23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44

Supplementary Materials of ImageBind3D

Anonymous Authors

A DETAILS OF OUR NETWORK

VAE [ MLP " Generator '.

Figure 1: The inversion algorithm employs a three-part ar-
chitecture consisting of a VAE encoder for extracting image
features, an MLP (Multi-Layer Perceptron) network for map-
ping features to the latent space, and a decoder for recon-
structing the 3D shape representation. This design enables
the alignment of images and 3D shapes within the latent
space.
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Figure 2: The MLP architecture comprises four stacked
blocks, each consisting of an affine module, a linear map-
ping layer, and an activation layer.

The ImageBind3D framework facilitates controlled 3D genera-
tion via a two-tiered approach, supported by guidance from multi-
ple conditions. The initial stage involves an inversion network, the
workings of which are detailed first. Subsequently, the focus shifts
to the multimodal diffusion model that defines the second stage.

A.1 Inversion network

The core goal of the inversion stage is to achieve alignment be-
tween image data and 3D shapes within a shared latent space.
As illustrated in Figure 1, our inversion architecture comprises
three key components: a VAE encoder, a feature mapper, and a
decoder.characteristics. Deviating from the traditional VAE struc-
ture of encoder-decoder pairs, we utilize the encoder to map image
data into 512-dimensional features. Subsequently, these features
are processed by an MLP structure, yielding latent codes w1 and w2
with dimensions of 512*31. As shown in Figure 2, the MLP design
adopts a shallow ResMLP architecture, consisting of four stacked

blocks. Each block incorporates an affine layer, a linear layer, and
a Sigmoid activation function. The computation performed by the
feature processing unit can be formally defined as follows:

w = Linear(Sigmoid(Af fine(f))) (1)

where f represents the image features extracted by the VAE, while w
denotes the latent code. The input latent codes w1 and w2 possess di-
mensions of 512*22 and 512*9, respectively, representing geometric
and appearance codes. Finally, w1 and w2 are fed into a pre-trained
GET3D model serving as the generator, with its parameters frozen
during training.

A.2 multi-modal diffusion model

As shown in Figure3, our proposed multi-modal diffusion model
follows a similar design to Stable Diffusion, incorporating three
key components: a denoiser, a conditioning augmentation module,
and a decoder. The denoiser employs a U-Net architecture with
skip connections to effectively capture multi-scale information. It
takes a concatenated vector as input, consisting of the latent codes
w1 and w2, along with the feature vector extracted by the VAE
encoder. To integrate textual and visual conditioning signals, we
introduce a decoupled attention mechanism within the conditioning
augmentation module. Visual features are extracted using both
CLIP image encoder and VAE encoder and subsequently fused
using Adaptive Instance Normalization (AdaIN). It can be defined
as follow:

Qs = AdaIN(Qs, Qy), @)
Ks = AdaIN(Kj, Ky), ®)
AdaIN(x,y) = o(y) (x;(—';()x)) +u(y), (4)

where x, y present CLIP and VAE feature, y, o present the mean and
standard deviation of features. We concatenate K;, and Ky, as well
as Vy, and Vj,, respectively, to obtain Ky, and Vyp,. These fused
visual features, together with textual features, undergo separate dot-
product attention and cross-attention calculations. The resulting
attention maps are then concatenated and injected into the U-Net
to guide the denoising process. Finally, we utilize a pre-trained and
frozen GET3D generator as the decoder to synthesize 3D shapes
from the denoised latent representations.

A.3 Details of experiment setup

Our training process began with the inversion algorithm, aiming
to establish a correspondence between image data and 3D shapes.
For this purpose, we used synthetic data generated by the GET3D
model, and then, stored both the intermediate latent codes and the
four rendered views of each generated shape. A 2D discriminator
network was then employed to evaluate the quality of each indi-
vidual view. By aggregating the scores across all four views, we
identified and removed low-quality generated samples from the
dataset. It costs 15 hours for 3D inversion training. The training of
the multi-modal 3D diffusion model was then initiated, focusing
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Figure 3: We present a 3D multi-modal diffusion model consisting of a denoiser for latent representation refinement, a decoder
for 3D shape synthesis, and a decoupled attention module for incorporating textual and visual conditioning.

first on the text-guided 3D generation task. This stage of training
was performed on a system equipped with two NVIDIA 3090 Ti
GPUs, utilizing a batch size of 64 and a learning rate of le-4 to
optimize the model parameters. Finally, we trained the 3D multi-
modal diffusion model using a decoupled attention mechanism. The
training sessions lasted 15 and 6 hours for the respective stages.

B EXPERIMENT AND DISCUSSION

In order to provide a comprehensive evaluation of our proposed
algorithm’s performance, we present an extended analysis of exper-
imental results in this section. Additionally, we conduct ablation
studies to assess the contribution of individual components to the
overall effectiveness of the model.

B.1 More results

Text-guided 3D generation. To further illustrate the capabili-
ties of our model, we provides a wider range of text-guided 3D
generation examples. These examples include multiple viewpoints
of the generated shapes, along with visualizations of their mesh
structures and hairlines, offering a more detailed understanding of
the model’s output. Figure 4 showcases a collection of car models
generated using text-based descriptions as input. The results exhibit
a high degree of fidelity to the provided text prompts, evident in the
consistency observed across different viewpoints. Moreover, the
generated views maintain coherence with each other, indicating the
model’s ability to capture the 3D structure of the described objects.
We expand the evaluation of our model’s generation capabilities in
Figure 5 by showcasing a broader spectrum of 3D shapes spanning
diverse object classes and stylistic attributes.

The multi-conditional control capabilities.Our multi-conditional

control capability is further evidenced by the presented visualiza-
tion results. In Figure 6, we demonstrate the control over generation
achieved through the combination of text and diverse visual condi-
tions. Figure 7 presents 3D generation results controlled by both
text and multiple visual conditions, highlighting the model’s ability
to integrate complex inputs. Experimental results demonstrate that
incorporating more visual cues as constraints during 3D generation
leads to the creation of 3D objects that better align with desired
specifications.

Figure 4: We present the generated 3D objects based on the
description "a pink/yellow car". The generation results ex-
hibit both diversity and view consistency.

A sofa chair

A square table

- ]
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Figure 5: More diverse results in text-guided generation.
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A blue truck
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A purple car

A chair with armrests and a backrest

5 TH

Figure 6: We present 3D generation results achieved using
text and diverse visual cues as guiding inputs.
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A yellow race car
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Figure 7: We showcases 3D object generation results achieved
through the utilization of multiple conditioning inputs.

B.2 Ablation study

With the aim of validating the efficacy of our proposed Image-
Bind3D algorithm, we performed three sets of ablation studies.
These studies targeted the inversion strategy, the pseudo-labeling
module, and the decoupled attention module, respectively. Fur-
ther analysis showcasing the comparative results of these abla-
tions across various viewpoints and geometries is available in the
supplementary materials. 3D Inversion Module. We conducted
ablation-1 by removing the additional Lj;;, and Ly losses to assess
the effectiveness of our inversion strategy. The results presented in
Figure 8 demonstrate that our inversion algorithm leads to genera-
tion outputs with greater detail.

Pseudo Label Module. For ablation-2, we directly removed
the pseudo-label module and utilized a diffusion model to control
the image directly for 3D generation. As shown in Figure 8, our
pseudo-label module effectively bridges the gap between modalities.

Decoupled Attention Module. In ablation-3 and 4, we com-
pared our decoupled attention module with alternative fusion strate-
gies. The results, presented in Figure 9, indicate that our decoupled
attention module enhances information fusion and improves the
level of detail in the generated 3D objects.

B.3 Discussion

The field of 3D generation seeks to achieve two primary objec-
tives: generating high-quality results and enabling controllability.

ACM MM, 2024, Melbourne, Australia

ImageBind3D  Ablation-1  Ablation-2

i e o

Figure 8: We perform ablation studies in our method, with
text prompts "a red car".

While existing methods have demonstrated success in generating
high-quality 3D objects, they often suffer from a lack of controlla-
bility, hindering users from obtaining desired outcomes based on
specific input conditions. Our ImageBind3D addresses this limita-
tion by introducing multi-conditional control capabilities to the
3D generation process, allowing for the combination of diverse
input conditions. Experimental results demonstrate that our algo-
rithm achieves both high-quality generation and a high degree of
controllability. We acknowledge the current limitation of lacking
fine-grained semantic information for detailed local editing, and
we identify this as a key direction for future research.

291

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

ImageBind3D
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Figure 9: We show 3D results using various fusion mechanisms. All generated outputs are derived from identical text "a yellow
car" and visual prompts.
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