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A Detailed Discussion of Related Works1

Imitation learning from 3D inputs. While many imitation learning works assume RGB images as2

visual observations [1, 2, 3, 4], some works, similar to the design choice of our work, assume 3D3

point clouds or depth inputs to their methods. Recently, Ze et al. [5] proposed 3D Diffusion Policy, a4

depth-only variant of diffusion policy for visuomotor policy learning. Their method is very similar5

to our DP baseline, with two differences: (1) they use a simpler DP3 encoder in their work; (2) they6

use a 2-layer MLP to encode the robot proprioceptive states before concatenating with the point7

cloud representation.8

Figure 1: Comparisons with DP3-related archi-
tectures in the Cloth Folding task. We compare
with three different baselines: (1) DP3 is a vari-
ation of the DP baseline with the PointNet-based
encoder replaced by the DP3 encoder proposed
in [5], with the code of DP3 encoder copied ver-
batim from the public codebase; (2) DP3+Aug is a
variant of the DP3 baseline trained with augmen-
tations that are the same as the DP+Aug baseline
in the main paper; (3) DP3 w/ Equivariance is the
integration of DP3 into our method.

In Figure 1, we show quantitative comparison9

results between our method and baselines re-10

lated to [5]. As in our main paper results, we11

run 3 seeds of training runs, each for 2,00012

epochs, for all experiments. We evaluate the13

last 5 checkpoints for each training run and col-14

lect the final task reward for 10 episodes in15

each evaluation. Comparisons show that [5]16

displays similar performance as the DP base-17

line in the main paper, performing very well18

in in-distribution setups and poorly in out-of-19

distribution setups.20

We also show that [5] can be easily integrated21

with our method by switching our PointNet-22

based encoder to the DP3 encoder. In Figure 1,23

we show a comparison between our method24

and a variation of our method with a modifi-25

cation of the DP3 encoder to make it SO(3)-26

equivariant. Results show that the DP3 variant27

has slightly lower but comparable performance28

as our method in the Cloth Folding task.29

Equivariant diffusion architectures. Prior works have integrated equivariance in diffusion models30

in various non-robotics domains, including molecule generation [6, 7, 8] and drug design [9]. Some31

works have attempted to integrate equivariant architectures in diffusion models for robotics [10, 11].32

Diffusion-EDFs [10] take point cloud observations as input and output a single target end-effector33

pose. This formulation makes the work only applicable to pick-and-place tasks. EDGI [11] proposed34

an open-loop policy and showed it in simple 2D tasks only. Compared to prior works, our work35

proposes an equivariant diffusion policy that supports closed-loop 3D manipulation tasks.36
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Figure 2: Failure cases of our method during real robot executions. The pie charts show failure
breakdown in every real robot task variation. The navy color denotes success, while other colors
denote different types of failures. Each pie chart shoes a total of 10 trials since we run 10 episodes
per evaluation.

Additional works in equivariant architectures for robot manipulation. Aside from prior equiv-37

ariant architectures for robot manipulation introduced in the main paper, there are also robotics38

works that attempt to utilize equivariance in various setups. Some works [12, 13] attempt to use39

equivariance in a pick-and-place setup, while others [14, 15] propose SO(2)-equivariant robot poli-40

cies for tabletop manipulation tasks. In comparison to prior works, our proposed architecture is41

equivariant to position, orientation, and uniform scaling. In addition, our method can be applied in42

various 3D manipulation tasks that involve rigid, deformable, and articulated objects.43

B Limitations44

B.1 Limitations of Our Method45

In the paper, we mentioned the limitations of the method as well as the assumptions the method has46

to make about the input and output of the model. Here, we expand further on the limitations of our47

method.48

While our method can generalize to scenes with unseen object positions, scales, and orientations, it49

does not generalize automatically to the following unseen scenarios: (1) there are multiple objects50

in the scene and their relative positioning varies at evaluation time; (2) object dynamics change (eg.51

cloth is more rigid at test time, thus resulting in a point cloud that has unseen shapes); (3) non-52

uniform scaling of objects; (4) unseen object shapes beyond simple scaling (eg. an unseen handle53

position of a cup). Although these limitations exist, it is important to mention two facts. First, our54

method strictly generalizes more than a vanilla Diffusion Policy, which our method is built on top55

of. Second, we can always collect demonstrations with varied object dynamics, relative positioning,56

and local shapes to make the resulting policy generalize to these aspects.57

To make our method generalize out-of-distribution in the relative positioning of objects, object dy-58

namics, etc., future works can consider adding inductive biases in these aspects in the architecture59

of the model. For example, one can consider explicitly modeling multiple objects in the model60

to handle unseen relative positioning of different objects. One can also consider explicitly model-61

ing environment dynamics in an equivariant dynamics model to cope with unseen object dynamics.62

These directions are all interesting avenues for future work.63
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B.2 Failure Analysis64

Although our method outperforms vanilla Diffusion Policy [4] and prior equivariant visuomotor65

policy architectures, our method still presents various failure cases. Below, we focus our analysis66

on execution failure of our method in the real robot experiments. In Figure 2, we show the failure67

breakdown of all real robot executions we have performed with our method.68

In most packing tasks (packing t-shirt, towel, and cap), the main failure cases are the end-effector69

opening too early. We believe this is because the out-of-distribution scenarios resulted in the agent70

thinking that it has moved to the dropping location for the object and opened the end-effector. For71

the packing shorts task variation, half of the failures come from end-effector opening too late, and72

half of the failures come from the shorts not slipping off from the end-effector due to the friction of73

the end-effector. The failure to slip off happened because the shorts is a small deformable object that74

easily hangs itself onto the end-effectors. This problem can potentially be solved by designing end-75

effectors that can handle deformable objects better or performing online adaptation after training,76

which is out of the scope of our work.77

In the push chair, laundry door closing, and bimanual folding tasks, the majority of failures come78

from the end-effector not performing the full motion or not performing gripper open close actions79

at the right time. This most likely happens because the errors in predicted actions accumulated and80

the observation became too out-of-distribution scenarios for the policy to behave correctly. In the81

bimanual make bed task, our object segmentation algorithm appears to be more finicky than other82

tasks, not segmenting the full comforter in some scenarios since the folded comforter looks like83

two objects. This results in the policy sometimes not giving nice inference results, giving rise to84

execution failures.85

C Method Architectures and Implementation Detail86

In this section, we describe in detail the architecture of our method. We visualize the architecture of87

our model in Figure 3.88

Observation and action spaces. In all simulated and real robot tasks except for Push T, we use a 13-89

dimensional proprioception information and a 7-dimensional action space for each robot. The pro-90

prioception data for each robot consists of the following information: a 3-dimensional end-effector91

position, a 6-dimensional vector denoting end-effector orientation (represented by two columns of92

the end-effector rotation matrix), a 3-dimensional vector indicating the direction of gravity, and a93

scalar that represents the degree to which the gripper is opened. The action space for each robot94

consists of the following information: a 3-dimensional vector for the end-effector position veloc-95

ity, a 3-dimensional vector for the end-effector angular velocity in axis-angle format, and a scalar96

denoting the gripper action.97

In the Push T task, the robot proprioception is 3-dimensional and consists of the agent’s 3D position98

in the scene, while the action space is 3-dimensional and denotes the absolute position target of the99

agent.100

In all simulated and real robot tasks, our policy uses an observation horizon of 2 steps, a prediction101

horizon of 16 steps, and an action horizon of 8 steps. This is identical to the setup used in the102

diffusion policy paper [4].103

Encoder architecture. In all tasks except for Push T, we use a SIM(3)-equivariant version of104

PointNet++ with 4 layers and hidden dimensionality 128. In the Push T task, we decrease the105

number of layers to 2 since the number of points in the point cloud observation is much smaller in106

this task.107

Noise prediction network. Our noise prediction network inherits hyperparameters from the original108

Diffusion Policy paper. In all simulation experiments, we use the DDPM scheduler [16] and perform109

100 denoising steps during inference. In real robot experiments, to optimize for inference speed, we110

use the DDIM scheduler [17] with 8 denoising steps.111
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Figure 3: Architecture of EquiBot. Given input scene point cloud, robot proprioception, noisy
actions, and the diffusion timestamp, our architecture processes position, direction, and scalar in-
formation independently, uses the encoder outputs to scale position information into position and
scale invariant values, and then routes them into an SO(3)-equivariant conditional U-net to predict
denoised actions. In the figure, we omit scaling for the ease of viewing. VecLinear and VecConv1D
refer to a SO(3)-equivariant version of linear and convolution 1D layers.

Point cloud size. Picking the number of points to sample in the point cloud observation is a key112

hyperparameter to consider when designing an architecture that takes point cloud inputs. In our113

experiments, we found out that using 512 or 1024 points is sufficient for all tasks. In particular,114

for all real robot experiments and simulated mobile manipulation tasks, we use 1024-point point115

clouds. In Can and Square tasks, we use 256 and 512 points respectively since there is relatively116

more training data in these tasks, and decreasing the number of points in the point cloud makes117

training faster without hurting performance.118

D Real Robot Setup Details119

D.1 Human Demo Parsing Infrastructure120

We use a single Zed 2 camera to record human natural motion in real-time, which is way more121

flexible and time-efficient than the expert demonstration from human teleoperation of a robot.122

We assume access to a dataset D = {τn}Nn=1 of human demonstrations. Each human demonstration123

consists of a series of RGB-D image frames τn = {Int }Tt=1, where T is the episode horizon. The124

human demonstration processing module has three parts: (1) an off-the-shelf object detection and125

tracking model Xn
t = Ψ(Int , I

n
t−1) that takes the current and previous demonstration frames Int126

and Int−1 (if existing) as input and outputs a parsed point cloud of objects of interest Xn
t ; (2) an127

off-the-shelf hand detection model Hn
t = Φ(Int ) that takes the current demonstration frame as input128

and outputs the keypoints on each human hand in the input frame Hn
t ; and (3) an alignment module129

Ω(Xn
t ,H

n
t , I

n
t ) that takes the outputs of the previous two steps as input, aligns the 3D coordinates130

of the outputs, and outputs the aligned human finger pose yn
t in the same coordinate system of Xn

t .131

We use Grounded Segment Anything Model with DEVA [18] as the object detection and tracking132

model Ψ and HaMeR [19] as the hand detection model Φ. In the alignment module, we find a set of133
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matching points between the point cloud Xn
t and Hn

t , and then fit a rotation transformation Rh and134

an offset th to transform all points Hn
t to the coordinate frame of the point cloud. Then, we extract135

the thumb and index finger positions on the transformed keypoint set to predict the human “end-136

effector” pose yn
t . We found that the alignment module Ω is crucial, as the hand detection model137

produces hand poses in a different coordinate frame from the point cloud. Without this module, the138

resulting hand poses will not align with the object point cloud.139

D.2 Mobile Robot Control Infrastructure140

Our robot control setup consists of a centralized workstation and two mobile robots. The workstation141

reads and parses visual observations, performs policy inference, and communicates with the robots.142

The mobile robots take the output actions of the policy and execute them.143

On the workstation side, we build a multi-processed infrastructure to handle observation parsing,144

policy inference, and action execution separately. To reduce latency, we keep spinning the obser-145

vation parsing and policy inference processes. We use shared memory to communicate between146

different processes.147

In the observation parsing process, we obtain visual observations from a single Zed 2 camera di-148

rectly connected to the workstation via cable. We use the Grounded Segment Anything Model with149

DEVA [18] to obtain segmented point clouds that contain only relevant objects in the scene. We150

then downsample this segmented point cloud to 1024 points. The downsampled point cloud and151

the robot proprioceptive information are sent to the policy inference process. The policy inference152

process then outputs a sequence of 16 predicted actions.153

In the action execution process, we first reset all robots to their initial poses. Then, for each step154

in an evaluation episode, we read out the latest policy inference results from the policy inference155

process. To ensure accurate execution, we compute the elapsed time between the policy input time156

and action execution time. If this elapsed time exceeds a threshold, we skip the first few predicted157

actions during action execution. After skipping the first few predicted actions to account for latency,158

we select the 8 actions that immediately follow the skipped actions to execute. This means that no159

matter how many actions are skipped, we always execute 8 actions at a time.160

On the mobile robot, we also build a multi-processed control infrastructure and use shared memory161

to communicate between different processes. There is a server process that captures all requests162

from the clients and stores the command in shared memory to control the Kinova arm and mobile163

base. As the arm and base operate at different frequencies, we decouple the control for those two164

components but always ask the Kinova arm end-effector to track the expected global pose whenever165

possible, no matter what the base pose is.166

We utilize the mocap system in the room to update the mobile base position at 120 Hz. Then, we (1)167

transfer each control signal from the global world frame to the local frame of the Kinova arm, (2)168

convert the target pose at the gripper fingertip to an expected pose of the Kinova end-effector, and169

(3) convert it into a velocity command for the arm. To ensure safe execution, a timeout callback will170

stop the arm movement when no new velocity commands arrive for 4 times the expected execution171

time interval. Unlike the control of the Kinova arm, we use position control for the mobile base and172

will only move it when the robot end-effector is too close to or too far from the base. To ensure173

safety, we define task-specific polygons workspace boundaries for the Kinova arm and the mobile174

base separately, so that all motions are constrained within a safe region.175

In future work, we will explore more principled whole-body control architecture to avoid decoupling176

the arm and base motion.177

D.3 Task Details178

Push chair. In this task, the human demonstrations are collected using a standing desk (48 × 30179

inches). The policies are evaluated on two different tables: a longer rectangular desk (58×23 inches)180
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Ours DP
Number of Demos → 10 25 50 10 25 50

Success Rate 8/10 9/10 10/10 3/10 5/10 7/10
Close with Click Sound 2/10 2/10 5/10 2/10 1/10 5/10

Total Missing Angle 17.46◦ 7.18◦ 6.3◦ 140.42◦ 33.85◦ 21.55◦

Collision or Safety Issue 0/10 0/10 0/10 2/10 0/10 0/10

Table 1: Detailed performance of the laundry door closing task.

and a circular table (diameter of 36 inches). An episode is considered successful if the center of the181

chair goes beneath the desk.182

Luggage packing. In the human demonstrations, a human picks up a pack of white t-shirts and183

places them into a white carry-on luggage. At evaluation time, we test four different packing items:184

white t-shirts (same as training object), gray towel roll, blue cap, and navy shorts. An episode is185

considered successful if at least half of the packed object ends up within the luggage.186

Luggage closing. In this task, human demonstrations are collected on a small carry-on luggage187

(55× 40× 23 cm), while the policies are evaluated on a large check-in luggage (76× 48× 25 cm).188

An episode is considered successful if the luggage ends up in a closed state.189

Laundry door closing. In this task, the human demonstrations and the robot work with the same190

loundry machine (front-loader). The goal is to close the door of the laundry machine that is open at191

the start of the episode. An episode is considered successful if the door ends up with an opening of192

at most 5cm.193

Bimanual folding. In this task, the human demonstrations are collected by using two hands to fold194

a small piece of cloth (34× 38 cm). At evaluation time, the robot is asked to fold a large gray towel195

(140× 75 cm). After each evaluation episode, we measure the mean distance between each grasped196

corner to their corresponding target cloth corners and mark the episode as successful if this mean197

distance is less than 0.2 times the length of the folding side of the cloth.198

Bimanual make bed. In this task, the human demonstrations are collected by using two hands to199

unfold a towel (34 × 38 cm). At evaluation time, the robot is asked to make the bed by unfolding200

a much larger comforter on top of the bed. After each evaluation episode, we measure the mean201

distance between each grasped corner to the bed board and mark the episode as successful if this202

mean distance is less than 0.2 times the length of the bed.203

E Additional Real Robot Results204

Detailed performance analysis of the laundry door closing task. To understand the performance205

of the Diffusion Policy [4] and our method better, we perform a more detailed analysis in the laundry206

door closing task. In Table 1, we report four different metrics of policy performance in each evalua-207

tion setup. Success Rate measures the percentage of evaluations that end within the success criteria208

we set; Close with Click Sound measures the percentage of episodes that end with the laundry door209

closed completely after making a clicking sound; Total Accumulated Missing Angle measures the210

sum of the opening angles of the laundry door at the end of the 10 evaluation episodes; Collision211

or Safety Issue measures the percentage of evaluation runs that are terminated because of undesired212

collisions or critical safety issues, such as the robot arm getting stuck at the laundry door. From213

the evaluation results, we see that the DP policy not only has a lower success rate but also has a214

much larger accumulated missing angle. The baseline also suffers from many safety issues requir-215

ing episodes to be manually terminated by the robot operator. Our method has much fewer safety216

issues when it executes.217

Qualitative results. In Figure 4, we show qualitative rollout samples for all evaluation scenarios218

we mentioned in the paper, plus one bonus task where two robots lift a woven basket onto a coffee219

table.220
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Figure 4: Qualitative rollout samples for all real robot evaluation scenarios. From top to bottom,
we have: (1) pushing a chair towards a long standing desk; (2) pushing a chair towards a circular
table; (3) packing t-shirts; (4) packing towel roll; (5) packing cap; (6) packing shorts; (7) closing a
check-in luggage; (8) closing laundry door; (9) bimanual folding; (10) bimanual make bed; (11) a
bonus task where two robots lift a woven basket onto a coffee table.

F Simulation Experiment Task Details221

Cloth folding. In this task, the demonstrations show two robots folding a piece of cloth (27.5×27.5222

cm). During an evaluation, we compute the task reward as 1.0 − (d1 + d2)/(0.275 × 2), where d1223

and d2 denote the distance from the two grasped cloth corners to the target cloth corners.224

Object covering. In this task, the demonstrations show two robots moving a piece of cloth ( 27.5×225

27.5 cm) onto a rigid box (10 × 7 × 5 cm). During an evaluation, the task reward is computed as226

Vintersect/Vconvex hull, where Vintersect is the volume intersection between the box and the convex hull of227

the cloth and Vconvex hull is the volume of the convex hull of the cloth.228
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Box closing. In this task, the demonstrations show two robots closing a box (14.5× 12× 11.5 cm)229

with three flaps. Success in this task is evaluated as (a1+a2+a3)/(3×180), where a1 to a3 denote230

the angle in degrees at which each flap of the box is closed.231

Push T. In this task, a 2D anchor pushes a T shaped object on a plane of dimension 512×512 pixels.232

The task reward is computed as the percentage of the T shape that overlaps with the target T pose.233

Robomimic tasks. We use the same object and reward specifications in these tasks as the original234

benchmark. Please check out the Robomimic [1] paper for more details.235
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