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1 Analysis and Discussion

In this section, we explore several factors that influence the experi-
mental results, focusing on the temporal encoder, the hyperparam-
eter settings, and we conclude with a summary of the limitations
of the work and directions for future research.

The effect of temporal encoder. We have shown the frame-
work of our proposed Audio-Visual Co-guidance Network in Figure
2 in the main paper. In particular, it is noted that the visual and
auditory modal features, after being processed by the audio visual
co-guidance attention (AVCA), also need to be processed by the
temporal encoder before they can be fed into the Interactive Modal
Correlation Module. This is because it is crucial to consider tempo-
ral features when solving the task of audio visual event localization,
as audio visual content is not static but dynamically unfolds over
time. This dynamism means that the information and relationships
in the audio visual data are continuously changing and depend on
the content before and after in time.

In order to determine the most appropriate type of temporal
encoder for the audio visual event localization task, we compare
the effects of three different temporal encoders as well as the effects
of not using the temporal encoder. Specifically, these three temporal
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Table S1: The effect of different temporal encoders.

Method Accuracy(%)
w/o temporal encoder 76.39
w/ unidirectional LSTM 77.04
w/ SNN 77.11
w/ bidirectional LSTM 80.80

encoders include a unidirectional long short-term memory network
(LSTM), a spiking neural network (SNN), and a bidirectional LSTM.
For the detailed implementation of SNN, we use a network architec-
ture that includes a single hidden layer with a time step of 15. The
neurons employed are Leaky Integrate-and-Fire (LIF) neurons [1]
and the experimental results are shown in Table S1.

It is evident that compared to not using a temporal encoder,
where the model’s accuracy is 76.39%, employing a temporal en-
coder to exploit the temporal features within the modality can
improve the performance of the network. For the unidirectional
temporal networks, where inputs are propagated forward in time,
the spiking neural network marginally outperforms the LSTM and
improves the model performance by 0.7% compared to not using
the temporal encoder. This demonstrates the effectiveness of SNN’s
ability to exploit temporal feature information in the task of au-
dio visual event localization by modelling the mechanism of spike
transmission between neurons. Following this, when the temporal
encoder uses a bidirectional LSTM, the model obtains an optimal
performance of 80.80%, which indicates before-and-after temporal
information facilitates the judgment of the results in the inter-
mediate moments in the task of audio visual event localization.
Specifically, the bidirectional LSTM is able to capture the tempo-
ral dependencies in the video in a more comprehensive way by
considering both past and future contextual information, thus effec-
tively integrating the information from the previous and subsequent
frames. This integration of before-and-after information is partic-
ularly critical for accurate recognition and localization of audio
visual events, since the context of an event is usually not limited to
a single instant but involves a continuous dynamic process.

Hyperparameters setting. In our proposed framework for
audio-visual co-guidance networks, there are three key hyperpa-
rameters involved: the parameter § used to regulate the guiding
effect of audio on visual, the parameter i used to modulate the
proportion of visual-guidance on audio, and the fusion coefficient A
used in background-event contrast enhancement. For §, we set it to
0.4 by default; for the effect of A, we show the effect of different pa-
rameter values on the results in detail in Table 2 in the main paper.
Meanwhile, for i in Audio-Visual Co-guidance Attention (AVCA),
its specific impact on network performance is also illustrated in Ta-
ble S2. Obviously, compared with ¢ = 0, i.e., audio-only guidance of
visual in co-guidance attention, an appropriate selection of ¢ (e.g.,
set to 0.3 or 0.45) can effectively improve network performance.
However, if ¢ is set too small, the desired positive effect may not
be achieved due to insufficient strength.

Limitation and future work. Our research focuses on the task
of audiovisual event localization and analyzes the difficulties and
challenges of the task. Although we propose effective solutions,
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Table S2: Ablation experiments for audio-visual co-guidance
attention. The experiment demonstrates the effect of the
parameter |/ on the results in the Visual-guided enhancement
audio feature.

Methods Accuracy
AVCA-Visual-only ¥ = 0 78.83
w/ AVCA ¢/ = 0.15 78.71
w/ AVCA ¢/ = 0.3 80.30
w/ AVCA ¢ = 0.45 79.93

Table S3: Model performance on the UnAV-100 datasets.

AVCA BECE 05 0.6 0.7 0.8 0.9 Avg.

- - 493 450 395 329 21.6 468
v - 49.8 451 400 326 213 471
v v 50.1 454 40.2 327 212 475

the AVE dataset itself has some limitations. We note that some
videos in the dataset have problems with labeling, e.g., events in
the videos may appear intermittently while the labels are labeled
as continuous occurrences, which may lead to model predictions
being misclassified as errors due to mislabeling even if they are
consistent with human observations.

In addition, there is only one instance in each video in the AVE
dataset. This setup is inconsistent with the reality of natural videos,
which often contain multiple audio visual events of different cate-
gories. Accomplishing this task on unconstrained video datasets
that contain more dense events will be more relevant to real-world
application scenarios. Therefore, applying our method to larger and
more event-dense datasets, such as the Untrimmed Audio-Visual
(UnAV-100) dataset [2], is a direction worth further exploration.

2 Generalization on more datasets

For audio-visual event localization tasks, previous related studies
were conducted exclusively on the AVE dataset. However, further
validation of our method in real-world scenarios is necessary. There-
fore, we select the UnAV-100 dataset [3], a large-scale untrimmed
audio-visual dataset, to evaluate the effectiveness and generalizabil-
ity of our proposed methods. UnAV-100 dataset contains multiple
categories of audio-visual events, often occurring simultaneously
within a video, just as they do in real-world scenarios.

Specifically, we employ the efficient encoder provided by Geng
et al. [3]. to validate our proposed Audio-Visual Co-Guidance Atten-
tion (AVCA) and Background-Event Contrast Enhancement (BECE)
methods. We conduct experiments on the UnAV-100 dataset, with
results shown in Table S3. We report the mean Average Precision
(mAP) at the tIoU thresholds [0.5:0.1:0.9] and the average mAP at
thresholds [0.1:0.1:0.9]. It can be observed that the average mAP
with AVCA reaches 47.1%, which is better compared to the baseline.
Further integration of BECE enables the model to achieve optimal
performance, demonstrating the effectiveness of our methods and
their generalizability on the new dataset.
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Table S4: Results on the AVE datasets. Bolding represents the
best results, underlining represents results in our paper.

Augmentation Method ~ Accuracy BECE loss weights  Accuracy

Channel Random Mask 79.20% A1 =0.0 80.30%

Feature Mixup 78.36% A1 =05 80.42%
Random Noise o = 1.0 79.50% A1 =1.0 80.80%
Random Noise o = 0.1 80.80% A1 =3.0 80.87%
Random Noise ¢ = 0.05 80.72% A1 =5.0 80.30%

(a) Method comparison (b) Coefficient comparison

Table S5: Ablation experiments of fine-tuning.

Feature Extractor Method Supervised
w/o Fine-tuning 79.65
1
VG619 w/ Fine-tuning 80.05
w/o Fine-tuning 81.56
ResNet50 w/ Fine-tuning 82.36

3 More ablation experiment analysis

We conduct additional experimental analyses and included three
more experiments: 1) The impact of different data augmentation
methods on event-background prediction. We explore three data
augmentation techniques: channel random masking (zeroing), fea-
ture mixup, and random Gaussian noise [X ~ N (u = 0, 0%)], with
results shown in Table S4. Gaussian noise augmentation proved to
be the most effective, which we believe is due to the similar char-
acteristics of event and background features, and Gaussian noise
helps to highlight the subtle differences between them. 2) Targeted
fine-tuning on the existing encoder. We use VGG19 as the visual
encoder to re-extract features, and the experimental results are
shown in Table S5. The results indicate that targeted fine-tuning
is effective across different encoders. 3) The effect of loss function
weights on the results. In equation 12, we set the first two terms
as the base loss function, with a fixed weight of 1. For contrast
enhancement loss, we set the coefficient A1, with results presented
in Table S4. It shows that a larger weight for contrastive loss may
yield better results, but weights that are too large or too small are
not suitable.

4 Complexity of our method

Specifically, our approach requires the incorporation of an audio-
visual co-guidance attention module and a contrast enhancement
projection layer, which adds additional computational complexity.
According to our experiments, this extra computation is affordable
and does not significantly impact inference speed while improv-
ing network performance, as shown in Table S6. Additionally, as
illustrated in Figure S1, our method achieves better results than
existing approach under the same training duration.

5 Reproducibility

Our experiments were implemented based on Pytorch [4], and
for the SNN component, we chose the open source framework
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Table S6: Comparison of complexity metrics

Method Params Memory FLOPs Inference Time Accuracy

Vanilla  12.58M 3.88G 1.27G 1.35s 77.83%
Ours 13.12M 4.29G 1.66G 1.37s 80.80%
>
8 75% -
o Zoom on initial epochs *Highest accuracy: 80.80%
8 50%] | sen *Highest accuracy: 77.83%
Q [ oo
< o 0.0 005 0.1 015 02
- 25%1/ —— Vanilla training method (Baseline)
$ Co-guidance and Contrastive Enhancement (Ours)
F % 01 02 03 0.4 05

Training hours
Figure S1: Variations of accuracy with the training time.

BrainCog [5] to implement the SNN with for conducting the exper-
iments. All source codes and training scripts are provided in the
Supplementary Material.
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