
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Group Vision Transformer
Anonymous Authors

ABSTRACT
The Vision Transformer has attained remarkable success in various
computer vision applications. However, the large computational
costs and complex design limit its ability in handling large feature
maps. Existing research predominantly focuses on constraining at-
tention to small local regions, which reduces the number of tokens
attending the attention computation while overlooking computa-
tional demands caused by the feed-forward layer in the Vision
Transformer block. In this paper, we introduce Group Vision Trans-
former (GVT), a relatively simple and efficient variant of Vision
Transformer, aiming to improve attention computation. The core
idea of our model is to divide and group the entire Transformer
layer, instead of only the attention part, into multiple indepen-
dent branches. This approach offers two advantages: (1) It helps
reduce parameters and computational complexity; (2) it enhances
the diversity of the learned features. We conduct comprehensive
analysis of the impact of different numbers of groups on model
performance, as well as their influence on parameters and compu-
tational complexity. Our proposed GVT demonstrates competitive
performances in several common vision tasks. For example, our
GVT-Tiny model achieves 84.8% top-1 accuracy on ImageNet-1K,
51.4% box mAP and 45.2% mask mAP on MS COCO object detection
and instance segmentation, and 50.1% mIoU on ADE20K semantic
segmentation, outperforming the CAFormer-S36 model by 0.3% in
ImageNet-1K top-1 accuracy, 1.2% in box mAP, 1.0% in mask mAP
on MS COCO object detection and instance segmentation, and 1.2%
in mIoU on ADE20K semantic segmentation, with similar model
parameters and computational complexity. Code is accessible at
github.com/AnonymousAccount6688/GVT.

KEYWORDS
Vision Transformer, Image Classification, Group FFN

1 INTRODUCTION
Convolutional neural networks (CNNs) have become prevailing
architectures for computer vision applications, encompassing tasks
such as image classification, object detection, and semantic seg-
mentation. Following the remarkable success of AlexNet [17] in
ImageNet-1K classification, there has been a continuous evolution
toward developing deeper andmore efficient CNNs [12, 27, 28] to en-
hance image recognition capabilities. In pursuing greater efficiency
within CNN models, a succession of methodologies [14, 16, 29, 35]
has been developed tomitigate model parameters and floating-point
operations (FLOPs).

Meanwhile, inspired by the remarkable success of Transformer [31]
in the field of natural language processing (NLP), a multitude of
studies have embarked on incorporating self-attention mechanisms
into computer vision tasks. The Vision Transformer has emerged
as a predominant model in computer vision applications. ViT [9]
initially partitions an input image into multiple patches, transform-
ing each patch into a token; subsequently, a Transformer encoder
is employed to process these tokens utilizing the self-attention (SA)

mechanism, enabling capturing both global and local relationships
within the image.

The Vision Transformer is composed of multiple stacks of basic
blocks, each consisting of self-attention and a multilayer percep-
tron (MLP). The computational mechanism of self-attention shows
linear complexity concerning the dimension of the token but ex-
hibits quadratic complexity with respect to the number of tokens.
Consequently, a series of methodologies sought to mitigate the
computational complexity associated with self-attention. Another
disadvantage of the Vision Transformer, when compared to Convo-
lutional Neural Networks (CNNs), is the absence of inductive bias,
as it lacks spatial hierarchies and translational invariance. Note that
the Vision Transformer attempts to implicitly learn inductive bias
from a large amount of training data, such as JFT-300. Recently, local
attention Transformers have emerged to establish local inductive
bias while concurrently reducing computational demands.

In the Swin Transformer [21], a non-overlapping window atten-
tion mechanism was introduced to concentrate on a pre-defined
window area. Additionally, a shifted window mechanism was pro-
posed for token mixing between two adjacent windows. Wang et
al. [32] utilized a progressive shrinking pyramid to alleviate compu-
tation associated with large feature maps. Dong et al. [8] introduced
a cross-shaped attention that performs self-attention in both hor-
izontal and vertical stripes by dividing multi-heads into parallel
groups. Ramachandran et al. [25] applied self-attention to replace
traditional convolutional operations, where each pixel attends to
the attention computation within a window, utilizing a sliding win-
dow. Furthermore, Hassani et al. [10] presented an efficient and
memory-friendly local attention mechanism to reduce attention
computation while preserving local inductive bias.

Despite the ability of the aforementioned approaches to reduce
computation by concentrating on small regions, they tend to over-
look the channel dimension. In the Vision Transformer, each Trans-
former block comprises two main parts: the attention layer and
the feed-forward network (FFN). The computational complexity
of the attention part is quadratic concerning the token length and
linear with respect to the channel dimension, while the compu-
tational complexity of the FFN part is quadratic concerning the
channel length. The model complexity induced by the FFN layer is
even larger than the self-attention layer. For instance, the NAT tiny
model [10] comprises 28M parameters and 4.3G FLOPs, of which
12.461M parameters and 1.796G FLOPs are attributed to the self-
attention layer, with the remaining generated by the feed-forward
network. In a recent work [20], a cascade group attention was pro-
posed to reduce computation and diversify features by segmenting
the feature map into multiple heads; attention is then computed
for each head without sharing parameters. However, the emphasis
of these studies remains predominantly on attention computation,
with insufficient attention directed to the feed-forward network.

In this paper, we propose a newGroup Vision Transformer (GVT).
We first partition the input feature tokens into multiple groups

https://github.com/AnonymousAccount6688/GVT

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

4 6 8 10 12 14 16
FLOPs

81.5

82.0

82.5

83.0

83.5

84.0

84.5

To
p

1
Ac

c

ConvNeXt
Swin
NAT
GVT
CSwin
Mini
Tiny
Small
Base

Figure 1: Comparison of Top-1 Accuracy on ImageNet-1K
classification and model complexity. Our GVT outperforms
NAT and Swin with similar parameters and computational
complexity.

along the token dimension. Next, we apply self-attention and feed-
forward network (FFN) operations independently on each feature
group. Simultaneously, one group is dedicated to capturing the
global dependencies of the shallow layer. This design offers several
advantages. First, the grouped feature tokens result in a reduction
of computation in the FFN, which accounts for the majority of the
Transformer Block computation, by a factor of 𝑔, where 𝑔 denotes
the number of groups. Second, each feature group attends to self-
attention and FFN computations independently, thereby enhancing
the diversity of the feature groups. To incorporate inductive bias
and global-range dependencies in the shallower layers, one group is
utilized to capture global contours while the remaining groups are
responsible for capturing local details. Experimental results across
various computer vision tasks, including image classification, ob-
ject detection, instance segmentation, and semantic segmentation,
demonstrate that the proposed Group Vision Transformer achieves
competitive performance compared to baselines while maintaining
comparable model parameters and computational complexity (e.g.,
Fig. 1).

2 RELATEDWORK
This section gives a brief review of Vision Transformers, highlights
notable instances of Group Convolutions, and discusses recent
advances of efficient Vision Transformers.

2.1 Vision Transformer
The Vision Transformer was first proposed in [9], where an in-
put image is divided into small non-overlapping patches. These
patches are then linearly embedded and treated as sequences of
tokens. The tokenized patches undergo processing through mul-
tiple layers of Vision Transformer (ViT) blocks to capture spatial
relationships among the feature tokens and learn relevant features.
A ViT block, a fundamental building unit in the Vision Transformer
architecture, comprises two components: A self-attention layer and
a feed-forward network (FFN). In the self-attention layer, attention
scores for each token of the image are determined based on its

relevance to all the other tokens. Given an input token 𝑋 ∈ 𝑅𝑛×𝑑 ,
where 𝑛 is the length of the token and 𝑑 is the dimension of each
token, three matrices 𝑄,𝐾 , and 𝑉 are defined to map the input
token to a query and a key-value pair. The output is computed as
the weighted sum of the value matrices [31]. The output matrix is
calculated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 , (1)

whose computation has a complexity of 𝑂 (𝑛2𝑑).
After the self-attention layer, a two-layer Position-wise feed-

forward network is added to introduce more non-linearity to the
model and enhance the representation ability of the model, as well
as for dimension interaction. This allows the model to learn com-
plex, non-linear relationships within the feature token. Given an
input token 𝑋 ∈ 𝑅𝑛×𝑑 , the FFN is computed as:

𝐹𝐹𝑁 (𝑋) = 𝛿 (𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2, (2)

where𝑊1 and𝑊2 denote the parameters of the two MLP layers
in the FFN, 𝑏1 and 𝑏2 represent the biases of the two MLP layers
respectively, and 𝛿 denotes a non-linear activation operation (e.g.,
GELU [13]). The FFN has a computational complexity of 𝑂 (𝑛𝑑2).

2.2 Group Convolution
Group convolution was initially introduced in AlexNet [17], where
it was employed to distribute the model across two GPUs. In [26],
depth-wise separable convolution was proposed to reduce param-
eters and computation by first conducting convolutions on each
feature map independently and then mixing the features across
different feature maps using a 1× 1 convolution [18]. Xie et al. [35]
introduced a homogeneous multi-branch structure utilizing group
convolutions to enhance performance while preserving model pa-
rameters and computational complexity. Afterwards, group convo-
lution was applied to developmore efficient models for edge devices,
such as MobileNet [14] and Xception [4], as replacements for tradi-
tional convolutions. In [39], a shuffle unit was proposed to enhance
information flow among different groups, thereby improving the
overall performance.

2.3 Efficient Vision Transformers
The original Vision Transformer (ViT) model [9] computes the
attention scores of a token with all the other tokens, resulting in
quadratic computational complexity concerning both the token
length and embedding dimension. Afterwards, researchers have
sought to reduce the computation of the Vision Transformer and
develop more efficient ViT models.

In the Swin Transformer [21], attention computation is focused
only on a small window rather than the entire pixel space. In
PVT [32], spatial reduction is employed on the key and value ma-
trices, thereby reducing the computation required for attention. In
SASA [25], a sliding local attention module was proposed, replacing
all convolutions in ResNet [12] with a self-attention layer, resulting
in improved performance with less parameters and computation.
In [8], a cross-shaped window self-attention was proposed, where
token self-attention calculations are conducted in horizontal and
vertical stripes in parallel. Each stripe is obtained by splitting the

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Group Vision Transformer ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

input features into stripes of equal width, leading to improved per-
formance with the similar parameters and computational demands.
Hassani et al. [10] improved SASA [25] by providing a memory-
and speed-efficient implementation.

3 METHOD
This section presents our Group Vision Transformer (GVT).

3.1 The Overall Architecture
The overall architecture of our Group Vision Transformer is shown
in Fig. 2. Following the common practice in NAT [10], we split an
input image into overlapped patches by a patch splitting module.
Each patch is regarded as a token and is derived as the concatenation
of the pixel RGB values. This is implemented by two layers of strided
convolution, with a stride of 2 and a kernel size of 3. The patch size is
set to 4. As a result, the feature dimension of each token is 4×4×8 =
128. To attain a hierarchical representation, the whole network
consists of four stages. In each stage, a token will be processed by a
convolution to reduce the spatial resolution and double the feature
dimension using a strided convolution (kernel size 3 × 3, stride
2 × 2). Therefore, the 𝑖-th stage will generate a feature map of size
𝐻
2𝑖 × 𝑊

2𝑖 × 𝐶 · 2𝑖 , where 𝐻,𝑊 , and 𝐶 represent the height, width,
and channels of the feature map generated by the first stage. Each
stage consists of 𝑁𝑖 sequential Group Vision Transformer Blocks,
and the number of tokens and feature dimension are maintained
within each stage. Consequently, the proposed architecture can be
applied to various downstream vision tasks, such as object detection,
instance segmentation, and semantic segmentation.

3.2 Group Self Attention
Despite the fact that many previous ViT studies sought to reduce
the computational complexity by focusing the attention computa-
tion on small local windows, they neglected to consider the token
dimension. For instance, in the NAT Transformer block [10], the
computation of self attention is 3ℎ𝑤𝑑2+2ℎ2𝑤2𝑑 and that of the FFN
layer is 2ℎ𝑤𝑟𝑑2, where 𝑟 is the hidden layer expansion between the
two feed-forward layers, 𝑑 is the token dimension, and the window
size is ℎ ×𝑤 . Thus, the total computation of each NAT Transformer
block is as follows:

𝐹𝐿𝑂𝑃𝑠 (𝑁𝐴𝑇) = 3ℎ𝑤𝑑2 + 2ℎ2𝑤2𝑑 + 2ℎ𝑤𝑟𝑑2 . (3)

As shown above, in the total computation of each Transformer block,
two terms are quadratic in the token dimension 𝑑 . Since the local
attention already reduces the window size (ℎ and𝑤), the dimension
𝑑 becomes the key factor that impacts the total computation.

Based on the above observation, we propose the GVT block
design, in which each input token is decomposed into 𝑔 groups (see
Fig. 3). For each such group, its amount of computation (i.e., FLOPs)
is calculated as:

3ℎ𝑤 (𝑑/𝑔)2 + 2ℎ2𝑤2𝑑/𝑔 + 2ℎ𝑤𝑟 (𝑑/𝑔)2 . (4)

Thus, the total computation of the 𝑔 groups of a GVT block is:

𝐹𝐿𝑂𝑃𝑠 (𝐺𝑉𝑇) = 𝑔 × (3ℎ𝑤 (𝑑/𝑔)2 + 2ℎ2𝑤2𝑑/𝑔+
2ℎ𝑤𝑟 (𝑑/𝑔)2)

=
1
𝑔
(3ℎ𝑤𝑑2 + 2ℎ𝑤𝑟𝑑2) + 2ℎ2𝑤2𝑑.

(5)

Typically, the computational load attributed to the first two terms in
Eq. (4) constitutes the primary portion of the overall computational
burden. For example, in the context of the NAT model [10], the
combined computation of the first two terms amounts to 4.1 × 106
FLOPs, while the third term amounts to 4.6 × 105 FLOPs. Thus,
the reduction in computation as described in Eq. (5) significantly
alleviates the total computational load.

The group attention structure is shown in Fig. 3. Specifically, for
each input feature token 𝑋 ∈ R𝑛×𝑑 , we divide the features of 𝑋
into 𝑔 groups along its token dimension 𝑑 , resulting in 𝑔 subsets
𝑋1, 𝑋2, . . . , 𝑋𝑔 . On each subset 𝑋𝑖 , we perform self-attention and
FFN separately.

Another advantage of grouping the attention computation is
to enhance the diversity of features. As Fig. 3 shows, we split the
features of 𝑋 along the token dimension within each GVT block.
During the attention and FFN computation, the features do not
communicate across different groups, and thus this process reduces
the likelihood of redundancy of features generated by each GVT
block.

The details of the GVT block are as follows. Given an input
feature token 𝑋 ∈ R𝑛×𝑑 , with 𝑛 = ℎ ×𝑤 as the spatial resolution
of the feature map, we first split the features of the token into 𝑔
groups, as:

𝑋𝑖 = 𝑋 [𝑑𝑖 : 𝑑𝑖+1], (6)

where 𝑑𝑖 and 𝑑𝑖+1 denote the starting indices of the 𝑖-th and (𝑖 +
1)-th groups along the token dimension, respectively. The slice
operator [𝑑𝑖 : 𝑑𝑖+1] returns the segment from index 𝑑𝑖 to index 𝑑𝑖+1,
excluding the element at index 𝑑𝑖+1. Next, we compute attention
for each group 𝑖 , as:

𝑋
(0)
𝑖

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑖𝐾

𝑇
𝑖√

𝑑𝑖+1 − 𝑑𝑖
)𝑉𝑖 . (7)

Afterwards, each 𝑋 (0)
𝑖

is processed by a two-layer feed-forward
network, obtaining features 𝑋 (1)

𝑖
, as:

𝑋
(1)
𝑖

= 𝛿 (𝜙 (𝑋 (0)
𝑖
𝑤1 + 𝑏1)𝑤2 + 𝑏2), (8)

where 𝑤1 and 𝑤2 are the parameters of the two-layer MLP re-
spectively, 𝜙 and 𝛿 are GELU activation functions, and 𝑋 (1)

𝑖
∈

Rℎ𝑤×(𝑑𝑖+1−𝑑𝑖) . Then, all the features are concatenated and aver-
aged to a 1D vector, as:

𝑋 (2) = 𝐴𝑉𝐺 (𝐻 (𝑋 (1)
1 , 𝑋

(1)
2 , . . . , 𝑋

(1)
𝑔)), (9)

where 𝐻 (·) denotes concatenation along the token dimension,
and 𝐴𝑉𝐺 (·) denotes average pooling along the (ℎ,𝑤) plane. Thus,
𝑋 (2) ∈ R1×𝑑 .

After the above operation,𝑋 (2) is processed by a fully-connected
layer, further emphasizing informative groups:

𝑠𝑖 = 𝜎 (𝑋 (2)𝑊3), (10)

where 𝑊3 ∈ R𝑑×(𝑑𝑖+1−𝑑𝑖) refers to the parameters of the fully-
connected layer,𝜎 refers to sigmoid activation, and 𝑠𝑖 ∈ R1×(𝑑𝑖+1−𝑑𝑖) .
The output of each group 𝑖 is obtained by rescaling 𝑋 (1)

𝑖
, as:

𝑋
(3)
𝑖

= 𝐹 (𝑋 (1)
𝑖

, 𝑠𝑖), (11)

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Co
nv

To
ke

ni
ze

r

Co
nv

D
ow

ns
am

pl
er

Co
nv

D
ow

ns
am

pl
er

Co
nv

D
ow

ns
am

pl
er

Group Vision
Transformer Block

Group Vision
Transformer Block

Group Vision
Transformer Block

Group Vision
Transformer Block

× N1 × N2 × N3 × N4

H ×W × 3 H
4 × W

4 × C H
8 × W

8 × 2C H
16 × W

16 × 4C H
32 × W

32 × 8C

Stage 1 Stage 2 Stage 3 Stage 4

Figure 2: The overall structure of our proposed Group Vision Transformer model. 𝑁1, 𝑁2, 𝑁3, and 𝑁4 denote the numbers of
GVT blocks in the four stages, respectively. ConvTokenizer is a two-layer strided convolution. ConvDownsampler is a one-layer
strided convolution that increases the channels while reducing the resolution of the feature map.

Table 1: Details of different variants of our GVT model. The
costs are calculated with an input image size of 224 × 224.

Variant # dim 𝑁1, 𝑁2, 𝑁3, 𝑁4 # heads # params. FLOPs
GVT-Mini 128 3, 4, 6, 5 2, 4, 8, 16 18.6M 2.8G
GVT-Tiny 128 3, 4, 12, 5 2, 4, 8, 16 28.1M 5.2G
GVT-Small 128 3, 4, 18, 5 2, 4, 8, 16 46.3M 7.5G
GVT-Base 128 3, 4, 36, 3 2, 4, 8, 16 85.9M 14.5G

where 𝐹 (·) is token-wise multiplication between the feature map
𝑋

(1)
𝑖

∈ Rℎ𝑤×(𝑑𝑖+1−𝑑𝑖) of group 𝑖 (𝑛 = ℎ ×𝑤) and the vector 𝑠𝑖 . The
final output of the GVT block is:

𝑋 (4) = 𝐻 (𝑋 (3)
1 , 𝑋

(3)
2 , . . . , 𝑋

(3)
𝑔), (12)

The processed feature map 𝑋 (4) will be sent to the next GVT block
for further processing (if there is a next block).

3.3 Architecture Variants of GVT
Table 1 presents detailed instantiation information of the model
variants of our Group Vision Transformer. Following common prac-
tice [10, 12, 21], we construct our base model, denoted as GVT-B, to
closely mirror the model parameters and computational complexity
of the base model NAT-B in [10]. Also, we build GVT-Mini (GVT-
M), GVT-Tiny (GVT-T), and GVT-Small (GVT-S), each tailored to
exhibit comparable parameter quantities and computational com-
plexities to their NAT counterparts: NAT-Mini (NAT-M), NAT-Tiny
(NAT-T), NAT-Small (NAT-S), and NAT-Base (NAT-B), respectively.
We conduct experimental trials to determine optimal configura-
tions for block parameters 𝑁1, 𝑁2, 𝑁3, and 𝑁4 (shown in Table 1) to
achieve the best performance while retaining the aimed computa-
tional complexities. The patch size is set to 4, the token dimension
is 𝑑 = 128, the query size is 𝑑𝑖𝑚 = 128 (see Table 1), and the MLP
expansion ratio is 𝛼 = 4, for all the experiments. The number of
groups is set as 𝑔 = 4.

4 EXPERIMENTS
We conduct experiments on the ImageNet-1K [7], MS-COCO object
detection and instance segmentation [19], and ADE20K semantic
segmentation [41] datasets. Our ablation study investigates the
effectiveness and computation costs of various network variants of
GVT. We employ NAT as the Local Attention block (see Fig. 3).

4.1 ImageNet Classification
We train ourmodel variants on the ImageNet-1K dataset to show the
effectiveness of our GVT model. ImageNet-1K provides 128K, 50K,
and 100K images for training, validation, and testing. The images are
categorized into 1000 classes. We use the timm package [33] to train
our model. Following the practice of Swin Transformer [21], several
data augmentation methods are utilized: CutMix [37], Mixup [38],
RandAugment [6], and Random Erasing [40]. We train our model
for 300 epochs, with 5 warm-up epochs and an extra 10 cool-down
epochs. The initial learning rate of the warm-up stage is 10−6, the
maximum learning rate is 10−3, and the minimum learning rate is
10−5. Besides, a cosine learning rate decay strategy is applied. We
use AdamW [23] to optimize our model.

Table 2 shows the experimental results comparing our method
with several typical methods on the ImageNet-1K dataset: DeiT [30],
ConvNeXt [22], PVT [32], Swin [21], NAT [10], BiFormer [42],
STViT [15], and CAFormer [36]. The symbols M, T, S, B, and L
denote Mini, Tiny, Small, Base, and Large, respectively. Specifically,
we use the NAT [10], BiFormer [42], STViT [15], and CAFormer [42]
blocks as our base block, and compare with the models without our
Group mechanism.

As Table 2 shows, our model demonstrates superior perfor-
mances compared to the vallinaNAT, BiFormer, STViT, andCAFormer,
while operating under similar parameter settings and computational
constraints. Specifically, our GVT-M, GVT-T, GVT-S, and GVT-B
outperform CAFormer-S18, CAFormer-S36, CAFormer-M36, and
CAFormer-B36 by 0.4%, 0.3%, 0.2%, and 0.1% in Top-1 Accuracy,
respectively. This trend underscores the capability of our Group
Vision Transformer to enrich the diversity of the learned features.
Further, our GVT block achieves reductions in computations and
parameters, enabling our model to preserve more feature maps
with similar model parameters and computational costs. Through-
out the training process, we partition features into distinct paths
with limited inter-path communication. This strategy effectively
mitigates feature redundancy, thus enhancing the overall model
performance. In addition, we observe a notable enhancement in
the Frames Per Second (FPS) of our model compared to its coun-
terpart. This improvement is primarily attributed to splitting the
entire Transformer block into multiple groups, each executed in
parallel. Consequently, this parallel group processing scheme leads
to a significant enhancement in inference speed.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Group Vision Transformer ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

······

······

······

······

······

Group 1 Group 2 Group 3 Group g

Local
Attention

Local
Attention

Local
Attention

Global
Attention

FFN FFN FFN

Group 1 Group 2 Group 3 Group g

FFN

C

C

X

X
(1)
2 X

(1)
3 X

(1)
g

X(2)

X(4)

X
(1)
1

X
(3)
2

X
(3)
3 X

(3)
gX

(3)
1

s1 s2 s3 sg

Figure 3: The structure of our proposed GVT block.
⊕

de-
notes summation,

⊗
denotes token-wise multiplication,

and C○ represents concatenation of feature groups along
the token dimension. Local Attention corresponds to the
NAT block [10], whereas Global Attention corresponds to
the vanilla ViT block [9].

4.2 Object Detection and Instance Segmentation
To further demonstrate the effectiveness of our proposed GVT
model, we pre-train our model on the ImageNet-1K dataset and
evaluate it on the MS COCO 2017 and ADE20K datasets for object
detection, instance segmentation, and semantic segmentation.

We test our pre-trainedmodel on theMS COCO 2017 dataset [19],
which contains 118K, 5K, and 20K images for training, validation,
and testing, using the Mask R-CNN and Cascade Mask R-CNN
frameworks, respectively. Specifically, we pre-train our backbone

Table 2: Experimental results on the ImageNet-1K dataset,
running on 6 NVIDIA RTX 6000 Ada GPUs. The input image
size is 224×224. We use NAT, BiFormer, STViT, and CAFormer
as the base local attention, respectively. Bold numbers mark
the best performances with different parameters and com-
putations. “*” indicates experimental results acquired using
our own GPUs.

Method # Params. FLOPs Thru. (FPS) Mem. Top-1 ACC
DeiT-T [30] 5.7 M 1.3 G 4648 64 M 72.2
DeiT-S [30] 22.1 M 4.6 G 1723 160 M 79.8
DeiT-B [30] 86.6 M 17.6 G 535 477 M 81.8

ConvNeXt-T [22] 28.0 M 4.5 G 1415 227 M 82.1
ConvNeXt-S [22] 50.1 M 8.7 G 817 390 M 83.1
ConvNeXt-B [22] 89.2 M 15.4 G 533 603 M 83.8

PVT-T [32] 13.2 M 1.9 G 1503 126 M 75.1
PVT-S [32] 24.5 M 3.8 G 964 220 M 79.8
PVT-L [32] 61.4 M 9.8 G 673 476 M 81.7
Swin-T [21] 29.1 M 4.5 G 1384 223 M 81.3
Swin-S [21] 50.2 M 8.7 G 848 367 M 83.0
Swin-B [21] 88.1 M 15.4 G 621 570 M 83.5
CSWin-T [8] 23 M 4.3 G 1285 209 M 82.7
CSWin-S [8] 35 M 6.9 G 1278 329 M 83.6
CSWin-B [8] 78 M 15.0 G 598 604 M 84.0
NAT-M [10]* 20.1 M 2.7 G 1708 176 M 81.8
NAT-T [10]* 28.0 M 4.3 G 1232 242 M 82.9
NAT-S [10]* 51.2 M 7.8 G 840 398 M 83.6
NAT-B [10]* 90.0 M 13.7 G 626 609 M 84.1

NAT

GVT-M (ours) 18.6 M 2.8 G 3962 229 M 82.4
GVT-T (ours) 28.1 M 5.2 G 2725 300 M 83.5
GVT-S (ours) 46.3 M 7.5 G 1402 479 M 84.1
GVT-B (ours) 85.9 M 14.5 G 1047 836 M 84.6

BiFormer-T [42] 13.1 M 2.2 G 1246 630 M 81.4
BiFormer-S [42] 26 M 4.5 G 647 1318 M 83.8
BiFormer-B [42] 57 M 9.8 G 419 2048 M 84.3

BiFormer
GVT-T (ours) 15.5 M 3.1 G 2016 824 M 82.6
GVT-S (ours) 27.1 M 5.3 G 1326 1502 M 84.4
GVT-B (ours) 54.5 10.9 852 2446 M 85.0

STViT-S [15] 25 M 4.4 G 1096 251 M 83.6
STViT-B [15] 52 M 9.9 G 555 485 M 84.8
STViT-L [15] 95 M 15.6 G 373 740 M 85.3

STViT
GVT-T (ours) 27.1 M 4.9 G 2383 324 M 84.0
GVT-S (ours) 50.3 M 10.5 G 1089 520 M 85.2
GVT-B (ours) 96.9 M 15.8 G 689 872 M 85.5

CAFormer-S18 [36] 26.0 M 4.1 G 1638 261 M 83.6
CAFormer-S36 [36] 39.0 M 8.0 G 890 457 M 84.5
CAFormer-M36 [36] 56.0 M 13.2 G 667 642 M 85.2
CAFormer-B36 [36] 99.0 M 23.2 G 504 946 M 85.5

CAFormer

GVT-M (ours) 27.3 M 4.0 G 2830 387 M 84.0
GVT-T (ours) 37.9 M 7.5 G 1929 569 M 84.8
GVT-S (ours) 56.3 M 14.1 G 1295 834 M 85.4
GVT-B (ours) 100.9 M 24.0 G 832 1129 M 85.6

model on ImageNet-1K following the practice of NAT [10], and
apply the pre-trained backbone to the object detection and instance
segmentation frameworks.

We evaluate our method using the backbones of ResNet, Con-
vNeXt, and Transformers (i.e., Pyramid Vision Transformer (PVT),
Swin Transformer (Swin), Neighborhood Attention Transformer
(NAT), STViT [15], CAFormer [36], and Cross-Shape Transformer
(CSwin)). We utilize the mmdetection framework [3] to train our
object detection and instance segmentation networks. We resize all
the images to have a shorter side of 480 to 800 pixels and a longer
side of ≤ 1,333 pixels. Table 3 presents the experimental results on
the MS COCO 2017 dataset using the Mask R-CNN framework with
the “1×” (12 training epochs) and “3× 𝐿𝑅” (36 training epochs with
multi-scale training) schedules. Table 3 shows that our approach
outperforms STViT-B [15] by 1.2% in box AP and 1.1% in mask
AP, respectively. On the Tiny model, our approach outperforms
STViT-S by 1.2% in box AP and 1.0% in mask AP, respectively.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Experimental results on the MS COCO 2017 dataset using Mask R-CNN [11] with the 1× and 3× training schedules.
Images are resized to have a shorter side of 480 to 800 pixels and a longer side of ≤ 1333 pixels. GVT (NAT), GVT (CAFormer),
and GVT (STViT) mean that we use NAT, CAFormer, and STViT blocks as the base local attention, respectively. Bold numbers
mark the best performances with different parameters and computations. “–” denotes that corresponding results were not
reported in the original papers.

Method # Params. FLOPs Thru. Mask R-CNN 1× Schedule Mask R-CNN 3× Schedule
(M) (G) (FPS) 𝐴𝑃𝑏 𝐴𝑃𝑏50 𝐴𝑃𝑏75 𝐴𝑃𝑚 𝐴𝑃𝑚50 𝐴𝑃𝑚75 𝐴𝑃𝑏 𝐴𝑃𝑏50 𝐴𝑃𝑏75 𝐴𝑃𝑚 𝐴𝑃𝑚50 𝐴𝑃𝑚75

ResNet50 [12] 44 260 29 38.0 58.6 41.4 34.4 55.1 36.7 41.0 61.7 44.9 37.1 58.4 40.1
PVT-T [32] 44 245 23 40.4 62.9 43.8 37.8 60.1 40.3 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T [21] 48 264 21 42.2 64.6 46.2 39.1 61.6 42.0 46.0 68.2 50.2 41.6 65.1 44.8
CSWin-T [8] 42 279 19 46.7 68.6 51.3 42.2 65.6 45.4 49.0 70.7 53.7 43.6 67.9 46.6
NAT-T [10] 48 258 20 – – – – – – 47.7 69.0 52.6 42.6 66.1 45.9

CAFormer-S18 [36] 45 254 24 – – – – – – 48.6 70.5 53.4 43.7 67.5 47.4
STViT-S [15] 44 252 21 47.6 70.0 52.3 43.1 66.8 46.5 49.2 70.8 54.4 44.2 68.0 47.7
GVT-T (NAT) 40 218 18 47.1 69.2 51.6 43.0 66.1 45.9 49.5 70.4 54.0 44.5 68.3 46.3

GVT-T (CAFormer) 47 268 26 47.9 70.1 52.5 43.7 67.2 47.5 50.3 71.7 54.9 45.2 69.7 47.8
GVT-T (STViT) 45 260 26 48.1 70.6 52.9 43.7 67.5 46.9 51.4 71.4 55.6 45.2 70.2 48.1
ResNet100 [12] 63 336 22 40.4 61.1 44.2 36.4 57.7 38.8 42.8 63.2 47.1 38.5 60.1 41.3
PVT-S [32] 64 302 16 42.0 64.4 45.6 39.0 61.6 42.1 44.2 66.0 48.2 40.5 63.1 43.5
Swin-S [21] 69 354 13 44.8 66.6 48.9 40.9 63.4 44.2 48.5 70.2 53.5 43.3 67.3 46.6

ConvNeXt-S [30] 66 262 14 – – – – – – 46.2 67.9 50.8 41.7 65.0 44.9
CSWin-S [8] 54 342 14 47.9 70.1 52.6 43.2 67.1 46.2 50.0 71.3 54.7 44.5 68.4 47.7
NAT-S [10] 70 330 15 – – – – – – 48.4 69.8 53.2 43.2 66.9 46.5
STViT-B [15] 70 359 11 49.7 71.7 54.7 44.8 68.9 48.7 51.0 72.3 56.0 45.4 69.5 49.3
GVT-S (NAT) 67 310 18 48.2 70.3 53.1 44.0 67.5 47.0 50.3 71.8 55.3 45.0 68.3 48.2
GVT-S (STViT) 74 371 16 50.3 72.5 54.9 45.3 68.6 49.1 52.2 73.6 56.9 46.5 70.8 49.7
ConvNeXt-B [30] 86 741 12 – – – – – – 50.4 69.1 54.8 43.7 66.5 47.3

PVT-L [32] 81 364 14 42.9 65.0 46.6 39.5 61.9 42.5 44.5 66.0 48.3 40.7 63.4 43.7
Swin-B [21] 107 496 13 46.9 – – 42.3 – – 48.5 69.8 53.2 43.4 66.8 46.9
CSWin-B [8] 97 526 12 48.7 70.4 53.9 43.9 67.8 47.3 50.8 72.1 55.8 44.9 69.1 48.3
STViT-L [36] 114 470 10 50.8 72.5 56.3 45.5 69.7 49.1 51.7 73.0 56.9 45.9 70.4 49.9
GVT-B (NAT) 109 512 17 50.3 71.2 54.5 45.1 68.0 48.1 52.0 72.8 58.5 46.1 69.3 49.5
GVT-B (STViT) 120 479 15 51.6 73.4 57.5 46.2 71.1 50.5 52.5 73.2 57.8 47.2 71.6 50.9

Table 4: Experimental results on the MS COCO 2017 dataset
using Cascade Mask R-CNN [2]. Bold numbers mark the best
performances with different parameters and computations.

Method # Params. FLOPs Cascade Mask R-CNN 3× schedule
𝐴𝑃𝑏 𝐴𝑃𝑏50 𝐴𝑃𝑏75 𝐴𝑃𝑚 𝐴𝑃𝑚50 𝐴𝑃𝑚75

NAT-M [10] 77 704 50.3 68.9 54.9 43.6 66.4 47.2
GVT-M (NAT) 68 701 52.0 72.2 54.2 44.5 66.8 48.4
ResNet50 [12] 82 739 46.3 64.3 50.5 40.1 61.7 43.4
ResNext101 [35] 101 819 48.1 66.5 52.4 41.6 63.9 45.2
Swin-T [21] 86 745 50.5 69.3 54.9 43.7 66.6 47.1

ConvNeXt-T [30] 86 741 50.4 69.1 54.8 43.7 66.5 47.3
CSWin-T [8] 80 757 52.5 71.5 57.1 45.3 68.8 48.9
NAT-T [10] 85 737 51.4 70.0 55.9 44.5 67.6 47.9

CAFormer-S18 [36] 81 733 52.3 71.3 56.9 45.2 68.6 48.8
STViT-B [15] 108 837 53.9 72.7 58.5 46.8 70.4 50.8
GVT-T (NAT) 80 720 52.3 71.5 57.0 45.1 68.4 49.5

GVT-S (CAFormer) 78 714 53.0 72.5 58.0 45.9 69.4 50.2
GVT-S (STViT) 116 853 54.3 73.4 58.2 47.1 70.1 51.2
ConvNeXt-B [30] 146 964 52.7 71.3 57.2 45.6 68.9 49.5

Swin-B [21] 145 982 51.9 70.5 56.4 45.0 68.1 48.9
NAT-B [10] 147 931 52.5 71.1 57.1 45.2 68.6 49.0

CAFormer-M36 [36] 132 920 53.8 72.5 58.3 46.5 70.1 50.7
GVT-B (NAT) 140 922 53.4 72.1 57.9 46.4 69.6 50.1

GVT-B (CAFormer) 134 928 54.6 73.7 59.1 47.6 70.9 51.5

Table 4 reports the object detection and instance segmentation
results on the MS COCO 2017 dataset using the Cascade Mask R-
CNN [2] framework. Likewise, we find that our GVTmodel achieves
promising performance gains compared to the known methods.
Specifically, our GVT-B (CAFormer) and GVT-S (CAFormer) out-
perform CAFormer-M36 and CAFormer-S18 by 0.8% and 0.7% in

box AP, respectively. The mask mAP performances also demon-
strate the superiority of our model over the known ones. Since our
GVT model and the NAT model use the same Local Attention block,
these performance gains manifest the effectiveness and consistent
improvement of our GVT approach.

4.3 Semantic Segmentation
To demonstrate the generalizability of our GVT on semantic seg-
mentation, we train our model using UperNet [34] on the ADE20K
dataset. Specifically, we pre-train our GVT on the ImageNet-1K
dataset, and apply the pre-trained backbone to UperNet for seman-
tic segmentation. For fair comparison, we follow the practice of
Swin Transformer and NAT by using the mmsegmentation frame-
work [5] for training and testing. We train all the models for 160K
iterations and set the batch size to 16. The training images are
randomly resized and cropped to 512 × 512 in the training stage.
During the test stage, a multi-scale testing using resolutions which
are [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] multiplied with that used in the
training stage is employed.

Table 5 presents the experimental results on ADE20K semantic
segmentation in the mIoU measure. We compare our method with
ConvNeXt [22], Swin Transformer [21], CSWin Transformer [8],

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Group Vision Transformer ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Experimental results on the ADE20K dataset of
semantic segmentation using UperNet [34]. Bold numbers
mark the best performances with different parameters and
computations. Training images are randomly resized and
cropped to size 512×512. In the test stage, amulti-scale testing
using resolutions which are [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] multi-
plied with that used in the training stage is employed.

Method # Params. (M) FLOPs (G) Thru. mIoU
NAT-M [10] 50 900 25 46.4
GVT-M (ours) 48 895 24 47.2
Swin-T [21] 60 946 21 45.8

ConvNeXt-T [30] 60 939 21 46.7
CSWin-T [8] 60 959 19 49.3
NAT-T [10] 58 934 20 48.4
SViT-S [15] 54 926 20 48.6

CAFormer-S18 [36] 54 1024 21 48.9
GVT-T (NAT) 58 930 21 49.9

GVT-T (CAFormer) 55 1036 19 50.1
Swin-S [21] 81 1040 17 49.5

ConvNeXt-S [30] 82 1027 17 49.6
NAT-S [10] 82 1010 15 49.5
SViT-B [15] 80 1036 15 50.7

CAFormer-S36 [36] 67 1197 11 50.8
GVT-S (NAT) 80 1027 14 50.4

GVT-S (CAFormer) 69 1228 11 52.0
Swin-B [21] 121 1188 15 49.7

ConvNeXt-B [30] 122 1170 14 49.9
CSWin-B [8] 109 1222 13 51.1
NAT-B [10] 123 1137 14 49.7
STViT-L [15] 125 1151 14 52.4

CAFormer-M36 [36] 84 1346 10 51.7
GVT-B (NAT) 105 1210 14 52.4

GVT-B (CAFormer) 86 1401 9 52.8

and NAT [10]. As Table 5 shows, our GVT outperforms the state-of-
the-art models in different variants. Specifically, our GVT-T, GVT-S,
and GVT-B achieve 1.2%, 1.2%, and 1.1% performance gains over
the counterparts of CAFormer [42] with similar parameters and
computational complexities.

4.4 Feature Map Diversity
To further demonstrate the capability of our method in diversifying
feature maps, we compare the dissimilarity [1] of the generated
feature maps by our model and the vanilla base models (NAT-B [10],
CAFormer-M36 [36], BiFormer-B [42], and STViT-L [15]). We use
the cosine distance to measure the dissimilarity between two fea-
tures 𝑓𝑖 and 𝑓𝑗 in a feature map 𝑓 ∈ R𝐶×𝐻×𝑊 , with 𝑓𝑖 , 𝑓𝑗 ∈ 𝑅𝐻×𝑊 .
The diversity of 𝑓 is calculated as:

𝐷𝑖𝑠 (𝑓) = 1
𝑚

𝐶∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝑐𝑜𝑠 (𝑓𝑖 , 𝑓𝑗), (13)

𝑚 =
𝐶 ∗ (𝐶 − 1)

2
, (14)

Table 6: Feature map dissimilarity between our method and
previous methods. GVT (NAT), GVT (CAFormer), GVT (Bi-
Former), and GVT (STViT) denote using NAT, CAFormer,
BiFormer, and STViT blocks as the local attention, respec-
tively.

Method Dissimilarity
NAT-B [10] 0.364
GVT (NAT) 0.487

CAFormer-M36 [36] 0.649
GVT (CAFormer) 0.798
BiFormer-B [42] 0.761
GVT (BiFormer) 0.884
STViT-L [15] 0.774
GVT (STViT) 0.896

where𝑚 is the number of feature pairs, and 𝑐𝑜𝑠 (𝑓𝑖 , 𝑓𝑗) is the cosine
distance between two features 𝑓𝑖 and 𝑓𝑗 in 𝑓 .

The featuremap dissimilarities of NAT-B, CAFormer-M36, BiFormer-
B, STViT-L, and our models are shown in Table 6. Observably, our
Group mechanism consistently enhances the diversity of the ex-
tracted feature maps due to the fact that the Group mechanism
reduces the likelihood of redundancy of features generated by each
GVT block. A qualitative example of feature map comparison be-
tween CAFormer-M36 and our GVT with the CAFromer block as
the base local attention is shown in Fig 4.

(a) (b)

(c)

Figure 4: An example of feature map comparison between
our method and CAFormer-M36. (a) An input image; (b) the
feature map generated by CAFormer-M36; (c) the feature
map generated by our GVT-S (CAFormer) model.

4.5 Ablation Study
In this section, we conduct ablation study on the proposed GVT ap-
proach. Specifically, we explore how the Self Attention (SA) Group-
ing, FFN Grouping, and Re-scaling module affect the model perfor-
mance respectively on the ImageNet-1K dataset. The results are
shown in Table 7. Note that we adjust the number of channels of
each stage to closely mirror the model parameters and computa-
tional complexity of CAFormer-S18. Observably, combining the

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 7: Ablation study on the effects of different key com-
ponents of our proposed GVT approach. The CAFormer [36]
block is utilized as the local attention.

Setting ImageNet-1K MS COCO ADE-20K
Params FLOPs Top-1 ACC 𝐴𝑃𝑏 𝐴𝑃𝑚 mIoU

CAFormer-S18 26.0 4.1 83.6 48.6 43.7 48.9
w/o SA Grouping 28.4 4.2 83.8 49.5 45.1 48.9
w/o FFN Grouping 29.2 4.5 83.7 49.1 44.8 48.6
w/o Re-scaling 28.2 4.6 83.8 49.4 45.0 49.3

GVT-T (CAFormer) 27.3 4.0 84.0 50.3 45.2 50.2

Table 8: Ablation study of the efficacy of the number of local
attention groups. We designate the total number of groups
to be 8.

of Local Attention Groups
1 2 3 4 5 6 7 8

Params (M) 59.4 58.9 58.3 57.6 56.8 56.3 56.2 56.1
FLOPs (G) 17.9 17.1 16.4 15.8 15.0 14.1 13.9 13.6
Top-1 ACC 82.7 83.3 83.5 83.9 84.8 85.4 85.2 84.9

SA Grouping, FFN Grouping, and Re-scaling gives rise to the best
performance.

We further examine the efficacy of global and local grouping. Em-
ploying CAFormer-M36 as the local attention model, we designate
the total number of groups to be 8. The results are shown in Table 8.
Notably, a performance enhancement is observed as the number
of local attention groups initially increases. Furthermore, the per-
formance saturates when the number of local attention groups
reaches 6, thereafter experiencing a decline as the number of local
attention groups continues to increase. This can be attributed to
the complementary roles played by both local attention, which cap-
tures fine-grained details, and global attention, which encapsulates
broader contextual information, thereby contributing to the overall
image representation capability [24].

For fair comparison, we integrate our GVT mechanism into
the backbone architectures of both Swin Transformer [21] and
NAT [10], respectively. Our evaluations are conducted on the ImageNet-
1K dataset.

Compared to Table 8 that studies the effect of the ratio of Local
Attention Groups, in Table 9, we present the effects of the total
number of groups and the token dimension of each group, denoted
as “GVT_𝑁 ×𝑊 ”, where 𝑁 denotes the number of groups and
𝑊 denotes the token dimension of each group. Note that for an
input feature token 𝑋 , the token dimension 𝑑 of 𝑋 is 𝑑 = 𝑁 ×
𝑊 (for all the 𝑁 groups). As Table 9 shows, more groups give
rise to performance gains under similar parameter numbers and
computational budgets. On the backbone of Swin Transformer,
our GVT (𝑁 = 4,𝑊 = 32) outperforms its counterparts by 1.3%,
0.5%, and 0.4% in Top-1 Accuracy, respectively. On the backbone of
Neighborhood Attention Transformer (NAT), our GVT (𝑁 = 4,𝑊 =

32) outperforms its counterparts by 0.6%, 0.6%, 0.5%, and 0.5% in Top-
1 Accuracy, respectively. These experimental results demonstrate
the performance effectiveness and computational advantages of
our approach.

Notably, performance enhancements are observedwith increased
group numbers, attributing to the capability of our Group Vision

Table 9: Ablation study of utilizing two different backbones
on the ImageNet-1K dataset. (Swin) and (NAT) denote using
the Swin Transformer and NAT blocks as the Local Attention,
respectively. Bold numbers mark the best performances with
different parameters and computations.

Method # Params. (M) FLOPs (G) Top-1 ACC
Swin-T [21] 29.1 4.5 81.3

GVT-T_2 × 48 (Swin) 28.3 4.6 82.4
GVT-T_4 × 32 (Swin) 28.1 4.3 82.6
GVT-T_8 × 24 (Swin) 28.5 4.8 82.6

Swin-S [21] 50.2 8.7 83.0
GVT-S_2 × 48 (Swin) 50.4 8.5 83.3
GVT-S_4 × 32 (Swin) 49.8 8.7 83.5
GVT-S_8 × 24 (Swin) 50.1 8.5 83.6

Swin-B [21] 88.1 15.4 83.5
GVT-B_2 × 48 (Swin) 87.5 14.6 83.6
GVT-B_4 × 32 (Swin) 87.9 15.0 83.9
GVT-B_8 × 24 (Swin) 88.5 15.5 84.0

NAT-M [10] 20.1 2.7 81.8
GVT-M_2 × 48 (NAT) 19.5 3.2 82.0
GVT-M_4 × 32 (NAT) 18.6 2.8 82.4
GVT-M_8 × 24 (NAT) 19.2 3.5 82.5

NAT-T [10] 28.0 4.3 82.9
GVT-T_2 × 48 (NAT) 29.2 4.8 83.1
GVT-T_4 × 32 (NAT) 28.1 5.2 83.5
GVT-T_8 × 24 (NAT) 28.5 5.5 83.6

NAT-S [10] 51.2 7.8 83.6
GVT-S_2 × 48 (NAT) 48.5 8.0 83.9
GVT-S_4 × 32 (NAT) 46.3 7.5 84.1
GVT-S_8 × 24 (NAT) 48.0 8.2 84.2

NAT-B [10] 90.0 13.7 84.1
GVT-B_2 × 48 (NAT) 87.2 15.5 84.3
GVT-B_4 × 32 (NAT) 85.9 14.5 84.6
GVT-B_8 × 24 (NAT) 88.0 16.7 84.6

Transformer to enrich the learned feature representations. Fur-
thermore, our model exhibits more reductions in parameters and
computations when more groups are used. Consequently, under
comparable parameters and computational budgets, our model can
accommodate a larger token dimension, thereby generating more
feature maps and yielding superior performance.

5 CONCLUSIONS
In this paper, we introduced the Group Vision Transformer (GVT),
a novel and efficient fundamental framework. By conducting self-
attention and utilizing feed-forward network on distinct groups of
feature tokens, we reduced computational complexity andmodel pa-
rameters. Concurrently, the utilization of multi-group self-attention
fosters enhanced feature diversity and reduces feature redundancy.
Experiments on several computer vision tasks, including ImageNet-
1K classification, MS COCO 2017 object detection and instance
segmentation, and ADE20K semantic segmentation, validated the
efficacy of our proposed GVT model. Ablation study conducted on
these tasks and various backbones verified the effectiveness of the
proposed GVT mechanism.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Group Vision Transformer ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Babajide O Ayinde, Tamer Inanc, and Jacek M Zurada. 2019. Regularizing deep

neural networks by enhancing diversity in feature extraction. IEEE Transactions
on Neural Networks and Learning Systems 30, 9 (2019), 2650–2661.

[2] Zhaowei Cai and Nuno Vasconcelos. 2019. Cascade R-CNN: High quality object
detection and instance segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 43, 5 (2019), 1483–1498.

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, et al. 2019. MMDetection:
Open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019).

[4] François Chollet. 2017. Xception: Deep learning with depthwise separable con-
volutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 1251–1258.

[5] MMSegmentation Contributors. 2020. MMSegmentation: OpenMMLab Seman-
tic Segmentation Toolbox and Benchmark. https://github.com/open-mmlab/
mmsegmentation.

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. 2020. RandAug-
ment: Practical automated data augmentation with a reduced search space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 702–703.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. Ieee, 248–255.

[8] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu
Yuan, Dong Chen, and Baining Guo. 2022. CSWin Transformer: A general
vision Transformer backbone with cross-shaped windows. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12124–12134.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. 2023. Neigh-
borhood attention Transformer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 6185–6194.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. In Proceedings of the IEEE International Conference on Computer Vision.
2961–2969.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[13] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (GELUs).
arXiv preprint arXiv:1606.08415 (2016).

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[15] Huaibo Huang, Xiaoqiang Zhou, Jie Cao, Ran He, and Tieniu Tan. 2023. Vision
Transformerwith super token sampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 22690–22699.

[16] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classifi-
cation with deep convolutional neural networks. Advances in Neural Information
Processing Systems 25 (2012).

[18] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv
preprint arXiv:1312.4400 (2013).

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft COCO: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Part V 13. Springer, 740–755.

[20] Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan
Yuan. 2023. EfficientViT: Memory Efficient Vision Transformer with Cascaded
Group Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14420–14430.

[21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin Transformer: Hierarchical vision Transformer
using shifted windows. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 10012–10022.

[22] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A ConvNet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11976–11986.

[23] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[24] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and
Alexey Dosovitskiy. 2021. Do vision Transformers see like convolutional neural

networks? Advances in Neural Information Processing Systems 34 (2021), 12116–
12128.

[25] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Lev-
skaya, and Jon Shlens. 2019. Stand-alone self-attention in visionmodels. Advances
in Neural Information Processing Systems 32 (2019).

[26] Laurent Sifre and Stéphane Mallat. 2014. Rigid-motion scattering for texture
classification. arXiv preprint arXiv:1403.1687 (2014).

[27] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 1–9.

[29] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine Learning.
PMLR, 6105–6114.

[30] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image Transformers
& distillation through attention. In International Conference on Machine Learning.
PMLR, 10347–10357.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).

[32] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong
Lu, Ping Luo, and Ling Shao. 2021. Pyramid Vision Transformer: A versatile back-
bone for dense prediction without convolutions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 568–578.

[33] Ross Wightman et al. 2019. PyTorch image models.
[34] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. 2018. Uni-

fied perceptual parsing for scene understanding. In Proceedings of the European
Conference on Computer Vision (ECCV). 418–434.

[35] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 1492–1500.

[36] Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng
Yan, and XinchaoWang. 2023. MetaFormer baselines for vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2023).

[37] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. CutMix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 6023–6032.

[38] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[39] Xiangyu Zhang, Xinyu Zhou,Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6848–6856.

[40] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random
erasing data augmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 13001–13008.

[41] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene parsing through ADE20K dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 633–641.

[42] Lei Zhu, XinjiangWang, Zhanghan Ke, Wayne Zhang, and RynsonWH Lau. 2023.
BiFormer: Vision Transformerwith bi-level routing attention. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10323–10333.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

	Abstract
	1 Introduction
	2 Related Work
	2.1 Vision Transformer
	2.2 Group Convolution
	2.3 Efficient Vision Transformers

	3 Method
	3.1 The Overall Architecture
	3.2 Group Self Attention
	3.3 Architecture Variants of GVT

	4 Experiments
	4.1 ImageNet Classification
	4.2 Object Detection and Instance Segmentation
	4.3 Semantic Segmentation
	4.4 Feature Map Diversity
	4.5 Ablation Study

	5 Conclusions
	References

