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A APPENDIX

A.1 SURROGATE FUNCTION

By definition, we have PΩ(Mi,j) = Mi,j if Pϕ(Mi,j) = 0 and PΩ(Mi,j) = 0 if Pϕ(Mi,j) = Mi,j ,
∀(i, j) ∈ V × V . This leads to the following equation

∥PΩ(ZUV̄
(l)T − Ã) + Pϕ(ZUV̄

(l)T − Ū(l)V̄(l)T )∥2F =

∥PΩ(Ã− ZUV̄
(l)T ) + Pϕ(Ū

(l)V̄(l)T − ZUV̄
(l)T )∥2F = ∥PΩ(Ã) + Pϕ(Ū

(l)V̄(l)T )− ZUV̄
(l)T ∥2F ,

(21)

wherein ZU gets rid of the element-wise function, thus we can directly derive the closed-form solu-
tion.

A.2 PSEUDOCODES

We summarize the pseudocodes of LRGNN as follows.

Algorithm 1 LRGNN
Input: Graph G = (V, E), node features X, adjacencay matrix A, Pseudo labels Ȳ
Output: The node representation matrix of the last layer of LRGNN
1: Calculate signed adjacency matrix using Pseudo labels.
2: Calculate H(0) using Eq. (5)
3: for l = 0 to L− 1 do
4: Initialize V

(l)
init and U

(l)
init using Eq. (14)

5: for k = 0 to K − 1 do
6: Update U(l) using Eq. (10)
7: Update V(l) using Eq. (12)
8: end for
9: Calculate H(l+1) using Eq. (6)

10: end for
11: return H(L)

A.3 TIME COMPLEXITY

Directly solving the inverse of γIn + (1 − β)2H(l)H(l)T takes time complexity of O(n3). Using
the well-known Woodbury formula, the inverse can be equivalently computed as

[γIn + (1− β)2H(l)H(l)T ]−1 =
1

γ
In − (1− β)2

γ2
H(l)[Ic +

(1− β)2

γ
H(l)TH(l)]−1H(l)T (22)

The time complexity for solving [Ic +
(1−β)2

γ H(l)TH(l)]−1 is only O(c3), where c is the number of
classes and a very small number in general. Further, we always perform the matrix multiplication
in a right-to-left way, which substantially reduces the time cost. For example, the time complex-
ity of (H(l)H(l)T )Ũ(l) is O(n2c) while the time complexity of H(l)(H(l)T Ũ(l)) is only O(nc2).
Although Â is not sparse, ÂV̄(l) can be decomposed into sparse-dense matrix multiplications, re-
sulting in time complexity of O(mq + nq2), where m denotes the number of edges.
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We first consider the cost of updating U.

Ũ(l) = [γÂV̄(l)+δH(l)H(l)T V̄(l)−βδH(0)H(l)T V̄(l)][γV̄(l)T V̄(l)+δ2V̄(l)TH(l)H(l)T V̄(l)]−1,
(23)

where δ = 1 − β. V̄ and H(l) are matrices of size n × q and size n × c, respectively. The time
complexity of the following computing order is O(mq + q3 + ncq + nq2)

Ũ(l) = [γÂV̄(l)+δH(l)(H(l)T V̄(l))−βδH(0)(H(l)T V̄(l))][γV̄(l)T V̄(l)+δ2(V̄(l)TH(l))(H(l)T V̄(l))]−1,
(24)

where ÂV̄(l) can be realized by sparse-dense matrix multiplications.

ÂV̄(l) = (PΩ(Ã) + Pϕ(Ū
(l)V̄(l)T ))V̄(l) = (PΩ(Ã) + Ū(l)V̄(l)T − PΩ(Ū

(l)V̄(l)T ))V̄(l)

= PΩ(Ã)V̄(l) + Ū(l)V̄(l)T V̄(l) − PΩ(Ū
(l)V̄(l)T )V̄(l), (25)

where PΩ(Ã)V̄(l) and PΩ(Ū
(l)V̄(l)T )V̄(l) are sparse-dense matrix multiplications. the time com-

plexity of Ū(l)(V̄(l)T V̄(l)) is O(nq2).

Now we consider the calculating of Ṽ(l)

Ṽ(l) = [γIn + (1− β)2H(l)H(l)T ]−1[γÂT Ũ(l) + (1− β)H(l)H(l)T Ũ(l) − β(1− β)H(l)H(0)T Ũ(l)]·

[Ũ(l)T Ũ(l)]−1 (26)

The time complexity of computing γÂT Ũ(l) + (1 − β)H(l)H(l)T Ũ(l) − β(1 − β)H(l)H(0)T Ũ(l)

is O(mq + q3 + ncq + nq2), which can be achieved by reordering the matrix multiplications and
decomposing ÂT into sparse matrices using the same tricks as mentioned above. Note that

[γIn + (1− β)2H(l)H(l)T ]−1 =
1

γ
In − (1− β)2

γ2
H(l)[Ic +

(1− β)2

γ
H(l)TH(l)]−1H(l)T (27)

Denote [γÂT Ũ(l) +(1− β)H(l)H(l)T Ũ(l) − β(1− β)H(l)H(0)T Ũ(l)][Ũ(l)T Ũ(l)]−1 by Q, which
is a matrix of size n× q. We have

([γIn+(1−β)2H(l)H(l)T ]−1)TQ =
1

γ
Q− (1− β)2

γ2
H(l)([Ic+

(1− β)2

γ
H(l)TH(l)]−1)TH(l)TQ

(28)
The time complexity of (28) is O(nc2 + c3 + ncq) when performing the matrix multiplications in a
right-to-left way. Since the size of Ṽ(l)TH(l) is q×c, Ũ(l)(Ṽ(l)TH(l)) can be performed in O(ncq).

In addition to the multiplication reordering, we can avoid the repeated calculations of the common
subexpressions. For example, H(l)T V̄(l) and H(l)H(l)T V̄(l) in the computing of Ũ(l).

In general, given that q and c are very small numbers and m ≫ n, the time complexity is bounded
by O(dmq), where d is a constant and d ≪ n.

A.4 RELATED WORK

In this section, we discuss relevant work that addresses the heterophily challenging. Abu-El-Haija
et al. (2019) acknowledges the limitations of current GNNs in learning on graphs with heterophily
and proposes to exploit higher-order information by aggregating multi-hop neighborhoods. The
authors of Zhu et al. (2020) further identified several effective designs and provided theoretical jus-
tifications. Chien et al. (2021) generalizes the PageRank and proposes GPR-GNN that performs well
under heterophily. FAGCN (Bo et al., 2021) utilizes a self-gating attention mechanism to adaptively
learn the proportion of low-frequency and high-frequency signals. Later, WRGAT (Suresh et al.,
2021) transforms the original graph into a new multi-relational one with a higher homophily ratio.
The authors of Yan et al. (2021) regard oversmoothing and heterophily as two sides of the same coin.
They suggest addressing these two issues via degree correction and signed message. LINKX (Lim
et al., 2021) first embeds node features and graph topology separately and then combines them with
MLPs. Recently, GloGNN (Li et al., 2022) proposes to leverage global homophily and derives a
coefficient matrix that optimizes a well-designed objective function. Zheng et al. (2022) provides a
comprehensive survey on GNNs for heterophilious graphs.
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Texas Wisconsin Cornell Actor Squirrel Chameleon Cora Citeseer Pubmed
Edge Hom. 0.11 0.21 0.30 0.22 0.22 0.23 0.81 0.74 0.80

#Nodes 2,708 251 183 7,600 5,201 2,277 2,708 3,327 19,717
Avg. Deg. 1.61 1.86 1.53 3.52 38.16 13.80 1.95 1.40 2.25
#Features 1,703 1,703 1,703 931 2,089 2,325 1,433 3,703 500
#Classes 5 5 5 5 5 5 6 7 3

Table 3: Statistics of the datasets used.

A.5 DATASETS

We here briefly introduce the datasets used in our experiments. In particular, these datasets span
various domains and edge homophily.

Cora, Citeseer and Pubmed are citation networks where nodes represent scientific papers and
edges are citation relationships. Node features are bag-of-words representations and each label
represents the field that the paper belongs to.

Actor is a co-occurrence network generated from the film-director-actor-writer network, where node
features are bag-of-words representations of the Wikipedia pages of actors. Edges symbolize the two
actors’ co-occurrence on the same web page.

Cornell, Texas and Wisconsin are collected as part of CMU WebKB project. In these datasets,
nodes are university web pages and edges are hyperlinks between these pages.

Chameleon and Squirrel are two networks of web pages on Wikipedia regarding animals. Node
features are bag-of-words representations of nouns in the respective pages. The task is to classify
pages into five categories based on the average traffic they received.

Synthetic graphs are controlled by the node-level homophily ratio and the average degree. Specifi-
cally, a random graph contains n nodes per class and c classes, with two probabilities pin and pout,
where pin corresponds to the probability of forming a intra-class edge, and pout corresponds to the
probability of forming a inter-class edge. We choose pin and pout by pin + (c− 1) · pout = δ, and
the average degree of the random graph is davg = nδ. We set n to 500, c to 5, and select davg from
{0.5, 5, 20}, pin from {0.1δ, 0.3δ, 0.5δ, 0.7δ, 0.9δ}. The node features are sampled from Gaussian
distributions where the centers of clusters are vertices of a hypercube. Nodes are randomly split into
(10%/45%/45%) for training/validation/testing. Note that pin = 0.9δ indicates strong homophily
and pin = 0.1δ corresponds to strong heterophily.

A.6 NUMERICAL SIMULATIONS

We conduct numerical simulation experiments to study the performance of LRR on subspace clus-
tering. Specifically, we are interested in whether solving the optimization problem (19) can give
a low-rank representation that reveals the membership of nodes. Denote by U

(l)
* and V

(l)
* of size

n× k that minimize the following objective function i.e.,(19)

∥H(l) − (1− β)U(l)V(l)TH(l) − βH(0)∥2F + λ∥U(l)V(l)T ∥2F (29)

Here, we specify l = 0 and l = 2. We randomly generate 5 independent clusters as most real-
world datasets used in experiments have 5 classes. The rank of each subspace is d/5 where d is the
dimension, a parameter to be specified. For each subspace Si, we randomly sample ni vectors with
ni a random variable ranging from 20 to 50. We report the average values of the within-subspace
and between-subspace elements w.r.t. different parameters d, k and λ. The results are shown in
Figure 5. We can make three conclusions from it. (1) The larger the dimension is, the better the
representation reveals the membership. (2) When the dimension is small, the effect of k = 5 is
better than that of k = 10 while as the dimension increases, the larger the k, the better the effect is.
This implies that k should be set to fit the rank of subspaces. (3) Increasing λ consistently decreases
the mean of within-subspace elements. Therefore, in our objective function (7), we exclude the
regularization term. We can also see from the figure that low-rank representations do reveal the
membership: within-subspace elements are dense, and between-subspace elements are sparse.
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Figure 5: Numerical simulation results. x-axis corresponds to λ. y-axis corresponds to the average
values of the within-subspace/between-subspace elements. The shaded regions correspond to 95%
confidence intervals. A more significant difference between within-subspace and between-subspace
suggests the representation better represents the membership.
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Figure 6: Balance degree v.s. edge homophily.

A.7 BALANCE DEGREE

We here investigate the balance degree of the heterophilious datasets. The balance theory includes
four statements: (1) An enemy of my friend is my enemy; (2) A friend of my friend is my friend; (3)
A friend of my enemy is my enemy; (4) An enemy of my enemy is my friend. Since the first three
are always true, we want to know to what extent the fourth statement holds, which is described by
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BG defined as

BG =
1

|V|
∑
v∈V

|{k ∈ N (u) : yk = yv, yk ̸= yu|u ∈ N (v) : yu ̸= yv}|
|{k ∈ N (u) : yk ̸= yu|u ∈ N (v) : yu ̸= yv}|

(30)

It is clear that BG ∈ [0, 1] and it describes the homophily degree of the enemy’s enemies. To better
reveal to what extent the fourth statement holds, we utilize the edge homophily for comparison,
which is defined as

1

|V|
∑
v∈V

|{(u, v) ∈ E : yu = yv}|
|E|

(31)

The statistics are shown in Figure 6. Although the weak balance theory does not assume that the
enemies of an enemy are friends, the homophily ratio of the enemy’s enemies is higher than that of
the direct neighbor. This phenomenon implies that the implicit meaning of the link relationship is
the 2-order affinity.

A.8 PROOF

Theorem 3. (Correctness) The objective function (7) is nonincreasing under the update rules (10)
and (12),

F (Ũ(l), Ṽ(l)) ≤ F (Ũ(l), V̄(l)) ≤ F (Ū(l), V̄(l)) (32)

Proof. The design of the surrogate function follows the definition of the Majorization-Minimization
(MM) algorithm. An MM algorithm operates by defining a surrogate function that minorizes the
objective function. We begin with presenting the following two observations:

SU (U|U,V) = F (U,V),SV (V|U,V) = F (U,V) (33)

and
SU (ZU |U,V) ≥ F (ZU ,V),SV (ZV |U,V) ≥ F (U,ZV ) (34)

The first equation is easy to derived.

SU (U|U,V) = ∥H(l) − (1− β)UVH(l) − βH(0)∥2F + γ∥PΩ(UV − Ã) + Pϕ(UV −UV)∥2F
= ∥H(l) − (1− β)UVH(l) − βH(0)∥2F + γ∥PΩ(UV − Ã)∥2F = F (U,V) (35)

SV (V|U,V) = ∥H(l) − (1− β)UVH(l) − βH(0)∥2F + γ∥PΩ(UV − Ã) + Pϕ(UV −UV)∥2F+
= ∥H(l) − (1− β)UVH(l) − βH(0)∥2F + γ∥PΩ(UV − Ã)∥2F = F (U,V) (36)

By definition, we have PΩ(Mi,j) = Mi,j if Pϕ(Mi,j) = 0 and PΩ(Mi,j) = 0 if Pϕ(Mi,j) = Mi,j ,
for ∀(i, j) ∈ V × V . Using this fact, we can rewrite ∥PΩ(·) + Pϕ(·)∥2F as ∥PΩ(·)∥2F + ∥Pϕ(·)∥2F .
Substitute ∥PΩ(ZUV−Ã)+ ·Pϕ(ZUV−UV)∥2F with ∥PΩ(ZUV−Ã)∥2F +∥Pϕ(ZUV−UV)∥2F
into SU (U|U,V), we get

SU (ZU |U,V)− F (ZU ,V) = ∥Pϕ(ZUV −UV)∥2F ≥ 0 (37)

In a similar way, we can immediately obtain

SV (ZV |U,V)− F (U,ZV ) = ∥Pϕ(UZV −UV)∥2F ≥ 0 (38)

Now we consider the update of U,

SU (Ũ
(l)|Ū(l), V̄(l)) = min

ZU

SU (ZU |Ū(l), V̄(l)) ≤ SU (Ū
(l)|Ū(l), V̄(l)) (39)

Using (33) and (34), we have

F (Ũ(l), V̄(l)) ≤ SU (Ũ
(l)|Ū(l), V̄(l)) (40)

SU (Ū
(l)|Ū(l), V̄(l)) = F (Ū(l), V̄(l)) (41)

Combining these and (39) leads to the inequality

F (Ũ(l), V̄(l)) ≤ F (Ū(l), V̄(l)) (42)
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Similarly, by the definition of Ṽ(l),

SV (Ṽ
(l)|Ũ(l), V̄(l)) = min

ZV

SV (ZV |Ũ(l), V̄(l)) ≤ SV (V̄
(l)|Ũ(l), V̄(l)) (43)

Using (33), (34) and (43), we obtain

F (Ũ(l), Ṽ(l)) ≤ F (Ũ(l), V̄(l)) (44)

By combining (42) and (44), we can derive the inequality

F (Ũ(l), Ṽ(l)) ≤ F (Ũ(l), V̄(l)) ≤ F (Ū(l), V̄(l)) (45)

This completes the proof.

Theorem 4. Assume that the row vectors (node representations) of H(0) are drawn from a union of
independent subspaces {Si}ci=1. Also Assume that the update rule of node representation matrix is

H(l+1) = (1− β)Z(l)H(l) + βH(0), (46)

where Z(l) is an optimal solution (assume it exists) to the following optimization problem

min ∥Z∥* + λ∥Z∥2F , s.t. H(l) = (1− β)ZH(l) + βH(0), (47)

where λ > 0, β > 0. Then for any node pair vi and vj that belong to different subspaces, we always
have Z

(l)
i,j = 0, ∀l ≥ 0.

Proof. Without loss of generality, we assume that H(0) has been rearranged such that H(0) =
[HT

1 , ...,H
T
c ]

T , where nodes in Hi belong to the same subspace. We first consider the situation of
l = 0. The problem becomes

min ∥Z∥* + λ∥Z∥2F , s.t. H(0) = (1− β)ZH(0) + βH(0) (48)

We prove this by contradiction. Assume there exists an optimal solution Z* to (48) with at least one
Z*

i,j ̸= 0 while vi and vj belong to different subspaces. We define a matrix W as

Wi,j =

{
Z*

i,j if node pair (i, j) belong to the same subspace
0 otherwise

(49)

Write Q = Z* −W, which satisfies

Qi,j =

{
0 if node pair (i, j) belong to the same subspace
Z*

i,j otherwise
(50)

Let vj belong to the l-th subspace. By definition, [WH(0)]j,: ∈ Sl and [QH(0)]j,: ∈ ⊕i̸=lSi.
Noticing that

[QH(0)]j,: = [Z*H(0)]j,: − [WH(0)]j,: = H
(0)
j,: − [WH(0)]j,:, (51)

we have [QH(0)]j,: ∈ Sl. Since the subspaces are independent, we obtain [QH(0)]j,: = 0. This
leads to WH(0) = Z*H(0) −QH(0) = Z*H(0). Therefore,

H(0) = (1− β)WH(0) + βH(0) (52)

W is a feasible solution. Note that H(0) has been properly rearranged. We can write

W =

 W1 0 0 0
0 W2 0 0
0 0 ... 0
0 0 0 Wc


n×n

(53)

Using the well-known lemma (see, e.g., (Horn & Johnson, 1991), Theorem 3.4.1)∥∥∥∥( A B
C D

)∥∥∥∥
∗
≥

∥∥∥∥( A 0
0 D

)∥∥∥∥
∗
= ∥A∥* + ∥D∥*, (54)
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we obtain ∥W∥* ≤ ∥Z*∥*. Noticing that there exists at least one Z*
i,j ̸= 0 while vi and vj belong

to different subspaces, we have ∥W∥2F < ∥Z*∥2F . Hence,

∥W∥* + λ∥W∥2F < ∥Z∥* + λ∥Z∥2F (55)

Combining this with (52), we can find a feasible solution W which has a smaller value of objective
function than Z*. Therefore, Z* does not optimize (48), which contradicts the assumption that Z*

is an optimal solution. We can conclude that all the optimal solutions to (48) have the desirable
property that between-subspace elements are all zeros.

Now we consider
H(1) = (1− β)Z(0)H(0) + βH(0), (56)

where Z(0) is an optimal solution to (48). Since the between-subspace elements are all zeros in Z(0)

and β > 0, the data matrix H(1) also satisfies the assumption that the row vectors are drawn from
a union of independent subspaces {Si}ci=1 (the mapping from row vectors to subspaces remains the
same). In a similar way, we can further prove that Z(1) also satisfies Z

(1)
i,j = 0 if (i, j) belong to

different subspaces. The only difference lies in (51), which becomes,

[QH(1)]j,: = [Z*H(1)]j,: − [WH(1)]j,: =
1

1− β
(H

(1)
j,: − βH

(0)
j,: )− [WH(1)]j,: (57)

Since H
(1)
j,: ∈ Sl, we have (H

(1)
j,: − βH

(0)
j,: ) ∈ Sl. Then [QH(1)]j,: ∈ Sl still holds. The remaining

part can be proved in the same way.

Analogously, we can prove that Z(2), Z(3), ... all have this property.

Remark 2. Note that we can remove the nuclear norm term and use only ∥Z∥2F as the objective
function. It is easy to prove that the between-subspace elements of Z(l) obtained are also zeros.
However, this is prone to make the within-subspace elements sparse, which contradicts the goal to
represent membership by Z(l), namely Z

(l)
i,j ̸= 0 represents (i, j) belong to the same subspace while

Z
(l)
i,j = 0 represents (i, j) belong to different subspaces. In practice, using nuclear norm alone is

sufficient to obtain an optimal solution with almost all the between-subspace elements being zeros.
We include the term λ∥Z∥2F for theoretical completeness.

A.9 ADDITIONAL EXPERIMENTAL RESULTS

Robustness to random Gaussian noise. Since the performance of LRGNN is affected by the
generated signed adjacency matrix, we here examine the robustness of LRGNN to random noise
added to the generated signed adjacency matrix. We consider a scenario where the signed adjacency
matrix is corrupted by random Gaussian noise. Mathematically, we construct a corrupted signed
adjacency matrix Anoise = Ã+N, where Ni,j = ϵi,j , if (i, j) ∈ E and 0 otherwise, with ϵi,j i.i.d.
sampled from a Gaussian distribution N (0, σ2). Then this corrupted adjacency matrix is used for
LRMF. We choose σ from {0.1, 0.2, ..., 1.0}. Figure 7 reports the decline of mean test accuracy
caused by noise w.r.t. different standard deviations of Gaussian distributions. The declines are
smaller than 3% for all the datasets. Note that the values of entries of Ã are within the range of
[−1, 1]. Hence, the noise may cause a considerable change in value, i.e., |ϵi,j |

|Ãi,j |
> 1. The results

imply that LRGNN is not sensitive to the quality of the generated signed adjacency matrix, which
may be attributed to the LRR term of the objective function.

We point out two potentially feasible measures for promoting robustness. We can design a more
sophisticated element-wise function PΩ(·) that better reflects the importance of each observed entry,
especially when the observed entries are noisy. We may define PΩ(Ãi,j) = Wi,jÃ, ∀(i, j) ∈ E ,
where Wi,j is the importance of the observed entry Ãi,j . The update rules of U and V are still
correct once we ensure the definition of Pϕ(·) satisfies Pϕ(Ã) + PΩ(Ã) = Ã. Reputation is an
important notion in social network based recommender systems (Tang et al., 2013), which captures
the credibility of a user’s ratings. The quality of the signed adjacency matrix Ã is affected by the
pseudo labels. However, the pseudo labels generated by neural networks may be false. Let Ŷi,:

denotes the probability distribution of node vi. Intuitively, a uniform probability distribution implies
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Figure 7: Decline of mean test accuracy w.r.t. different standard deviations of Gaussian noises.

Texas Wiscon. Cornell Actor Squirrel Chamel. Cora Citeseer Pubmed
LRGNN 89.19±4.49 88.23±3.04 86.22±6.10 37.10±2.12 74.51±1.90 78.93±1.23 88.23±1.03 77.46±1.31 89.60±0.54

LRGNN-MF 86.20±4.90 84.71±4.75 81.35±6.67 35.69±0.95 58.39±4.38 64.78±4.06 87.88±1.03 77.30±1.39 89.05±0.43
LRGNN-Reg 88.38±2.43 82.94±4.11 83.51±5.85 36.61±1.17 65.83±2.19 69.12±0.84 86.92±0.96 75.57±1.60 87.36±0.25
LRGNN-Uni 87.84±3.67 82.94±4.72 85.14±7.66 34.53±1.08 69.45±1.78 68.46±1.38 87.67±1.38 77.29±1.29 89.39±0.18
LRGNN-DA 89.19±3.67 86.86±4.72 85.95±7.66 36.86±1.08 72.52±1.78 75.65±1.38 88.23±1.38 77.32±1.29 89.45±0.18

Table 4: Ablation study on propagation term.

that neural networks have no confidence that to which class the node belongs. Therefore, we can
say that node vi has a poor reputation if Ŷi,: is uniformly distributed and the importance of its rating
should be reduced. Noticing that the Euclidean norm of Ŷi,: can measure its uniformity, we define
the reputation of node vi as ri = ∥Ŷi,:∥22. Then the importance of the observed entry Ãi,j can be
described by Wi,j = rirj . This importance is well-defined since 0 < Wi,j ≤ 1.

Besides, we may explicitly model a noise matrix for matrix factorization. For example, we can use
the following objective function.

F (U(l),V(l)) = ∥H(l)−(1−β)U(l)V(l)TH(l)−βH(0)∥2F +γ∥PΩ(U
(l)V(l)T −Ã−N)∥2F , (58)

where N is a noise matrix, which can be modeled as mixtures of Gaussian and estimated by max-
imum likelihood estimation. We refer the interested reader to Meng & De La Torre (2013) for an
instance.

Ablation study. We investigate the effectiveness of the components by conducting an ablation
study. We consider four variants: LRGNN-MF only contains the MF term in the objective function;
LRGNN-Uni indicates that the signed adjacency matrix is replaced with the uniform sparse adja-
cency matrix in GCN; LRGNN-Reg indicates that the matrix factorization term is replaced with a
Frobenius term; LRGNN-DA drops the MLP(A) from H(0). Since LRMF is the core of our method,
we will not try to remove the MF item. We compare these variants with LRGNN and report the node
classification results in Table 4. The results demonstrate that propagation term can consistently im-
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Figure 8: Result on Penn94 dataset.

prove the classification accuracy, especially for heterophilious datasets. Also, the uses of both MF
and signs are crucial, dropping these components causes significant degradations in performance.

Aggregation coefficient study. We visualize the learned aggregation coefficients extracted from
the last layer. The edges are divided into two categories based on whether the connected two nodes
belong to the same class. To form a comparison, we also visualize the aggregation coefficients
learned by GloGNN++ and FAGCN. Note that we only plot the learned weights of observed edges
because, in FAGCN, nodes aggregate only their immediate neighbors during feature propagation.
We can see from Figure 9 that for FAGCN and GloGNN++, the aggregation coefficient distribution
of the intra-edges shows a similar pattern to that of the inter-edges, which implies that they cannot
assign proper signs according to the label relationship. For LRGNN, there is a clear difference
between the two distributions. It is worth noting that FAGCN uses the static attention function
adapted from standard GAT layer, thus the ranking of the aggregation coefficients is unconditioned
on the query node. For GloGNN++, it uses the term ∥Z−A∥2F where A only contains positive edge
weights. In conclusion, LRGNN performs better in capturing the label agreement between nodes.
This further shows the benefit of using the LRMF.

Results on a large-scale graph. Lim et al. (2021) proposed 7 large-scale non-homophilious
datasets that allow comprehensive evaluation of GNNs in non-homophilous settings. However,
these datasets are too large to run on our machines. Therefore, we cannot evaluate LRGNN on
these datasets. We use the smallest dataset Penn94 for an experiment, the only dataset that we
can run on our machines. We report the node classification result in Figure A.9. The result shows
that LRGNN achieves state-of-the-art performance, which implies that LRGNN performs well on
large-scale graphs

A.10 EXPERIMENTAL SETUP

We implement LRGNN with Pytorch Geometry Library. We ran our experiments on an Nvidia P100
GPU with 16GB of memory. For real-world graphs, we use 10 random splits (48%, 32%20% for
training/validation/testing) provided by Pei et al. (2020) and available from Fey & Lenssen (2019).
For Table 1, we directly use the available results from Yan et al. (2021); Lim et al. (2021). For the
results on synthetic graphs, we run the baseline methods using the codes released by their authors
and fine tune hyper-parameters based on validation set. We perform a grid search to tune hyper-
parameters based on the validation set, as shown in Table 5.
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Figure 9: Visualization results of aggregation coefficients learned by different methods on het-
erophilious datasets. For LRGNN, some aggregation coefficients are not in the range of [-1,1].
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Figure 10: Convergence rate of the softImpute-ALS. Both U and V converge within 8 iterations.
Here, we specify l = L (the last layer). Change is calculated as ∥Uk−Uk−1∥2

F

∥Uk∥2
F

, where k denotes the
k-th iteration.

Hyper-parameter Range
learning rate {0.01, 0.005}
weight decay {5e− 3, 5e− 4}

dropout [0, 0.9]
early stopping {40, 100, 200}

β [0, 0.9]
µ [0, 0.9]
δ [0, 0.9]
γ {50, 100, 200, 1000, 1500}

number of layers {1}
number of iterations {1, 2}

Estimator to generate pseudo labels {GCN,MLP}

Table 5: Search space for hyper-parameters.
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