APPENDIX

Proof of Theorem I1.2. The proof follows ideas from [18, Theorem 3.20] or [1, Theorem 3.2] and utilizes the discrete
subsampling from [2]. By [2, Lemma 2.2 and Theorem 3.1] we obtain
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with probability 1 — exp(—t). We split the approximation error as follows
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By event (5) and the invariance of Sx to functions supported on I, we obtain
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We will estimate the middle summand by Bernstein’s inequality, cf. [9, Corollary 7.31] or [24, Theorem 6.12]. We define
random variables & = |(Prf — Pr,, f)(x")|* — ||P1,, f — Prf||3,. By the reconstructing property, we have 7 Zﬁl |(Prf —
Pr, f)(®")|* = ||P1,, f — Prf||7, and, thus, & are mean zero. Further, we have
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Applying Bernstein’s inequality yields
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with probability 1 — exp(—t).
Plugging this in (6) and using || Pr,, f — Prflle, < ||f — Prf||L,, we obtain
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Using the assumption on n, we have 8t/3n < 2/9|I| < 2/9 and further estimate
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The second part of the bound is obtained by applying Holder’s inequality:
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By union bound we obtain the overall probability. |
Lemma A.l. For X uniformly distributed on T?, we have
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Proof. Consequence of [19, Par. 9.3.A] for h(t) = t2.

Proof of Theorem IIl.1. From Lemma A.1 follows
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Plugging this into (7) we obtain the assertion.
Proof of Theorem II1.2. By Theorem IIl.1 we have
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Next, we show a bound on the above dlfference in order to obtain the desired threshold. We have
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Using Theorem 2.2 and the assumption on the carnality of the frequency index sets, we obtain
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where union bound was used over the detection iterations. Setting ¢t = log(2r/e) we obtain the assertion.



