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1 Proof of De-stationary Attention

Definition. Self-Attention [13] is defined as:

Attn(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V, (1)

where Q,K and V ∈ RS×dk are length-S query, key and value, where S is the length of input
sequence and dk is the feature dimension, and Softmax(·) is conducted on each row.

Assumption 1. The embedding layer and feed forward layer are functions conducted separately at
each time point of the input and hold the linear property.

For example, the query Q as the input of the first Attn(·) layer is obtained by feeding the input
x = [x1, x2, · · · , xS ]

⊤ ∈ RS×C into the embedding layer f : RC×1 → Rdk×1, where C is the
number of series variables. And each of the query token in Q = [q1, q2, ..., qS ]

⊤ can be calculated
as qi = f(xi) w.r.t. each time point in x = [x1, x2, · · · , xS ]

⊤. Function f holds the linear property
means that f(ax+ by) = af(x) + bf(y), where a, b are scalars and x, y are vectors.

Assumption 2. Each variable of the input series has the same variance.

For each input time series x, we calculate its mean and variance as follows:

µx =
1

S

S∑
i=1

xi, σ
2
x =

1

S

S∑
i=1

(xi − µx)
2,

where µx, σx ∈ RC×1 is the mean and standard deviation of all xis. Since it is a convention to
conduct normalization on each series variable to avoid certain variable that dominates the scale, we
can assume that each variable shares the same variance, and thus σx is reduced to a scalar.

Theorem.

Softmax

(
QK⊤
√
dk

)
= Softmax

(
σ2
x Q′K′⊤ + 1µ⊤

QK⊤
√
dk

)
. (2)

Equation 2 means the Softmax
(
QK⊤/

√
dk
)

learned from raw series x can be calculated by current
Q′,K′ learned from stationarized series x′, and the calculation also requires the non-stationary
information σx, µQ,K that are eliminated during stationarization.
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Proof 1. (First layer analysis) After our stationarization, the model receives the normalized input
x′ = [x′

1, x
′
2, ..., x

′
S ]

⊤ and each x′
i = (1/σx)⊙ (xi − µx). Based on Assumption 2, σx is reduced to

a scalar and we can simplify the normalized input of each time point to x′
i = (xi − µx)/σx. Then x′

is fed into the embedding layer f . Based on Assumption 1, we get current query Q′ = [q′1, ..., q
′
S ]

⊤

of the first Attn(·) layer:

q′i = f(
xi − µx

σx
) =

f(xi)− f(µx)

σx
=

qi − f( 1
S

∑S
i=1 xi)

σx
=

qi − 1
S

∑S
i=1 f(xi)

σx
=

qi − µQ

σx
,

where µQ = 1
S

∑S
i=1 qi ∈ Rdk×1. Then Q′ = [q′1, ..., q

′
S ]

⊤ can be written as (Q − 1µ⊤
Q)/σx

and 1 ∈ RS×1 is an all-ones vector. And so is the corresponding transformed K′. Without the
stationarization, the input of Softmax(·) in Self-Attention should be (QK⊤/

√
dk), while now the

attention is calculated based on Q′,K′. And we have the following equations:

Q′K′⊤ =
1

σ2
x

(
QK⊤ − 1(µ⊤

QK⊤)− (QµK)1⊤ + 1(µ⊤
QµK)1⊤) ,

Softmax

(
QK⊤
√
dk

)
= Softmax

(
σ2
x Q′K′⊤ + 1(µ⊤

QK⊤) + (QµK)1⊤ − 1(µ⊤
QµK)1⊤

√
dk

)
.

We find that QµK ∈ RS×1 and µ⊤
QµK ∈ R, and they are repeatedly operated on each column and

element of σ2
xQ

′K′⊤ ∈ RS×S . Since Softmax(·) is invariant to the same translation on the row
dimension of input, we have the following equation:

Softmax

(
QK⊤
√
dk

)
= Softmax

(
σ2
x Q′K′⊤ + 1µ⊤

QK⊤
√
dk

)
.

Proof 2. (Multiple layers analysis) We have deduced an equivalent expression of the output of the
first Softmax(·). If we can successfully approximate the attention map that related to Q and K, we
only need to consider Attn(·) with respect to the change of V. Fortunately, Attn(·) as the function
of V gives each time point of the output E = [e1, ..., eS ]

⊤ ∈ RS×dk as a simplex:

ej =

{
S∑

i=1

wivi|V = [v1, v2, ..., vS ]
⊤,

S∑
i=1

wi = 1, wi ≥ 0

}
,

which also holds the linear property f(aV1 + bV2) = af(V1) + bf(V2). Therefore, the Attn(·)
layer is also a function that satisfies our Assumption 1. We will have each time point of the output E
varies linearly with each time point of the input x, and then E will become the next block’s input.
As the feed forward layer, residual adding and Attn(·) layer are the repeating building blocks of
Transformer, they also compose a function with linear property as stated in Assumption 1. By the
first layer analysis and induction on each layer, Equation 2 will holds for Softmax(·) of all layers
under our assumptions.

Attention design Based on the analysis, we develop De-stationary Attention as:

log τ = MLP(σx,x),∆ = MLP(µx,x),

Attn(Q′,K′,V′, τ,∆) = Softmax

(
τ Q′K′⊤ + 1∆⊤

√
dk

)
V′,

(3)

where τ ∈ R+ and ∆ ∈ RS×1 is defined as the scaling and shifting de-stationary factors respectively
to approximate σ2

x and KµQ under the real scenario. Since the key to making Equation 2 established
is to approximate the attention map successfully, we apply a direct deep learning implementation.
To be concisely, we use a multi-layer perceptron as the projector to learn de-stationary factors
τ,∆ from the statistics µx, σx and unstationarized x. De-stationary Attention learns the temporal
dependencies from both stationarized series Q′, K′ and non-stationary series x, µx, σx, and multiplies
by the stationarized values V′ to keep the linear property. It can benefit from the predictability of
stationarized series and re-incorporate the inherent non-stationarity of raw series simultaneously.
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2 Hyperparameter Sensitivity

We verify the robustness of the proposed Non-stationary Transformers framework with respect to
hyper-parameter dim, which is the hidden layer dimension of the MLP projector that learns de-
stationary factors. Considering the efficiency of hyperparameters search, we fix the number of hidden
layers, and the hidden layer dimension varies in {64, 128, 256}. The results are shown in Table 1.
For datasets with relatively high non-stationarity (Exchange and ILI), large dim would be a better
choice, which indicates that non-stationary information entangled with unstationarized input should
be learned by a projector with big capacity. Besides, as the dataset presents higher non-stationarity,
the influence of de-stationary project design becomes more significant.

Table 1: The performance of Non-stationary Transformers under different choices of the hidden layer
dimension (dim) in the projector. We adopt the forecasting setting as input-36-predict-48 for the ILI
dataset and input-96-predict-336 for the other datasets.

Dataset Exchange ILI ETTm2 Electricity Traffic Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

dim = 64 0.448 0.493 2.067 0.908 0.334 0.361 0.200 0.304 0.629 0.345 0.321 0.338
dim = 128 0.432 0.477 2.010 0.900 0.370 0.388 0.201 0.301 0.618 0.328 0.340 0.354
dim = 256 0.421 0.476 2.223 0.928 0.367 0.381 0.201 0.304 0.631 0.351 0.333 0.347

3 Supplementary of Main Results

3.1 Multivariable Forecasting Results

As shown in Table 2, we list additional benchmark on the ETT datasets [16], which includes the
hourly recorded ETTh1/ETTh2 and 15-minutely recorded ETTm1. Non-stationary Transformer also
achieves remarkable improvement over the state-of-the-art on various forecasting horizons. For the
input-96-predict-336 long-term setting, Non-stationary Transformer surpasses previous best results
by 4.4%(0.615 → 0.588) in ETTh1, 3.5%(0.572 → 0.552) in ETTh2 and 26.7%(0.675 → 0.495)
MSE reduction in ETTm1. The overall results show averaged 11.5% MSE reduction over previous
state-of-the-art deep forecasting models.

We also list additional model comparison in Table 3, including the concurrent work FEDformer [17],
and non-Transformer models LSSL [6] and GRU [5]. Our method still outperforms these models in
most cases (83%). Notably, LSSL [6] achieves good performance on Weather [3] dataset with the
highest stationarity but poorly performs on others, especially non-stationary datasets.

Table 2: Forecasting results comparison under different prediction lengths O ∈ {96, 192, 336, 720}
on ETT dataset. The input sequence length is set to 96.

Models Ours Autoformer[15] Pyraformer[11] Informer[16] LogTrans[10] Reformer[8] LSTNet[9]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.513 0.491 0.536 0.548 0.783 0.657 0.984 0.786 0.767 0.758 0.773 0.640 1.457 0.961
192 0.534 0.504 0.543 0.551 0.863 0.709 1.027 0.791 1.003 0.849 0.910 0.704 1.998 1.215
336 0.588 0.535 0.615 0.592 0.941 0.753 1.032 0.774 1.362 0.952 1.000 0.760 2.655 1.369
720 0.643 0.616 0.599 0.600 1.042 0.819 1.169 0.858 1.397 1.291 1.242 0.860 2.143 1.380

E
T

T
h2

96 0.476 0.458 0.492 0.517 1.380 0.943 2.826 1.330 0.829 0.751 1.595 1.031 3.568 1.688
192 0.512 0.493 0.556 0.551 3.809 1.634 6.186 2.070 1.807 1.036 2.671 1.300 3.243 2.514
336 0.552 0.551 0.572 0.578 4.282 1.792 5.268 1.942 3.875 1.763 2.596 1.297 2.544 2.591
720 0.562 0.560 0.580 0.588 4.252 1.790 3.667 1.616 3.913 1.552 2.647 1.304 4.625 3.709

E
T

T
m

1 96 0.386 0.398 0.523 0.488 0.536 0.506 0.615 0.556 0.588 0.593 0.778 0.623 2.003 1.218
192 0.459 0.444 0.543 0.498 0.539 0.520 0.723 0.620 0.769 0.793 0.929 0.707 2.764 1.544
336 0.495 0.464 0.675 0.551 0.720 0.635 1.300 0.908 1.462 1.320 1.016 0.733 1.257 2.076
720 0.585 0.516 0.720 0.573 0.940 0.740 0.972 0.744 1.669 1.461 1.122 0.793 1.917 2.941
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Table 3: Forecasting results comparison with additional baseline forecasting models.

Models Ours FEDformer [17] LSSL [6] GRU [5]

Metric MSE MAE MSE MAE MSE MAE MSE MAE
E

xc
ha

ng
e 96 0.111 0.237 0.148 0.271 0.395 0.474 1.453 1.049

192 0.219 0.335 0.271 0.380 0.776 0.698 1.846 1.179
336 0.421 0.476 0.460 0.500 1.029 0.797 2.136 1.231
720 1.092 0.769 1.195 0.841 2.283 1.222 2.984 1.427

IL
I

24 2.294 0.945 3.228 1.260 4.381 1.425 5.914 1.734
36 1.825 0.848 2.679 1.080 4.442 1.416 6.631 1.845
48 2.010 0.900 2.622 1.078 4.559 1.443 6.736 1.857
60 2.178 0.963 2.857 1.157 4.651 1.474 6.870 1.879

E
T

T
m

2 96 0.192 0.274 0.203 0.287 0.243 0.342 2.041 1.073
192 0.280 0.339 0.269 0.328 0.392 0.448 2.249 1.112
336 0.334 0.361 0.325 0.366 0.932 0.724 2.568 1.238
720 0.417 0.413 0.421 0.415 1.372 0.879 2.720 1.287

E
le

ct
ri

ci
ty 96 0.169 0.273 0.193 0.308 0.300 0.392 0.375 0.437

192 0.182 0.286 0.201 0.315 0.297 0.390 0.442 0.473
336 0.200 0.304 0.214 0.329 0.317 0.403 0.439 0.473
720 0.222 0.321 0.246 0.355 0.338 0.417 0.980 0.814

Tr
af

fic

96 0.612 0.338 0.587 0.366 0.798 0.436 0.843 0.453
192 0.613 0.340 0.604 0.373 0.849 0.481 0.847 0.453
336 0.618 0.328 0.621 0.383 0.828 0.476 0.853 0.455
720 0.653 0.355 0.626 0.382 0.854 0.489 1.500 0.805

W
ea

th
er 96 0.173 0.223 0.217 0.296 0.174 0.252 0.369 0.406

192 0.245 0.285 0.276 0.336 0.238 0.313 0.416 0.435
336 0.321 0.338 0.339 0.380 0.287 0.355 0.455 0.454
720 0.414 0.410 0.403 0.428 0.384 0.415 0.535 0.520

3.2 Performance of Non-stationary Transformer and Variants

We apply our proposed Non-stationary Transformers framework to six Transformer variants: Trans-
former [13], Informer [16], Reformer [8], Autoformer [15], ETSformer [14] and FEDformer [17].
The averaged results are shown in Table 4 of the main text due to the limited pages. We provide
supplementary forecasting results in Table 4 and Table 5. The experimental results demonstrate that
our Non-stationary Transformers framework can consistently promotes these Transformer variants,
even on the concurrent work ETSformer and FEDformer.

3.3 Comparison with Stationarization Methods

We provide full comparison among Non-stationary Transformers and two stationarization methods:
Revin[7] and Series Stationarization. The averaged results are shown in Table 5 of the main text
due to the limited pages. As is listed in Table 6, our framework achieves the state-of-the-art
performance especially on datasets with high non-stationarity. For Transformer, the proposed
method achieves 25.6%(1.467 → 1.092) MSE reduction on Exchange under the predict-720 settings,
10.8%(2.572 → 2.294) on ILI under the predict-24 settings, and 30.3%(0.598 → 0.417) on
ETTm2 under the predict-720 settings. As for Reformer, since De-stationary Attention is not
directly deduced from the LSH attention [8], current approximation as stated in Equation 2 may
not be the optimal solution, but the introducing of De-stationary Attention still achieves relative
11.6%(0.632 → 0.559) promotion on ETTm2 and 4.4%(2.834 → 2.770) on ILI under the predict-
336 setting. The comparison demonstrates De-stationary Attention mechanism can further benefit the
predictive ability of Transformers.
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Table 4: Detailed forecasting performance of Non-stationary Transformers. We report the MSE/MAE
of different prediction lengths O ∈ {96, 192, 336, 720} and {24, 36, 48, 60} for comparison. The
input sequence length is set to 36 for ILI and 96 for the others.

Models Transformer + Ours Informer + Ours Reformer + Ours Autoformer + Ours

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.111±0.015 0.237±0.010 0.129±0.018 0.258±0.012 0.128±0.019 0.258±0.012 0.171±0.005 0.276±0.006
192 0.219±0.031 0.335±0.020 0.251±0.042 0.354±0.035 0.246±0.045 0.356±0.037 0.273±0.005 0.365±0.007
336 0.421±0.032 0.476±0.022 0.373±0.047 0.434±0.032 0.422±0.039 0.478±0.030 0.481±0.010 0.573±0.009
720 1.092±0.027 0.769±0.024 1.229±0.035 0.795±0.049 1.050±0.050 0.781±0.047 1.024±0.012 0.751±0.012

IL
I

24 2.294±0.152 0.945±0.041 2.856±0.177 1.071±0.067 3.206±0.277 1.131±0.079 3.029±0.116 1.166±0.028
36 1.825±0.128 0.848±0.033 1.805±0.143 0.860±0.051 2.750±0.161 1.018±0.074 2.648±0.134 1.023±0.032
48 2.010±0.134 0.900±0.035 1.780±0.194 0.849±0.054 2.710±0.184 1.017±0.050 2.202±0.161 0.965±0.038
60 2.178±0.146 0.963±0.037 2.058±0.173 0.933±0.058 2.792±0.153 1.095±0.047 2.302±0.088 1.003±0.024

E
T

T
m

2 96 0.192±0.023 0.274±0.016 0.241±0.035 0.312±0.025 0.209±0.040 0.287±0.028 0.236±0.022 0.319±0.019
192 0.280±0.021 0.339±0.013 0.433±0.036 0.420±0.025 0.435±0.037 0.421±0.026 0.263±0.026 0.316±0.025
336 0.334±0.011 0.361±0.017 0.507±0.032 0.464±0.023 0.559±0.033 0.475±0.024 0.320±0.019 0.349±0.014
720 0.417±0.009 0.413±0.011 0.659±0.019 0.539±0.028 0.769±0.021 0.582±0.021 0.402±0.015 0.396±0.010

E
le

ct
ri

ci
ty 96 0.169±0.008 0.273±0.002 0.195±0.008 0.302±0.003 0.190±0.007 0.293±0.004 0.193±0.009 0.295±0.003

192 0.182±0.007 0.286±0.003 0.215±0.007 0.321±0.006 0.199±0.009 0.301±0.008 0.211±0.006 0.310±0.007
336 0.200±0.005 0.304±0.005 0.235±0.006 0.339±0.006 0.208±0.005 0.310±0.005 0.220±0.005 0.316±0.004
720 0.222±0.016 0.321±0.013 0.260±0.014 0.358±0.014 0.226±0.015 0.326±0.018 0.241±0.019 0.337±0.017

Tr
af

fic

96 0.612±0.019 0.338±0.014 0.649±0.028 0.370±0.016 0.669±0.037 0.364±0.020 0.604±0.027 0.342±0.012
192 0.613±0.028 0.340±0.018 0.689±0.035 0.393±0.019 0.680±0.036 0.369±0.022 0.607±0.034 0.383±0.020
336 0.618±0.018 0.328±0.012 0.755±0.055 0.431±0.054 0.688±0.038 0.371±0.033 0.611±0.019 0.353±0.010
720 0.653±0.014 0.355±0.003 0.783±0.026 0.440±0.004 0.692±0.019 0.385±0.014 0.653±0.014 0.376±0.013

W
ea

th
er 96 0.173±0.006 0.223±0.004 0.186±0.017 0.235±0.014 0.195±0.020 0.242±0.013 0.215±0.024 0.263±0.019

192 0.245±0.014 0.285±0.015 0.259±0.024 0.292±0.019 0.255±0.027 0.289±0.023 0.257±0.027 0.296±0.018
336 0.321±0.016 0.338±0.023 0.295±0.026 0.317±0.018 0.306±0.030 0.323±0.025 0.307±0.009 0.321±0.011
720 0.414±0.032 0.410±0.031 0.361±0.020 0.362±0.022 0.388±0.024 0.376±0.026 0.364±0.006 0.357±0.007

Table 5: Performance promotion by applying the proposed framework to concurrent ETSformer and
FEDformer. We report the averaged MSE/MAE of all prediction lengths (stated in Table 2 of the
main text) and the relative MSE reduction ratios (Promotion) by our framework.

Dataset Exchange ILI ETTm2 Electricity Traffic Weather

Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETSformer [14] 0.410 0.427 2.619 1.034 0.293 0.342 0.208 0.323 0.629 0.403 0.271 0.334
+ Ours 0.369 0.407 2.353 1.017 0.290 0.334 0.203 0.314 0.618 0.380 0.254 0.293

Promotion 10.00% 10.16% 0.77% 2.17% 1.75% 6.18%

FEDformer [17] 0.519 0.500 2.847 1.144 0.305 0.349 0.214 0.327 0.610 0.376 0.309 0.360
+ Ours 0.500 0.487 2.728 1.046 0.312 0.346 0.198 0.300 0.604 0.362 0.268 0.292

Promotion 3.66% 4.18% -2.38% 7.38% 0.86% 13.36%
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Table 6: Detailed forecasting results obtained by applying different methods to Transformer and
Reformer. We report the MSE/MAE of different prediction lengths for comparison.

Base Models Transformer Reformer

Methods + RevIN [7] + Series + Ours + RevIN [7] + Series + Ours
Stationarization Stationarization

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.136 0.258 0.136 0.258 0.111 0.237 0.133 0.263 0.139 0.265 0.128 0.258
192 0.239 0.348 0.239 0.348 0.219 0.335 0.256 0.363 0.257 0.364 0.246 0.356
336 0.425 0.479 0.425 0.479 0.421 0.476 0.426 0.477 0.426 0.477 0.422 0.478
720 1.467 0.862 1.475 0.865 1.092 0.769 1.059 0.786 1.059 0.786 1.050 0.781

IL
I

24 2.572 0.980 2.573 0.980 2.294 0.945 3.399 1.170 3.399 1.170 3.206 1.131
36 1.955 0.870 1.955 0.870 1.825 0.848 2.909 1.049 2.909 1.048 2.750 1.018
48 2.056 0.902 2.057 0.902 2.010 0.900 2.834 1.067 2.832 1.067 2.710 1.017
60 2.238 0.982 2.238 0.982 2.178 0.963 2.954 1.099 2.952 1.098 2.792 1.095

E
T

T
m

2 96 0.267 0.317 0.253 0.311 0.192 0.274 0.211 0.295 0.212 0.297 0.209 0.287
192 0.456 0.405 0.453 0.404 0.280 0.339 0.478 0.426 0.477 0.426 0.435 0.421
336 0.528 0.455 0.546 0.461 0.334 0.361 0.632 0.485 0.613 0.483 0.559 0.475
720 0.589 0.487 0.593 0.489 0.417 0.413 0.845 0.631 0.846 0.630 0.769 0.582

E
le

ct
ri

ci
ty 96 0.172 0.275 0.171 0.275 0.169 0.273 0.188 0.291 0.184 0.289 0.190 0.293

192 0.192 0.296 0.192 0.296 0.182 0.286 0.198 0.301 0.199 0.302 0.198 0.301
336 0.207 0.306 0.208 0.306 0.200 0.304 0.212 0.314 0.212 0.314 0.208 0.310
720 0.217 0.316 0.216 0.315 0.222 0.321 0.232 0.331 0.231 0.330 0.226 0.326

Tr
af

fic

96 0.620 0.341 0.614 0.337 0.612 0.338 0.650 0.364 0.655 0.366 0.669 0.364
192 0.630 0.348 0.637 0.351 0.613 0.340 0.688 0.374 0.683 0.377 0.680 0.369
336 0.656 0.360 0.653 0.359 0.634 0.348 0.708 0.383 0.704 0.383 0.688 0.371
720 0.666 0.360 0.661 0.360 0.653 0.355 0.700 0.392 0.722 0.395 0.692 0.385

W
ea

th
er 96 0.175 0.225 0.175 0.225 0.173 0.223 0.189 0.236 0.190 0.237 0.195 0.242

192 0.273 0.298 0.273 0.297 0.245 0.285 0.269 0.294 0.269 0.294 0.255 0.289
336 0.333 0.326 0.333 0.325 0.321 0.338 0.312 0.328 0.313 0.329 0.306 0.323
720 0.424 0.415 0.436 0.420 0.414 0.410 0.395 0.376 0.395 0.376 0.388 0.376

3.4 Prediction Showcases

We provide supplementary showcases of predictions given by three models: vanilla Transformer,
Transformer with Series Stationarization, and Non-stationary Transformer. We plot the last dimension
of forecasting results that comes from the test set of ETTm1 for qualitative comparison.

As is shown in Figures 1, 2, 3, and 4, we find that vanilla Transformer is inclined to output predictions
with scale and level far from the ground truth, but its ability to capture local series variation remains
strong. While Series Stationarization benefits Transformer by aligning the statistics among each
series, the base model neglects the intrinsic non-stationarity of time series and becomes more likely
to output stationary but uneventful series. With the help of our framework, the equipped model will
be free from the disturbance caused by data non-stationarity and fulfill the potential to capture local
variations.

Table 7: Parameters increment and performance promotion of Non-stationary Transformers.

Models Transformer Informer Reformer Autoformer FEDformer ETSformer

Param increment 0.10% 0.09% 0.21% 0.10% 0.06% 0.19%

Performance gain 49.43% 47.34% 46.89% 10.57% 4.51% 5.17%

3.5 Efficiency of Non-stationary Transformers

As is shown in Table 7, we list the parameters increment and the performance gain of our pro-
posed method. It is obvious that Non-stationary Transformers significantly boosts the forecasting
performance by a large margin with hardly any additional parameters.
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Vanilla Transformer + Series Stationarization + Ours

Figure 1: Visualization of ETTm1 predictions given by different models under the input-96-predict-96
setting. Blue lines stand for the ground truth and orange lines stand for predictions of the model. The
first shared part is the time series input with length 96.

Vanilla Transformer + Series Stationarization + Ours

Figure 2: Visualization of predictions given by models under the input-96-predict-192 setting.

Vanilla Transformer + Series Stationarization + Ours

Figure 3: Visualization of predictions given by models under the input-96-predict-336 setting.

Vanilla Transformer + Series Stationarization + Ours

Figure 4: Visualization of predictions given by models under the input-96-predict-720 setting.

Table 8: ADF test statistic of raw series and series processed by our normalization.

Dataset Exchange ILI ETTm2 Electricity Traffic Weather

Raw series -1.889 -5.406 -6.225 -8.483 -15.046 -26.661
After Normalization -9.937 -10.313 -33.485 -20.888 -18.946 -35.010
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Algorithm 1 Series Stationarization - Normalization.
Require: Input past time series x ∈ RS×C ; Input Length S; Variables number C.

1: µx = Mean(x, dim=0) ▷ µx ∈ R1×C

2: σx = Std(x, dim=0) ▷ σx ∈ R1×C

3: x′ = Repeat
(
(1/σx), dim=0

)
⊙
(
x− Repeat(µx, dim=0)

)
▷ Normalize to x′ ∈ RS×C

4: Return x′, µx, σx ▷ Return stationarized input and original statistics

Algorithm 2 Series Stationarization - De-normalization.
Require: Predicted time series y′ ∈ RO×C by the base model; original statistics of input µx, σx ∈

R1×C ; Output Length O; Variables number C.

1: y = Repeat
(
σx, dim=0

)
⊙ y′ + Repeat(µx, dim=0) ▷ De-normalize to y ∈ RO×C

2: Return y ▷ Return de-normalized output

Algorithm 3 De-stationary Attention.
Require: Queries Q′ ∈ RS×dk ; Keys K′ ∈ RS×dk ; Values V′ ∈ RS×dk ; De-stationary factors

τ ∈ R+,∆ ∈ RS×1; Input Length S; Feature dimension dk.

1: Output = Softmax
((

τ Q′K′⊤ + Repeat(∆, dim=1)
)
/
√
dk

)
V′ ▷ rescaling by τ and ∆

2: Return Output ▷ Return de-stationary attention output

Algorithm 4 Non-stationary Transformers - Overall Architecture.
Require: Input past time series x ∈ RS×C ; Input Length S; Predict length O; Variables number C;

Feature dimension dk; Encoder layers number N ; Decoder layers number M . Technically, we

set dk as 512, N as 2, M as 1.

1: x′, µx, σx = Normalization(x) ▷ x′ ∈ RS×C , µx ∈ R1×C , σx ∈ R1×C

2: log τ,∆ = MLP(x, µx, σx) ▷ τ ∈ R+,∆ ∈ RS×1

3: x′
enc,x

′
dec = x′, ConCat

(
x′

S
2 :S

, Zeros(O,C)
)

▷ x′
enc ∈ RS×C ,x′

dec ∈ R(S
2 +O)×C

4: x0′
enc = Embed(x′

enc) ▷ x0′
enc ∈ RS×dk

5: for l in {1, · · · , N}: ▷ Non-stationary Encoder

6: for xl−1′
enc = LayerNorm

(
xl−1′

enc + Attn(xl−1′
enc , τ,∆)

)
▷ xl−1′

enc ∈ RS×dk

7: for xl′
enc = LayerNorm

(
xl−1′

enc + FFN(xl−1′
enc )

)
▷ xl′

enc ∈ RS×dk

8: End for

9: x0′
dec = Embed(x′

dec) ▷ x0′
dec ∈ R(S

2 +O)×dk

10: for l in {1, · · · ,M}: ▷ Non-stationary Decoder

11: for xl−1′
dec = LayerNorm

(
xl−1′

dec + Attn(xl−1′
dec , τ,∆ = 0)

)
▷ xl−1′

dec ∈ R(S
2 +O)×dk

12: for xl−1′
dec = LayerNorm

(
xl−1′

dec + Attn(xl−1′
dec ,xN ′

enc, τ,∆)
)

▷ xl−1′
dec ∈ R(S

2 +O)×dk

13: for xl′
dec = LayerNorm

(
xl−1′

dec + FFN(xl−1′
dec )

)
▷ xl′

dec ∈ R(S
2 +O)×dk

14: End for

15: y′ = MLP(xM ′
dec )S

2 :S2 +O ▷ y′ ∈ RO×dk

16: y = De-normaliztion(y′, µx, σx) ▷ y ∈ RO×dk

17: Return y ▷ Return the prediction results
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4 Ablations

4.1 Effects of Series Stationarization

We propose Series Stationarization, which has no additional learnable parameters, to increase the
degree of stationarity and make the time series distribution more stable. As is shown in Table 8, after
our normalization module processing, the ADF test statistic of the time series gets obviously smaller,
which verifies normalization as an effective design to attenuate the non-stationarity of real world time
series.

4.2 Ablation of De-stationary Factors

To explore the influence of de-stationary factors, we compare the forecasting results obtained by
three variants: only using τ , only using ∆, and using both. We conduct experiments on two
typical datasets: Exchange (8 variables) and Electricity (321 variables). As is shown in Table 9,
the forecasting performance will degrade in all cases if we only employ single one of τ and ∆,
especially without τ (0.196 → 0.212, 0.441 → 0.550 under the predict-336 setting), which validates
the complete form as stated in Equation 3 is a better choice.

Table 9: Ablation on de-stationary factors: Column (only τ ) means only use the scaling de-stationary
factor in Equation 3, Column (only ∆) means only use the shifting de-stationary factors, and Column
(τ and ∆) means use both.

Models Only τ Only ∆ τ and ∆

Metric MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.177 0.279 0.186 0.287 0.169 0.273

192 0.191 0.297 0.196 0.299 0.185 0.289
336 0.197 0.300 0.212 0.310 0.196 0.297
720 0.221 0.320 0.227 0.326 0.217 0.317

E
xc

ha
ng

e 96 0.128 0.253 0.128 0.253 0.120 0.247
192 0.263 0.369 0.263 0.370 0.250 0.353
336 0.446 0.491 0.550 0.553 0.441 0.488
720 1.348 0.847 1.621 0.911 1.338 0.847

5 Non-stationary Transformers: Experimental Details

5.1 Detailed Experiment Configurations

We compare each Transformers with and without our framework using the same training strategy. The
only hyperparameters for our framework come from the projector design which learns de-stationary
factors. We search the hyperparameters as stated in Section 2. The best hyperparameter is selected on
the validation set.

As for other forecast models for the baseline comparison, most of the results are from Autoformer [15].
By contacting the authors of Autoformer, we obtain the hyper-parameter selection strategy as follows:
for N-BEATS [12], we conduct a grid search for hidden channel in {256, 512, 768}, number of
layers in {2, 3, 4, 5}, learning rate in {5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3}. For LSTNet [9],
since the paper also experiments on the Traffic [1], Electricity [2] and Exchange [9] datasets, the
hyper-parameter setting is following the experimental details of the original paper. For N-HiTs [4],
ETSformer [14], and FEDformer [17], as these methods share the same benchmark, we use their
official code with three random seeds.

5.2 Implementation Details of Non-stationary Transformer and Variants

We provide the pseudo-code of Series Stationarization, De-stationary Attention and Non-stationary
Transformers in Algorithms 1, 2, 3 and 4. All Transformers have two-layer encoder and one-layer
decoder with the feature dimension dk=512, including Transformer [13], Informer [16], Reformer [8],
Autoformer [15], ETSformer [14] and FEDformer [17]. Besides, we adopt embedding method and

9



one-step generation strategy of Informer [16]. It is worth noting that for the row length of attention
map differs from S×S, where S is the initial input sequence length, we omit the shifting de-stationary
factor ∆ in Equation 3 (i.e., the Self-Attention layer of Transformer decoder, and the Self-Attention
layer of the Informer encoder where the shape of attention map is changed over layers), since the
performance of only use τ will not degenerate a lot as shown in Table 9. For the cross attention, we
first conduct the rescaling operation with de-stationary factors and then multiply by the corresponding
mask. For Transformer variants, we conduct the rescaling operation on the pre-Softmax scores.

6 Broader Impact

6.1 Impact on Real-world Applications

We focus on real-world time series forecasting, which is challenging for Transformers because of
data non-stationarity. Our method goes beyond previous studies that only stationarize the time series.
We fully utilize the predictive capability of attention mechanism that captures essential temporal
dependencies associated with inherent non-stationarity. Our proposed method achieves state-of-the-
art performance in five real-world applications, which makes it more promising for Transformers to
tackle real-world forecasting applications, and helps our society make better decisions and prevent
risks in advance for various fields. And our paper mainly focuses on scientific research and has no
obvious negative social impact.

6.2 Impact on Future Research

In this paper, we analyze the generalization difficulty of Transformers in distribution-varying time
series forecasting. We propose a general framework to fulfill the potential of Transforms constrained
by data non-stationary. Our work introduces an essential and promising direction to improve
forecasting performance: to increase the stationarity of time series towards better predictability and
mitigate the over-stationarization problem for the predictive capability of deep models simultaneously.
The remarkable generality and effectiveness of the proposed framework can be instructive for future
research.

7 Limitation

Our De-stationary Attention is deduced by analyzing the vanilla Self-Attention, which may not be the
optimal solution for advanced attention mechanisms. There also remains room for re-incorporating
non-stationarity on other classical stationarization methods, like differencing and quantile. Besides,
the proposed framework is currently limited to the Transformer-based models, while the over-
stationarization problem can appear on any deep time forecasting models if using stationarization
methods inappropriately. Therefore, a more model-agnostic solution for the over-stationarization
problem will be our exploring direction.
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