
PTL focuses on capturing fine-grained spoof feature in shallow
layers to enhance the feature representation. Adapter (AD) lever-
ages the adapter scheme to to efficiently fine-tune a pre-trained
ViT in CLIP for cross-domain generalized FAS. Adding an adapter
to a baseeline with PTL increases performance by an average of
1.32% over a PTL-only structure. Hybrid style augmentation mod-
ule (HSAM) is introduced to extract the style feature and weaken
it’s influence for domain generalization. Moreover, Mixed style in-
crease their diversity through mixed feature statistics. HSAM with
adapter achieves an average 0.25% improvement of four datasets.
In summury, the goal of all component is to assist the base network
in learning the complete and robust spoof feature. So the last row
of our whole S-CTPL achieves the best results in various cases.

Figure 4: visualization for the feature learned from the penul-
timate layer of the proposed S-CTPL method in the cross-
dataset FAS task of ICM → O

Effectiveness of depth of prompt token. To investigate the im-
pact of hierarchical contextual representations, we embed learnable
prompt tokens within the initial 𝐽 (where 𝐽 < 𝐾) layers of the
language branches. Tab. 4 presents an ablation study on the depth
of prompt tokens across four datasets using Protocol 1. The re-
sults demonstrate that increasing the prompt token depth generally
improves performance on base classes, but at the cost of reduced
accuracy on novel classes. The best performance is achieved when
𝐽 = 9, with an average HTER of 3.33% and the lowest individual
HTERs of 1.43%, 0.89%, 6.86%, and 4.12% for the target domains
OCI→M, OMI→C, OCM→I, and ICM→O, respectively. However,
when 𝐽 = 12, there is a notable increase in HTER, suggesting that
excessive depth leads to overfitting and hinders the model’s ability
to generalize effectively to novel classes.

5 CONCLUSION
In this work, we propose S-CTPL, an efficient prompt token learning
framework for adapting VLMs to generalizable FAS. We underline
the importance of prompt token learning to achieve complex and
label-non-semantic task (i.e. FAS). Through a style condition gener-
ation structure, we form multi-level style projection which carries
instance-specific visual features as the condition. As a result, we
align the visual-language representation to produce state-of-the-art
performance on 0-shot FAS classification.
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