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A THE METHOD OF MOMENTS

The method of moments was developed by the Russian mathematician Pafnuty L. Chebyshev in
1887 for proving the central limit theorem, and then rigorously formulated by his student Andrey A.
Markov (Fischer, 2010). The main idea is to represent probability distributions in terms of infinite
sequences of real numbers, because functional representations, e.g., probability density functions,
cumulative distribution functions, and characteristic functions, of many probability distributions in
practice, may be intractable. Specifically, given a probability measure µ on the real line, then the
k
th moment is defined by

mk =

Z 1

�1
x
k
dµ(x)

for each k 2 N A natural question is whether the probability measure µ can be uniquely determined
by the sequence of moments {mk}k2N and vice vera.

Theorem 1 Let µ be a probability measure on the real line having finite moments mk of all orders. If
the power series

P1
k=1 mkr

k
/k ! has a positive radius of convergence, then µ is the only probability

measure with the moments mk for k 2 N

Proof. See (Billingsley, 1995). ⇤
Of course, if µ is compactly supported, the condition in Theorem 1 is satisfied. To see this, we sup-
pose the support of µ is contained in the compact interval [a, b], then mk =

R1
�1 x

k
dµ(x) =

R
b

a
x
k
dµ(x)  M

k holds for each k since µ([a, b]) = 1, where M = max{|a|, |b|}. As
a result, we have

P1
k=0 mkr

k
/k ! 

P1
k=0(Mr)k/k ! = e

Mr, which has the infinite radius
of convergence. Typical moment-determined probability distributions with non-compact sup-
ports are normal distributions. For example, the normal distribution N (0,�) has the moments
mk = �

k(k � 1) !! = �
k(k � 1)(k � 3) · · · 3 · 1 for k even and mk = 0 otherwise, and then

we have
P1

k=0 mkr
k
/k ! =

P1
k=0(�r)

2k
/(2k) !! =

P1
k=0(�r)

2k
/2kk ! = e

(�r)2/2, which also has
the infinite radius of convergence.

In the early 20 century, the notion of moments was extended from probability measures to general
Borel measures, and the problem of the existence and uniqueness of a moment sequence repre-
senting a Borel measure is referred to as the moment problem, which has already been extensively
studied under different settings. Those relevant to our work are the Hausdorff moment problem and
Hamburger moment problem, which concern with Borel measures supported on [0, 1] and the entire
R, respectively.

Theorem 2 Let {mk}1k=0 be a sequence of real numbers.

1. (Hausdorff moment problem) There is a unique Borel measure on [0, 1] such that mk =R 1
0 x

k
dµ(x) for all k 2 N if and only if

P
n

i=0

�
n

i

�
(�1)imk+i � 0 for all k, n 2 N.

2. (Hamburger moment problem) There is a unique Borel measure on R such that mk =R1
�1 x

k
dµ(x) for all k 2 N if and only if

P
i,j2N mj+kcic̄j � 0 for any sequence {ck}k2N

of complex numbers such that ck = 0 holds for all but finitely many k, equivalently, the
Hankel matrix

Hn =

2

664

m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
...

mn mn+1 · · · m2n

3

775

has positive determinant for all n 2 N.

Proof. See (Hausdorff, 1923; Hamburger, 1920). ⇤

B DIFFERENTIAL CALCULUS IN MOMENT COORDINATES

In this work, we are particularly interested in Borel measures on ⌦ ✓ Rn that are absolutely contin-
uous with respect to the Lebesgue measure with the Radon-Nikdym derivatives given by Rn-valued
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L
p functions for some p � 1. Let M denote the space of moment sequences associated with L

p-
functions, then the moment problem implies that the moment transform T : Lp(⌦,R) ! M is a
bijective map. It is straightforward to observe that M is a vector space over R: if m and m

0 are the
moment sequences associated with f and f

0, then am + a
0
m

0 is necessarily the moment sequence
associated with af + a

0
f
0 for any a, a

0 2 R. This further proves that T is a linear map, and hence a
vector space isomorphism.

Now, we equip the space of moment sequences M the quotient topology generated by T so that
T becomes a continuous linear map, then T also becomes differentiable (actually smooth) with the
differential DT being able to be identified with T as well. This provides the tool for calculating the
moment representation of a vector field on L

p in terms of its pushforward by T . For example, given
a linear vector field V on L

p(⌦,Rn), then there is an Rn⇥n valued function A defined on ⌦ such that
V = Af 2 L

p(⌦,Rn) for any f 2 L
p(⌦,Rn). Then, by the definition of pushforward vector fields,

the pushforward of V is a vector field on M, given by L⇤V = DT ·A ·T �1
m = T ·A ·T �1

m with
m denoting the moment sequence of f , which is again a linear vector field because the composition
T ·A · T �1 of linear maps is still linear.
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