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1. Introduction
Stochastic processes [1] are essential in finance

[2, 3], engineering [4, 5], and natural sciences [6, 7, 8,
9, 10]. In financial mathematics, the use of stochas-
tic processes, mainly modeled by SDEs, depends on
accurate parameter estimation [11].
MLE is widely used but relies on careful parame-

ter initialization and knowledge of the exact parent
distribution [12]. Building on [13, 14], we propose a
zero-shotmodel to estimate the volatility σ, mean re-
version rate θ, and long-termmean µ from observed
points of an Ornstein–Uhlenbeck (OU) process. We
focus on theOUprocess due to its broad applications
in physics [15] and finance [16, 17].

2. RelatedWork
Estimating the parameters of stochastic differen-

tial equations (SDE) is a problematic task [18]. This
research problem is important in the field of fi-
nance [19]. MLE has been a foundational method
for parameter estimation in stochastic processes.
For instance, [20] discusses MLE within the con-
text of stochastic dynamical models. Recent work
has shown that combining the Least squares estima-
tor (LSE) with other estimation frameworks can en-
hance its performance in stochastic settings [21, 22].
Studies have demonstrated the effectiveness of gen-
eralized method of moments (GMM) in estimating
the parameters of SDE driven by Brownian motion
[23].
Advancements in neural networks have sparked

growing interest among researchers in this ap-
proach. In [24, 25, 26, 27], the authors propose a neu-
ral network-based approach to estimate SDE param-
eters, addressing the limitations of MLE and GMM
approaches, which often require parameter tuning.
Recent foundation models for time series [28, 29]

automate representation learning, yet challenges
persist, particularly in the zero-shot inference of
random process parameters [30].

3. Framework
General setup. We adopt the in-context learn-

ing approach from [14] and [13], leveraging a general
framework for training transformer models [31] on
synthetic data with several key modifications. Un-
like [13], our experiments employ a transformer en-
coder rather than a decoder. In contrast to [14], we
pre-train our model not on data with seasonal pat-
terns but on realizations of amodified randomwalk,
represented by OU process. Additionally, instead
of focusing on forecasting, as in [14], we address

stochastic process parameter extraction, similar to
[30].
Synthetic data generation. In the experiments,

we train and evaluate our method using the OU pro-
cess realization [32]. The OU process is defined by
the stochastic differential equation:

dxt = θ(µ− xt)dt+ σdWt,

where θ > 0 is the rate of mean reversion, µ is a
long-term mean toward which the process reverts,
and σ is the volatility coefficient. Wt denotes the
Wiener process. We sample θ, µ, and σ uniformly
from the interval (0, 20]. The training dataset con-
sists of a 15000 time series with a time horizon of
T = 5 and time increments of dt = 0.1, yielding
500 samples per trajectory. All trajectories start at
zero. To assess the model’s robustness in handling
time series of varying lengths, we introduce an addi-
tional parameter — the sequence length — sampled
uniformly from the interval [10, 500].
Model. In our setup, in-context learning refers

to providing the model with points from an OU pro-
cess realization as input, allowing it to infer the un-
derlying process parameters. Our model follows a
standard Transformer encoder design, as illustrated
in Figure A4. More details are also described in Ap-
pendix A.

4. Experiments
Baselines. We use the MLE algorithm imple-

mented in [33] as a baseline. We test three op-
tions of MLE: (1) vanilla MLE with initial guess
= [1, 1, 1] and parameter bounds almost equal to
the bounds of the sampling of the training dataset
[(0, 20), (0, 20), (0.01, 20)]; (2) MLE with initial guess
Ψ̂ = [µ̂, θ̂, σ̂], where Ψ̂ is our zero-shot model’s pre-
diction for OU parameters, and bounds for each pa-
rameter ψ̂ as (0.75 × ψ̂, 1.25 × ψ̂) for a correspond-
ing parameter in Ψ̂; (3) MLE with initial guess [1,
1, 1] and bounds obtained like in option 2 via zero-
shot model predictions. These MLE modifications,
as demonstrated later, highlight our primary contri-
bution and the unique application of the in-context
learning method for SDE parameter extraction.
Pipeline. The pipeline is as follows. First, we ob-

tain the dataset consisting of OUprocess realizations
of different lengths. Next, we train our transformer
model on these synthetics to predict the underlying
process parameters’ MSE loss between parameters.
We test the model in three different scenarios.
To evaluate the quality of our model, we estimate

the parameters of the OU and then use those esti-
mated parameters µ̂, θ̂, σ̂ and the saved Wiener real-
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ization to generate a new reconstructed trajectory X̂
of the process. Then, wemeasured theMSEbetween
true and reconstructed time series to conclude our
experiment.
Influenceofparameters.Wevary a single param-

eter from µ, θ, σ from 0.1 to 20 in the separate test
synthetic dataset while remaining the other fixed at
3. We report the changes in the MSE for the var-
ied parameters. The results of this experiment are
shown inFigureA1. Theseplots illustratehow the es-
timation quality in terms of MSE changes as one pa-
rameter is varied while all other parameters remain
fixed. In the upper set of the graphs, MSE is mea-
sured between true and estimated parameters for 30
equally spaced parameter values from the (0, 20]. In
the lower set, MSE is measured between a true and
reconstructed trajectory.
Interpolation and extrapolation ability. In the

second experiment, we investigate the model’s abil-
ity to accurately predict parameters from the un-
seen regions during the training procedure. For that
purpose, we train our model on realizations of the
OU process obtained with a different set of parame-
ters sampled uniformly from the interval union K ∈
(0, 5] ∪ (10, 15]. Next, we test our model on realiza-
tions with known setK and unknown set U ∈ (5, 10]∪
(15, 20] of the parameters. The result is shown in Ta-
ble 1. The model’s prediction errors in the unknown
region U closely resemble those observed in the first
experiment (see A1), albeit with more significant er-
rors in extrapolation, as expected. However, we be-
lieve that further investigation is required.

Fig. 1: Ablation on different context lengths. All val-
ues are in the log scale. The first plot reports
median, mean, and 95% confidence intervals for
mean aggregation. Constant stands for mean pre-
diction on points in context, MLE_zs is for case 2
from Baselines (Section 4) and MLE_adj is for case
3. MLE is for vanilla MLE (case 1). For MSE on pa-
rameter values, see Figure A3 in the Appendix. For
visualization of zero-shot model errors for differ-
ent contexts, see Figure A2.

Context length influence. The third experiment
evaluates the model’s ability to handle varying con-
text sizes. We adjust the input length of the time
series within the range of 10 to 500 by applying a
mask of the corresponding length to the original tra-
jectory. The model then estimates the parameters
based on the truncated trajectory. We generate a
full-length reconstructed trajectory using these es-
timated parameters and compute the mean squared

error (MSE) between the full original time series and
its reconstruction.
The results are presented in Figure 1. The obser-

vation that increasing context length improves the
performance of all models is fairly trivial. However,
these plots offer a more valuable insight. The key
takeaway is that MLE parameter estimation lacks ro-
bustness. This is evidentwhen comparing themean,
median, and standard deviation of the MSEs on OU
process realizations sampledwith different seeds, as
shown in Figure 1, and in the histograms of these
MSEs presented in Figure B. In the first plot, we
observe that, when aggregating by the mean, pure
MLE with the default guess and parameter bounds
performs the worst. Conversely, vanilla MLE out-
performs all its modifications for median aggrega-
tion as context length increases. This suggests that
vanilla MLE is influenced by significant outliers in
MSE scores, resulting in heavy tails in themetric dis-
tribution and skewing the mean MSE across seeds.
This hypothesis is supported by the histogram in Fig-
ure B. The histograms showMSE distributions, high-
lighting vanilla MLE’s non-robustness with heavy
tails, which worsen as context length decreases.
Nonetheless, the zero-shot approach remains the

most robust overall. While vanilla MLE produces
the best results when it converges, the zero-shot
method becomes the optimal alternative when deal-
ing with a large number of series, where maintain-
ing good mean scores is essential. The zero-shot ap-
proach is more robust and yields scores comparable
to MLE methods. Furthermore, by leveraging zero-
shot predictions from our model to provide an ad-
justed guess and parameter bounds (see experiment
cases 2 and 3 from the Baselines (Section 4) for de-
tails), we demonstrate a significant improvement in
MLE’s robustness.

region (0, 5] (5, 10] (10, 15] (15, 20]*

parameters 5.69 14.16 2.93 27.30*
trajectories 2.39 4.36 1.38 5.37*

Table 1: Interpolation test. MSE between true and
predicted values are reported. Bold font indicates
test for unknown region. * indicates extrapola-
tion.

5. Conclusion
In this paper, we propose an in-context learning-

based approach for estimating the parameters of
Ornstein-Uhlenbeck processes from their realiza-
tions. By leveraging our method to refine the ini-
tial conditions of classical MLE, we significantly im-
prove its performance. Moreover, it is an indepen-
dent method to extract parameters, giving compa-
rable scores with tuned MLE (case 2). Along with
similar works [14, 13, 30], it opens the new direction
of in-context learning for different tasks in Artificial
Intelligence (AI) for Science, such as chemistry [34],
physics [30] and financial mathematics [35].
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Appendix A. Framework

Model. Initially, all realizations of stochastic pro-
cesses are processed in parallel through embedding
and linear layers, producing both a [CLS] token
representation and point-wise token embeddings of
the series. These representations are concatenated
and subsequently passed through positional encod-
ing, Layer Normalization [36], and a transformer en-
coder initialized with BERT-Tiny [37, 38, 39] weights.
This design choice is motivated by prior research
demonstrating that initializing transformermodules
with weights from pre-trained language models en-
hances performance in time series tasks [40, 41, 28,
42]. The outputs of the transformer module are then
subjected to average pooling [43, 44], followed by a
ReLU activation [45] and a final linear layer, which
maps the outputs to the target dimensionality of
three parameters.

Appendix B. Experiments

Results. Third experiment. Below, we present his-
tograms of the MSE between true and reconstructed
trajectories. The results highlight the significant
non-robustness of vanilla MLE, as evidenced by the
heavy tails in the MSE distribution. Furthermore,
this issue becomes more pronounced as the context
length decreases. The X-axis represents MSE val-
ues, while the Y-axis denotes their corresponding
frequencies.
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Fig. A1: Ablation on different parameter values. Mean and 95% confidence intervals are reported.

Fig. A2: Zero-shot errors for different contexts visu-
alized for the same index. This figure explains
the increase in MSE for large contexts in the sec-
ond plot in Figure 1.

Fig. A3: Ablation on different context lengths. All
values are in the log scale. The first plot re-
ports median, mean, and 95% confidence inter-
vals for mean aggregation. Constant stands for
mean prediction on points in context, MLE_zs is
for case 2 fromBaselines (Section 4) andMLE_adj
is for case 3. MLE is for vanilla MLE (case 1). For
visualization of zero-shotmodel errors for differ-
ent contexts, see Figure A2.

Fig. A4: Our architecture
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