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A Proof of Proposition 1

Fix any θ′,θ ∈ Rd. The optimality condition to (11) implies that∑n
i=1 ∇fi(M(θ);θ) = 0,

∑n
i=1 ∇fi(M(θ′);θ′) = 0. (29)

Note that the gradients are taken w.r.t. the first argument in the function fi. Observe the chain

0 = ⟨0 |M(θ)−M(θ′)⟩ =

〈
n∑

i=1

[∇fi(M(θ);θ)−∇fi(M(θ′);θ′)] |M(θ)−M(θ′)

〉
.

Adding and subtracting
∑n

i=1 ∇fi(M(θ);θ′) implies the equality:∑n
i=1 ⟨∇fi(M(θ);θ′)−∇fi(M(θ);θ) |M(θ)−M(θ′)⟩

=
∑n

i=1 ⟨(∇fi(M(θ);θ′)−∇fi(M(θ′);θ′)) |M(θ)−M(θ′)⟩ .
(30)

Applying A1 to the right hand side of (30) lead to:

n∑
i=1

⟨(∇fi(M(θ);θ′)−∇fi(M(θ′);θ′)) |M(θ)−M(θ′)⟩ ≥ nµ∥M(θ)−M(θ′)∥2.

Meanwhile, applying Lemma 2 to the left hand side of (30) gives∑n
i=1 ⟨∇fi(M(θ);θ′)−∇fi(M(θ);θ) |M(θ)−M(θ′)⟩

≤
∑n

i=1 ϵiL∥θ′ − θ∥∥M(θ)−M(θ′)∥.

Substituting back into (30) implies that

∥M(θ)−M(θ′)∥ ≤
∑n

i=1 ϵiL

nµ
∥θ − θ′∥ =

ϵavgL

µ
∥θ − θ′∥. (31)

Therefore, the map M : Rd → Rd is a contraction if ϵavg < µ/L. Subsequently, by the Banach fixed
point theorem [Granas and Dugundji, 2003], the map M(θ) admits a unique fixed point which is
denoted as θPS .

To prove the converse, we consider the following instantiation of (11) with

ℓ(θ;Z) =
1

2
(θ − Z)2, Z ∼ Di(θ) ⇐⇒ Z ∼ N (µi + ϵiθ, 1) (32)

Note that the above satisfies A1 with µ = 1, A2 with L = 1, A3 with ϵi for i = 1, . . . , n. We
consider a case where it holds ϵavg ≥ µ/L = 1. We also let µavg := (1/n)

∑n
i=1 µi ̸= 0.

We observe

fi(θ
′; θ) = EZ∼Di(θ)

[
1

2
(θ′ − Z)2

]
= EZ̃∼N (0,1)

[
1

2
(θ′ − µi − ϵiθ − Z̃)2

]
=

1

2
(θ′ − µi − ϵiθ)

2 +
1

2
.

(33)

For any θ ∈ R, it can be shown that

M(θ) = argmin
θ′∈R

1

2n

n∑
i=1

(θ′ − µi − ϵiθ)
2 = ϵavgθ + µavg (34)

Thus, applying the map for T times leads to

MT (θ) = ϵTavgθ +
(
1 + ϵavg + · · ·+ ϵT−1

avg

)
µavg (35)

Since ϵavg > 1 and µavg ̸= 0, we have limT→∞ |MT (θ)| = ∞ and the map is not a contraction.
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B Proof of Lemma 3

Recall that θ̃t := θ
t − θPS is the error of averaged decision at the tth iteration. Using (21), we have∥∥∥θ̃t+1

∥∥∥2 =
∥∥∥θ̃t
∥∥∥2 − 2γt+1

n

〈
θ̃t |

n∑
i=1

∇ℓ(θt
i ;Z

t+1
i )

〉
+

γ2
t+1

n2

∥∥∥∥∥
n∑

i=1

∇ℓ(θt
i ;Z

t+1
i )

∥∥∥∥∥
2

. (36)

We consider taking the conditional expectation Et[·] on the both sides. Using the fixed point condition∑n
i=1 ∇fi(θ

PS ;θPS) = 0, we observe the following equivalent expression for the last term∥∥∥∥∥
n∑

i=1

∇ℓ(θt
i ;Z

t+1
i )

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

[
∇ℓ(θt

i ;Z
t+1
i )−∇fi(θ

t
i ;θ

t
i) +∇fi(θ

t
i ;θ

t
i)−∇fi(θ

PS ;θPS)
]∥∥∥∥∥

2

Observe that Zt+1
i , i = 1, . . . , n are independent r.v.s, taking the conditional expectation Et[·] yields

the upper bound to the above term

Et

∥∥∥∥∥
n∑

i=1

∇ℓ(θt
i ;Z

t+1
i )

∥∥∥∥∥
2

≤ 2

n∑
i=1

Et

∥∥∇ℓ(θt
i ;Z

t+1
i )−∇fi(θ

t
i ;θ

t
i)
∥∥2 + 2n

n∑
i=1

∥∥∇fi(θ
t
i ;θ

t
i)−∇fi(θ

PS ;θPS)
∥∥2

≤ 2

n∑
i=1

σ2(1 +
∥∥θt

i − θPS
∥∥2) + 2n

n∑
i=1

L2(1 + ϵi)
2
∥∥θt

i − θPS
∥∥2

≤ 2σ2n+ 4n[σ2 + nL2(1 + ϵmax)
2]
∥∥∥θ̃t
∥∥∥2 + 4[σ2 + nL2(1 + ϵmax)

2]
∥∥Θt

o

∥∥2
F

(37)

where the first inequality is due to A5 and Lemma 2. We conclude that

1

n2
Et

∥∥∥∥∥
n∑

i=1

∇ℓ(θt
i ;Z

t+1
i )

∥∥∥∥∥
2

≤ 2σ2

n
+ c2

∥∥∥θ̃t
∥∥∥2 + c2

1

n

∥∥Θt
o

∥∥2
F

(38)

where we recall the definition that c2 = 4
(

σ2

n + L2(1 + ϵmax)
2
)

.

Next, we focus on the inner product term in (36), we have〈
θ̃t |

n∑
i=1

∇fi(θ
t
i ,θ

t
i)

〉
=

n∑
i=1

〈
θ̃t | ∇fi(θ

t
i ;θ

t
i)−∇fi(θ

t
;θPS)

〉
+

n∑
i=1

〈
θ̃t | ∇fi(θ

t
;θPS)−∇fi(θ

PS ;θPS)
〉 (39)

Applying the Cauchy-Schwarz inequality and A2, A3, we obtain
n∑

i=1

〈
θ̃t | ∇fi(θ

t
i ;θ

t
i)−∇fi(θ

t
;θPS)

〉
≥ −

∥∥∥θ̃t
∥∥∥ n∑

i=1

(
L
∥∥∥θt

i − θ
t
∥∥∥+ Lεi

∥∥θt
i − θPS

∥∥)
≥ −

∥∥∥θ̃t
∥∥∥ n∑

i=1

(
L(1 + ϵi)

∥∥∥θt
i − θ

t
∥∥∥+ Lϵi

∥∥∥θ̃t
∥∥∥) . (40)

Meanwhile, using the strong convexity property of ℓ(·; ·) [cf. A1], we have
n∑

i=1

〈
θ̃t | ∇fi(θ

t
;θPS)−∇fi(θ

PS ;θPS)
〉
≥ nµ

∥∥∥θ̃t
∥∥∥2 . (41)

Summing up the two lower bounds and rearranging terms give

1

n
Et

〈
θ̃t |

n∑
i=1

∇fi(θ
t
i ,θ

t
i)

〉
≥ (µ− Lϵavg)

∥∥∥θ̃t
∥∥∥2 − L

n
(1 + ϵmax)

n∑
i=1

∥∥∥θ̃t
∥∥∥∥∥∥θt

i − θ
t
∥∥∥ . (42)
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For any α > 0, using the Young’s inequality shows that the above can be further lower bounded by

[
µ− Lϵavg −

α

2n
L(1 + ϵmax)

] ∥∥∥θ̃t
∥∥∥2 − L(1 + ϵmax)

2nα

n∑
i=1

∥∥∥θt
i − θ

t
∥∥∥2

≥
[
µ− Lϵavg −

α

2n
L(1 + ϵmax)

] ∥∥∥θ̃t
∥∥∥2 − L(1 + ϵmax)

2nα

∥∥Θt
o

∥∥2
F

≥ [µ− (1 + δ)Lϵavg]
∥∥∥θ̃t
∥∥∥2 − L(1 + ϵmax)

2

4n2δϵavg

∥∥Θt
o

∥∥2
F
,

(43)

where we have set α =
2nδϵavg
1+ϵmax

to yield the last inequality.

Substituting (38), (43) back to the inequality (36) gives us the desired result. In particular,

Et

∥∥∥θ̃t+1
∥∥∥2 ≤

∥∥∥θ̃t
∥∥∥2 − 2γt+1

[
[µ− (1 + δ)Lϵavg]

∥∥∥θ̃t
∥∥∥2 − L(1 + ϵmax)

2

4n2δϵavg

∥∥Θt
o

∥∥2
F

]
+ γ2

t+1

[
2σ2

n
+ c2

∥∥∥θ̃t
∥∥∥2 + c2

1

n

∥∥Θt
o

∥∥2
F

]
=
(
1− 2µ̃γt+1 + c2γ

2
t+1

) ∥∥∥θ̃t
∥∥∥2 + [c1 γt+1

n
+ c2

γ2
t+1

n

] ∥∥Θt
o

∥∥2
F
+

2σ2

n
γ2
t+1

≤ (1− µ̃γt+1)
∥∥∥θ̃t
∥∥∥2 + [c1 γt+1

n
+ c2

γ2
t+1

n

] ∥∥Θt
o

∥∥2
F
+

2σ2

n
γ2
t+1

(44)

where we recall the constants c1 := L(1+ϵmax)
2

2nδϵavg
, c2 := 4

(
σ2

n + L2(1 + ϵmax)
2
)

and µ̃ := µ− (1 +

δ)ϵavgL and the last inequality is obtained by observing the condition γt+1 ≤ µ̃/c2.

C Proof of Lemma 4

To simplify notations, we denote

∇̃F t :=
(
∇ℓ(θt

1;Z
t+1
1 ), · · · ,∇ℓ(θt

n;Z
t+1
n )

)⊤ ∈ Rn×d,

Θt :=
(
θt
1, · · · ,θt

n

)⊤ ∈ Rn×d, Θ
t
:= (1/n)11⊤Θt ∈ Rn.

(45)

Notice that Θt
o = Θt −Θ

t
= (I − (1/n)11⊤)Θt. We first observe the following relation:

Θt+1
o = Θt+1 −Θ

t+1
=

(
I − 1

n
11⊤

)
Θt+1 =

(
I − 1

n
11⊤

)(
WΘt − γt+1∇̃F t

)
=

(
W − 1

n
11⊤

)
Θt

o − γt+1

(
I − 1

n
11⊤

)
∇̃F t,

where the last equality is due to (I − (1/n)11⊤)W = (W − (1/n)11⊤)(I − (1/n)11⊤) as W is
a doubly stochastic matrix.

Computing the squared norm of the consensus error leads to: for any α > 0,

Et

∥∥Θt+1
o

∥∥2
F
≤ (1 + α)(1− ρ)2

∥∥Θt
o

∥∥2
F
+ (1 +

1

α
)γ2

t+1Et

∥∥∥∥(I − 1

n
11⊤

)
∇̃F t

∥∥∥∥2
F

≤ (1− ρ)
∥∥Θt

o

∥∥2
F
+

γ2
t+1

ρ
Et

∥∥∥∥(I − 1

n
11⊤

)
∇̃F t

∥∥∥∥2
F

, (46)
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where we have applied A4 in the first inequality and set α = ρ
1−ρ in the second inequality. The last

term in the above inequality can be bounded as

Et

∥∥∥∥(I − 1

n
11⊤

)
∇̃F t

∥∥∥∥2
F

= Et

 n∑
i=1

∥∥∥∥∥∥∇ℓ(θt
i ;Z

t+1
i )− 1

n

n∑
j=1

∇ℓ(θt
j ;Z

t+1
j )

∥∥∥∥∥∥
2


≤ 3

n∑
i=1

Et

∥∥∇ℓ(θt
i ;Z

t+1
i )−∇fi(θ

t
i ,θ

t
i)
∥∥2 + 3

n

n∑
j=1

Et

∥∥∇ℓ(θt
j ;Z

t+1
j )−∇fj(θ

t
j ,θ

t
j)
∥∥2

+ 3

n∑
i=1

∥∥∥∥∥∥∇fi(θ
t
i ,θ

t
i)−

1

n

n∑
j=1

∇fj(θ
t
j ,θ

t
j)

∥∥∥∥∥∥
2

≤ 6σ2

(
n+

n∑
i=1

∥∥θt
i − θPS

∥∥2)+ 3

n∑
i=1

∥∥∥∥∥∥∇fi(θ
t
i ,θ

t
i)−

1

n

n∑
j=1

∇fj(θ
t
j ,θ

t
j)

∥∥∥∥∥∥
2

≤ 6σ2

(
n+ 2n

∥∥∥θ̃t
∥∥∥2 + 2

∥∥Θt
o

∥∥2
F

)
+ 3

n∑
i=1

∥∥∥∥∥∥∇fi(θ
t
i ,θ

t
i)−

1

n

n∑
j=1

∇fj(θ
t
j ,θ

t
j)

∥∥∥∥∥∥
2

(47)

where the second last inequality is due to A5. For each i = 1, . . . , n, we observe∥∥∥∥∥∥∇fi(θ
t
i ,θ

t
i)−∇fi(θ

t
,θ

t
)+∇fi(θ

t
,θ

t
)− 1

n

n∑
j=1

∇fj(θ
t
,θ

t
)− 1

n

n∑
j=1

[∇fj(θ
t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)]

∥∥∥∥∥∥
2

≤ 3
∥∥∥∇fi(θ

t
i ,θ

t
i)−∇fi(θ

t
,θ

t
)
∥∥∥2 + 3

∥∥∥∥∥∥∇fi(θ
t
,θ

t
)− 1

n

n∑
j=1

∇fj(θ
t
,θ

t
)

∥∥∥∥∥∥
2

(48)

+
3

n

n∑
j=1

∥∥∥∇fj(θ
t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)
∥∥∥2

≤ 3
∥∥∥∇fi(θ

t
i ,θ

t
i)−∇fi(θ

t
,θ

t
)
∥∥∥2 + 3

n

n∑
j=1

∥∥∥∇fj(θ
t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)
∥∥∥2 + 3ς2

(
1 +

∥∥∥θ̃t
∥∥∥2)

where the last inequality is due to A6. Now, we observe

n∑
i=1

∥∥∥∥∥∥∇fi(θ
t
i ,θ

t
i)−

1

n

n∑
j=1

∇fj(θ
t
j ,θ

t
j)

∥∥∥∥∥∥
2

≤ 6

n∑
i=1

∥∥∥∇fi(θ
t
i ,θ

t
i)−∇fi(θ

t
,θ

t
)
∥∥∥2 + 3nς2

(
1 +

∥∥∥θ̃t
∥∥∥2)

≤ 6L2(1 + ϵmax)
2
∥∥Θt

o

∥∥2
F
+ 3nς2

(
1 +

∥∥∥θ̃t
∥∥∥2)

where the second inequality is due to Lemma 2 and the definition of Θt
o.

Substituting the above bounds into (47) leads to

Et

∥∥∥∥(I − 1

n
11⊤

)
∇̃F t

∥∥∥∥2
F

≤ 6σ2

(
n+ 2n

∥∥∥θ̃t
∥∥∥2 + 2

∥∥Θt
o

∥∥2
F

)
+ 18L2(1 + ϵmax)

2
∥∥Θt

o

∥∥2
F
+ 9nς2

(
1 +

∥∥∥θ̃t
∥∥∥2)

≤ 9n[σ2 + ς2] + 12n[σ2 + ς2]
∥∥∥θ̃t
∥∥∥2 + [12σ2 + 18L2(1 + ϵmax)

2
] ∥∥Θt

o

∥∥2
F

(49)
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Let c3 := 12σ2 + 18L2(1 + ϵmax)
2. Substituting the above inequality into (46) gives us

Et

∥∥Θt+1
o

∥∥2
F
≤ (1− ρ)

∥∥Θt
o

∥∥2
F
+

γ2
t+1

ρ

(
12n[σ2 + ς2]

∥∥∥θ̃t
∥∥∥2 + c3

∥∥Θt
o

∥∥2
F

)
+ 9n(σ2 + ς2)

γ2
t+1

ρ

≤ (1− ρ/2)
∥∥Θt

o

∥∥2
F
+

γ2
t+1

ρ
12n[σ2 + ς2]

∥∥∥θ̃t
∥∥∥2 + 9n(σ2 + ς2)

γ2
t+1

ρ
,

where the last inequality is due to the step size condition γ2
t+1 ≤ ρ2/2c3. The proof is concluded.

Alternative Bound without A6 We consider bounding (48) without using A6. Instead, we only
assume that maxi=1,...,n

∥∥∇fi(θ
PS ;θPS)

∥∥2 ≤ ς2. We observe∥∥∥∇fi(θ
t
,θ

t
)−∇f(θ

t
,θ

t
)
∥∥∥2 ≤ 2

∥∥∇fi(θ
PS ;θPS)

∥∥2
+ 2

∥∥∥∇fi(θ
t
,θ

t
)−∇fi(θ

PS ;θPS) +∇f(θPS ;θPS)−∇f(θ
t
;θ

t
)
∥∥∥2

≤ 2
∥∥∇fi(θ

PS ;θPS)
∥∥2 + 8L2 (1 + ϵmax)

2
∥∥∥θ̃t
∥∥∥2 ≤ 2ς2 + 8L2 (1 + ϵmax)

2
∥∥∥θ̃t
∥∥∥2 ,

(50)

for all i = 1, . . . , n. This leads to∑n
i=1

∥∥∥∇fi(θ
t
i ,θ

t
i)− 1

n

∑n
j=1 ∇fj(θ

t
j ,θ

t
j)
∥∥∥2

≤ 6L2(1 + ϵmax)
2
∥∥Θt

o

∥∥2
F
+ 2nς2 + 8nL2 (1 + ϵmax)

2
∥∥∥θ̃t
∥∥∥2 .

Subsequently,

Et

∥∥∥(I − 1
n11

⊤) ∇̃F t
∥∥∥2
F

≤ 6σ2

(
n+ 2n

∥∥∥θ̃t
∥∥∥2 + 2

∥∥Θt
o

∥∥2
F

)
+ 6nς2 + 6L2(1 + ϵmax)

2

(
3
∥∥Θt

o

∥∥2
F
+ 4n

∥∥∥θ̃t
∥∥∥2)

= 6n[σ2 + ς2] + 12n
[
σ2 + 2L2 (1 + ϵmax)

2
] ∥∥∥θ̃t

∥∥∥2 + [12σ2 + 18L2(1 + ϵmax)
2
] ∥∥Θt

o

∥∥2
F

(51)

Taking c3 := 12σ2 + 18L2(1 + ϵmax)
2 as before and substituting the inequality into (46) yields

Et

∥∥Θt+1
o

∥∥2
F

≤ (1− ρ)
∥∥Θt

o

∥∥2
F
+

γ2
t+1

ρ

(
12n

[
σ2 + 2L2 (1 + ϵmax)

2
] ∥∥∥θ̃t

∥∥∥2 + c3
∥∥Θt

o

∥∥2
F

)
+ 6n(σ2 + ς2)

γ2
t+1

ρ

≤ (1− ρ/2)
∥∥Θt

o

∥∥2
F
+

γ2
t+1

ρ
12n

[
σ2 + 2L2 (1 + ϵmax)

2
] ∥∥∥θ̃t

∥∥∥2 + 6n(σ2 + ς2)
γ2
t+1

ρ
,

where the last inequality is due to supt≥1 γt ≤ ρ/
√
2c3. The above can be simplified into

1
nEt

∥∥Θt+1
o

∥∥2
F
≤
(
1− ρ

2

)
1
n

∥∥Θt
o

∥∥2
F
+

γ2
t+1

ρ
12
[
σ2 + 2L2 (1 + ϵmax)

2
] ∥∥∥θ̃t

∥∥∥2 + 6(σ2 + ς2)
γ2
t+1

ρ
. (52)

Compared to (23), we observe that the above bound entails a larger coefficient for ∥θ̃t∥2 which lead
to a (slightly) worse convergence bound for the DSGD-GD scheme.

Lastly, we should mention that as in the original Lemma 4, (52) can also be combined with Lemma 3
to develop an alternate version of Lemma 5. Subsequently, we can achieve a similar result as
Theorem 1 without assuming A6.

D Proof of Lemma 5

Combining Lemmas 3 and 4 leads to

Lt+1 ≤ (1− µ̃γt+1)E
∥∥∥θ̃t
∥∥∥2 + [c1γt+1 + c2γ

2
t+1

]
1
nE
∥∥Θt

o

∥∥2
F
+

2σ2

n
γ2
t+1
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+ γt+1
8c1
ρ

((
1− ρ

2

)
1
nE
∥∥Θt

o

∥∥2
F
+

γ2
t+1

ρ
12[σ2 + ς2]E

∥∥∥θ̃t
∥∥∥2 + 9(σ2 + ς2)

γ2
t+1

ρ

)
=

(
1− µ̃γt+1 +

96c1
ρ2

[σ2 + ς2]γ3
t+1

)
E
∥∥∥θ̃t
∥∥∥2 + 2σ2

n
γ2
t+1 +

72c1
ρ2

(σ2 + ς2)γ3
t+1

+ γt
8c1
ρ

(
γt+1

γt

(
1− ρ

2

)
+

ρ

8
+

c2ρ

8c1
γt+1

)
1
nE
∥∥Θt

o

∥∥2
F

Note that by the step size conditions specified in the lemma, we have

1− µ̃γt+1 +
96c1
ρ2

[σ2 + ς2]γ3
t+1 ≤ 1− µ̃γt+1/2

γt+1

γt

(
1− ρ

2

)
+

ρ

8
+

c2ρ

8c1
γt+1 ≤ 1− µ̃γt+1/2.

(53)

Thus, we obtain

Lt+1 ≤ (1− µ̃γt+1/2)Lt +
2σ2

n
γ2
t+1 +

72c1
ρ2

(σ2 + ς2)γ3
t+1. (54)

This concludes the first part of the lemma, i.e., (25). For the second part, we further expand (54) to
obtain

Lt+1 ≤
t+1∏
i=1

(
1− µ̃γi

2

)
D+

t+1∑
s=1

t+1∏
i=s+1

(1− µ̃γi/2)

(
2σ2

n
γ2
s +

72c1
ρ2

(σ2 + ς2)γ3
s

)

≤
t+1∏
i=1

(
1− µ̃γi

2

)
D+

288c1(σ
2 + ς2)

ρ2µ̃
γ2
t+1 +

8σ2

µ̃n
γt+1.

(55)

where we recall that D := ∥θ̃0∥2 + 8γ1c1
ρn

∥∥Θ0
o

∥∥2
F

and the last inequality is due to Lemma 6 together
with the specified step size conditions. The proof is thus concluded.

E Auxilliary Results

Lemma 6. Consider a sequence of non-negative, non-increasing step sizes {γt}t≥1. Let a > 0,
p ∈ Z+ and γ1 < 2/a. If γp

t /γ
p
t+1 ≤ 1 + (a/2)γp

t+1 for any t ≥ 1, then
t∑

j=1

γp+1
j

t∏
ℓ=j+1

(1− γℓa) ≤
2

a
γp
t , ∀ t ≥ 1. (56)

Proof. Observe that:
t∑

j=1

γp+1
j

t∏
ℓ=j+1

(1− γℓa) = γp
t

t∑
j=1

γj

t∏
ℓ=j+1

γp
ℓ−1

γp
ℓ

(1− γℓa)

(a)

≤ γp
t

t∑
j=1

γj

t∏
ℓ=j+1

(
1− γℓ

a

2

)

=
2γp

t

a

t∑
j=1

 t∏
ℓ=j+1

(1− γℓa/2)−
t∏

ℓ′=j

(1− γℓ′a/2)


=

2γp
t

a

(
1−

t∏
ℓ′=1

(1− γℓ′a/2)

)
≤ 2γp

t

a
,

where (a) is due to the following observation

γp
ℓ−1

γp
ℓ

(1− γℓa) ≤
(
1 +

a

2
γp
ℓ

)
(1− γℓa) ≤ 1− a

2
γℓ.

The proof is concluded.
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Tasks ϵ̄ = ϵavg a0 a1 batch

Gaussian Mean Estimation see §4 50 10000 1
Spam Email Classification see §4 50 100000 32
LEAF Synthetic Data (Hetero & Homo) 0.1 200 1000 32
LEAF Synthetic Data (Hetero & Homo) 10.0 1 1000 32

Table 1: Parameters for the numerical experiments.

Lemma 7. Consider a sequence of non-negative, non-increasing step sizes {γt}t≥1. Let p ∈ Z+. If
supt≥1 γ

p
t /γ

p
t+1 ≤ 1 + ρ

4−2ρ , then for any t ≥ 0, it holds that

t+1∑
i=1

(
1− ρ

2

)t+1−i

γp
i ≤ 4

ρ
γp
t+1. (57)

Proof. We observe the following chain:

t+1∑
i=1

(
1− ρ

2

)t+1−i

γp
i = γp

t+1

t+1∑
i=1

(
1− ρ

2

)t+1−i
(

γi
γi+1

)p(
γi+1

γi+2

)p

· · ·
(

γt
γt+1

)p

≤ γp
t+1

t+1∑
i=1

(1− ρ

4
)t+1−i ≤ 4

ρ
γp
t+1

where the second last inequality is due to:

(1− ρ/2)

(
γi+1

γi+2

)p

≤ 1− ρ

4

since supk≥1 γ
p
k−1/γ

p
k ≤ 1 + ρ

4−2ρ . This completes the proof.

F Details of Numerical Experiments and Additional Results

This section provides details for the numerical experiments conducted in §4. We also describe an
additional numerical experiment based on the logistic regression Example 1 on synthetic data. The
latter examines the effects of heterogeneous data on the convergence rate of DSGD-GD.

For all our experiments, we have performed DSGD-GD with the step size γt = a0/(a1 + t). Moreover,
at each iteration of DSGD-GD, the ith agent draws batch ≥ 1 samples from Di(θ

t
i). The parameters

a0 > 0, a1 ≥ 0, batch ≥ 1 used for different tasks are specified in Table 1. For both Gaussian mean
estimation and spambase logistic regression, we use the same parameters for all settings of ϵ̄ = ϵavg.
We consider using n = 25 agents in all experiments, connected on a ring graph. We set the mixing
matrix weights as Wij = 1/3 for all (i, j) ∈ E, and Wij = 0 if (i, j) /∈ E.

Spam Email Classification. In Fig. 4, we provide additional results for the experiment in the
main paper [cf. Fig. 3]. In particular, we compare the training loss f(θ

t
;θ

t
) and training accuracy

against the iteration number t. We also plot the gap to an approximate Multi-PS solution in Fig. 4
(right) for ∥θt − ˆθPS∥2. Note that the Multi-PS solution compared here is only an approximation
obtained by applying a similar method to repeated gradient descent in [Perdomo et al., 2020] on
minθ

∑n
i=1 fi(θ;θ), where we used 1000 gradient descent iterations together with an outer loop of

104 deployments. Note that this process is only guaranteed to find a near-optimal solution, denoted
as ˆθPS . Nevertheless, we observe that when the decision dependent distributions becomes more
sensitive (ϵavg = 1), the DSGD-GD scheme seems unable to reach ˆθPS .

Logistic Regression on LEAF Synthetic Data. To study the effect of homogeneity of data distribution
[cf. A6] on the convergence of DSGD-GD, we conduct an additional experiment based on Example 1
but on the LEAF synthetic data [Caldas et al., 2019]. Here, we set the sensitivity parameter at ϵi = ϵ̄
for i = 1, . . . , 25 and generate synthetic data using the framework in [Caldas et al., 2019] with the

20



100 101 102 103 104 105 106 107

Iterations

100

101

Train Loss
DSGD-GD = 0.01
DSGD-GD = 0.1
DSGD-GD = 1.0
DSGD = 0.01
DSGD = 0.1
DSGD = 1.0

100 101 102 103 104 105 106 107

Iterations

0.4

0.5

0.6

0.7

0.8

0.9

Train Accuracy

DSGD-GD = 0.01
DSGD-GD = 0.1
DSGD-GD = 1.0
DSGD = 0.01
DSGD = 0.1
DSGD = 1.0

100 101 102 103 104 105 106 107

Iterations

101

PS Error: || t||2

DSGD-GD = 0.01
DSGD-GD = 0.1
DSGD-GD = 1.0

Figure 4: Additional Results for Spam Email Classification. (Left) Training Loss. (Middle)
Training Accuracy. (Right) Approximate Gap to Multi-PS solution (see below). We also compare the
non-performative optimal solution (dashed lines) on the shifted dataset.
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Figure 5: Logistic Regression on LEAF Synthetic Data. DSGD-GD in homogeneous and heteroge-
neous data distribution converge to the same Multi-PS solution.

standard deviation σ = 1 that represents the degree of heterogeneity of the dataset. Note that the
framework produces mi = 100 training samples with d = 100 features for each agent, denoted as
(Xi

k, Y
i
k )

100
k=1, for i = 1, . . . , 25 agents.

We consider two settings and describe them using the notations as in Example 1. In the
heterogeneous data setting, the base data distribution D0

i for agent i is taken to be (Xi
k, Y

i
k )

100
k=1

such that Di(θ) ̸= Dj(θ). In the homogeneous data setting, the base data distribution D0
i for agent

i is taken to be ((Xi
k, Y

i
k )

100
k=1)

25
i=1, i.e., the entire dataset generated from LEAF. Note that in this

case, D0
i ≡ D0

j and thus Di(θ) ≡ Dj(θ) for any θ ∈ Rd and i, j = 1, . . . , n since ϵi = ϵavg. Note
that the Multi-PS solution θPS (if exists) in both settings are unique and identical. Meanwhile, the
homogeneous case satisfies A6 with ς = 0, thus the DSGD-GD scheme applied to it is expected to
converge at a faster rate than in the heterogeneous case.

Our numerical results are presented in Fig. 5, and we show in Table 1 the simulation parameters.
Observe that with ϵavg = 10, the local data distributions are too sensitive and the Multi-PS solution
θPS may not exist. With ϵavg = 0.1, we observe that the convergence of test accuracy, training loss,
etc. are faster with the homogeneous case initially. However, as the iteration number t grows, the gap
between the homogeneous and heterogeneous cases fade. This corroborates with our finite-time
analysis in (18), where the fluctuation term σ2γt/(nµ̃) becomes dominant as t ≫ 1 in all cases, yet
the transient time can be shorter when ς = 0 as predicted by (19).
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G Extension to Time-varying Graph

This section shows how to extend our analysis for DSGD-GD to the setting with time-varying commu-
nication graph. Let G(t) = (V,E(t)) be a simple, undirected graph which is possibly not connected
and the graph is associated with a weighted adjacency matrix W (t). Note that the graph G(t) consists
of a fixed set of agents V and a set of time-varying edges E(t).

In lieu of A4, we assume that:

A7. The time-varying undirected graph sequence {G(t)}t≥1 = {(V,E(t))}t≥1 is B-connected.
Specifically, for any t ≥ 1, there exists a positive integer B such that the undirected graph (V,E(t) ∪
· · ·E(t+B−1)) is connected. For any t ≥ 1, the mixing matrix W (t) ∈ Rn×n satisfies:

1. (Topology) W (t)
ij = 0 if (i, j) /∈ E(t).

2. (Doubly stochastic) W (t)1 = (W (t))⊤1 = 1.

3. (Fast mixing) Let A(t) := W (t) − 1
n11

⊤, there exists ρ̄ ∈ (0, 1] such that∥∥A(t+B−1) · · ·A(t)
∥∥
2
≤ 1− ρ̄.

The last condition can be guaranteed under the bounded communication setting, i.e., when the
combined graph (V,E(t) ∪ · · ·E(t+B)) is connected for any t ≥ 0.

Notations. Throughout, we denote Θ(m,n) := E[∥Θm
o ∥2F + · · · + ∥Θn

o∥
2
F ] and θ̃(m,n) :=

E[∥θ̃m∥2 + · · ·+ ∥θ̃n∥2], which is the aggregation of consensus error and performative stable gap in
one time block whose length is B, respectively.

Proof Sketch. Below we provide a proof sketch for the convergence of DSGD-GD scheme when the
latter is applied on a time varying graph satisfying A7. We begin by considering the extensions of
Lemmas 3 and 4. As follows,
Lemma 8 (Extension of Lemma 3). Fix any δ > 0 and let ϵavg ≤ µ

(1+δ)L . Under A1, A2, A3, A5

and let the step sizes satisfy supt≥0 γt+1 ≤ µ̃
c2

, the following bound holds for any t ≥ 0,

θ̃(t+ 1, t+B) ≤ (1− µ̃γt+B)
Bθ̃(t−B + 1, t) +

2Bσ2

n
γ2
t+1

+B
(
c1

γt+1

n
+ c2

γ2
t+1

n

)
[Θ(t−B + 1, t) +Θ(t+ 1, t+B)] .

Proof. Recall the inequality (22) in Lemma 3,

Et

∥∥∥θ̃t+1
∥∥∥2 ≤ (1− µ̃γt+1)

∥∥∥θ̃t
∥∥∥2 + [c1γt+1 + c2γ

2
t+1

]
1
n

∥∥Θt
o

∥∥2
F
+

2σ2

n
γ2
t+1. (58)

This implies

θ̃(t+ 1, t+B) ≤ (1− µ̃γt+B)θ̃(t, t+B − 1) +

(
c1γt+1

n
+

c2γ
2
t+1

n

)
Θ(t, t+B − 1) +

2Bσ2

n
γ2
t+1,

where we have summed (58) from t+ 1th to t+Bth iteration and noted that the step size γt is non-
increasing. Applying the above inequality for B times, we can link two consecutive B performative
stable gap θ̃(t+ 1, t+B) and θ̃(t−B + 1, t) by

θ̃(t+ 1, t+B) ≤ (1− µ̃γt+B)
Bθ̃(t−B + 1, t) +

2Bσ2

n
γ2
t+1

+

(
c1γt+1

n
+

c2γ
2
t+1

n

)
[Θ(t, t+B − 1) +Θ(t− 1, t+B − 2) + · · ·+Θ(t−B + 1, t)] .

(59)

For the first term Θ(t, t+B − 1) in the last quantity, we observe the crude bound

Θ(t, t+B − 1) ≤ Θ(t+ 1, t+B) + E∥Θt
o∥2F ≤ Θ(t−B + 1, t) +Θ(t+ 1, t+B).
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Following the same trick, we get another crude bound as

[Θ(t, t+B − 1) +Θ(t− 1, t+B − 2) + · · ·+Θ(t−B + 1, t)]

≤ B[Θ(t−B + 1, t) +Θ(t+ 1, t+B)].

Substituting back to inequality (59) derives the final bound

θ̃(t+ 1, t+B) ≤ (1− µ̃γt+B)
Bθ̃(t−B + 1, t) +

2Bσ2

n
γ2
t+1

+B
(
c1

γt+1

n
+ c2

γ2
t+1

n

)
[Θ(t−B + 1, t) +Θ(t+ 1, t+B)] .

Lemma 9 (Extension of Lemma 4). Under A2–A5 and A7 and let the step sizes satisfy

sup
t≥0

γt+1 ≤ ρ/
√
2Bc3,

then it holds for any t ≥ 0 that

Θ(t+ 1, t+B) ≤ 1− ρ̄/2

1−Bc3γ2
t−B+1/ρ̄

Θ(t−B + 1, t)

+
γ2
t−B+1

ρ−Bc3γ2
t−B+1

{
B2d1 + d2B[θ̃(t−B + 1, t) + θ̃(t+ 1, t+B)]

}
,

(60)

where d1 := 9n(σ2 + ς2), d2 := 12n(σ2 + ς2).

Proof. Recall the notations (45) and observe that

Θt+1
o = Θt+1 −Θ

t+1
=

(
W t+1 − 1

n
11⊤

)
︸ ︷︷ ︸

=At+1

Θt
o − γt+1

(
I − 1

n
11⊤

)
∇̃F t.

Therefore, we can obtain the following consensus error recursion

Θt+1
o = At+1Θt

o − γt+1

(
I − (1/n)11⊤) ∇̃F t.

Then, we aim to link Θt+1
o to Θt−B+1

o .

Θt+1
o = At+1Θt

o − γt
(
I − (1/n)11⊤) ∇̃F t−1

= At+1AtΘt−1
o − γtA

t+1
(
I − (1/n)11⊤) ∇̃F t−1 − γt+1

(
I − (1/n)11⊤) ∇̃F t

...

= At+1AtAt−1 · · ·At−B+1Θt−B+1
o −

t∑
s=t−B+1

γs+1A
s+2

(
I − (1/n)11⊤) ∇̃F s.

Taking Frobenius norm on both sides and applying the Young’s inequality give∥∥Θt+1
o

∥∥2
F
≤ (1 + α)

∥∥At+1AtAt−1 · · ·At−B+1
∥∥2 ∥∥Θt−B+1

o

∥∥2
F

+ (1 + α−1)

t∑
s=t−B+1

γ2
s+1

∥∥As+2
∥∥2 ∥∥∥(I − (1/n)11⊤) ∇̃F s

∥∥∥2
F
,

which holds for any α > 0. Using A7 and setting α = ρ
1−ρ , we have

∥∥Θt+1
o

∥∥2
F
≤ (1− ρ̄)

∥∥Θt−B+1
o

∥∥2
F
+

t∑
s=t−B+1

γ2
s+1

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F
.
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Similarly, we get

∥∥Θt+2
o

∥∥2
F
≤ (1− ρ̄)

∥∥Θt−B+2
o

∥∥2
F
+

t+1∑
s=t−B+2

γ2
s+1

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F

...∥∥Θt+B
o

∥∥2
F
≤ (1− ρ̄)

∥∥Θt
o

∥∥2
F
+

t+B−1∑
s=t

γ2
s+1

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F
.

Adding these B consensus errors together leads to

Θ(t+ 1, t+B) ≤ (1− ρ̄)Θ(t−B + 1, t)

+
γ2
t−B+1

ρ

{
t∑

s=t−B+1

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F
+ · · ·+

t+B∑
s=t

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F

}
.

(61)

Using the inequality (49) in the proof of Lemma 4, we get

Es

∥∥∥(I − (1/n)11⊤) ∇̃F s
∥∥∥2
F
≤ d1 + d2

∥∥∥θ̃s
∥∥∥2 + c3 ∥Θs

o∥
2
F ,

where d1 := 9n(σ2 + ς2), d2 := 12n(σ2 + ς2) and c3 = 12σ2 + 18L2(1 + ϵmax)
2. Then, we have

t∑
s=t−B+1

E
∥∥∥(I − (1/n)11⊤) ∇̃F s

∥∥∥2
F
≤

t∑
s=t−B+1

E
[
d1 + d2∥θ̃s∥2 + c3 ∥Θs

o∥
2
F

]

= Bd1 + d2

t∑
s=t−B+1

E∥θ̃t∥2 + c3

t∑
s=t−B+1

E ∥Θs
o∥

2
F .

Substituting back to (61) give us

Θ(t+ 1, t+B) ≤ (1− ρ̄)Θ(t−B + 1, t) +
γ2
t−B+1

ρ

{
B2d1 + d2[θ̃(t−B + 1, t) + · · ·+ θ̃(t, t+B)]

+ c3[Θ(t−B + 1, t) + · · ·+Θ(t, t+B)]

}
.

The above can be simplified to

Θ(t+ 1, t+B) ≤ (1− ρ̄)Θ(t−B + 1, t) +
γ2
t−B+1

ρ

{
B2d1 + d2B[θ̃(t+ 1, t+B) + θ̃(t, t+B)]

+ c3B[Θ(t−B + 1, t) +Θ(t+ 1, t+B)]
}
.

Setting supk≥1 γk ≤ ρ̄√
2c3B

and rearranging terms give us

Θ(t+ 1, t+B) ≤ 1− ρ̄/2

1−Bc3γ2
t−B+1/ρ̄

Θ(t−B + 1, t)

+
γ2
t−B+1

ρ−Bc3γ2
t−B+1

{
B2d1 + d2B[θ̃(t−B + 1, t) + θ̃(t+ 1, t+B)]

}
,

which gives us desired upper bound for Θ(t+ 1, t+B).

Convergence of θt to θPS with Time varying graph. We conclude our proof sketch through
analyzing the following Lyapunov function. For any t ≥ 0, we define:

Lt+B
t+1 := θ̃(t+ 1, t+B) +Θ(t+ 1, t+B) ≥ 0.
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Combing Lemma 8 and 9 leads to(
1−Bc1

γt+1

n
−Bc2

γ2
t+1

n

)
Θ(t+ 1, t+B) +

(
1−

d2Bγ2
t−B+1

ρ−Bc3γ2
t−B+1

)
θ̃(t+ 1, t+B)

≤
(

1− ρ̄/2

1−Bc3γ2
t−B+1/ρ̄

+Bc1
γt+1

n
+Bc2

γ2
t+1

n

)
Θ(t−B + 1, t)

+

(
(1− µ̃γt+B)

B +
d2Bγ2

t−B+1

ρ−Bc3γ2
t−B+1

)
θ̃(t−B + 1, t) +

B2d1γ
2
t−B+1

ρ−Bc3γ2
t−B+1

+
2Bσ2

n
γ2
t+1.

(62)

We focus on the l.h.s. of above inequality. If the step size satisfies

sup
k≥1

γk ≤ min

{
c1
c2

,

√
ρ̄

2Bc3
,
ρ̄c1
n

}
then, the l.h.s. of (62) can be lower bounded by

l.h.s. of (62) ≥
(
1− 2Bc1

γt+1

n

) [
Θ(t+ 1, t+B) + θ̃(t+ 1, t+B)

]
.

Next, we consider the r.h.s. of (62). Suppose that supk≥1 γk ≤
√

ρ
(4−ρ̄)Bc3

, it holds

1− ρ̄/2

1−Bc3γ2
t−B+1/ρ̄

≤ 1− ρ̄/4,
B2d1γ

2
t−B+1

ρ−Bc3γ2
t−B+1

≤ 2B2d1
ρ

γ2
t−B+1.

If step size also satisfies

sup
k≥1

γk ≤ min

{
1√
b
,

µ̃ρ̄

22B+1d2B

}
,

where b such that γ2
k/γ

2
k+1 ≤ 1 + bγ2

k+1, then it holds:

r.h.s. of (62)

≤
(
1− ρ̄

4
+ 2Bc1

γt+1

n

)
Θ(t−B + 1, t) +

(
1− µ̃γt+B

2

)
θ̃(t−B + 1, t)

+
2B2d1

ρ
γ2
t−B+1 +

2Bσ2

n
γ2
t+1.

Combining the above inequalities lead to:(
1− 2Bc1

γt+1

n

) [
Θ(t+ 1, t+B) + θ̃(t+ 1, t+B)

]
≤
(
1− ρ̄

4
+ 2Bc1

γt+1

n

)
Θ(t−B + 1, t)

+

(
1− µ̃γt+B

2

)
θ̃(t−B + 1, t) +

2B2d1
ρ

γ2
t−B+1 +

2Bσ2

n
γ2
t+1.

If the step size satisfying

sup
k≥1

γk ≤ ρ̄

8Bc1/n+ 2µ̃
,

then the main recursion can be simplified as(
1− 2Bc1

γt+1

n

) [
Θ(t+ 1, t+B) + θ̃(t+ 1, t+B)

]
≤
(
1− µ̃γt+B

2

)[
Θ(t−B + 1, t) + θ̃(t−B + 1, t)

]
+

2B2d1
ρ

γ2
t−B+1 +

2Bσ2

n
γ2
t+1.

Dividing
(
1− 2Bc1

γt+1

n

)
for the both sides, we obtain that

Lt+B
t+1 ≤ (1− µ̃γt+B/2)

1− 2Bc1γt+1/n
Lt
t−B+1 +

(
2B2d1

ρ
+

2B2σ2

n

)
γ2
t−B+1

(1− 2Bc1γt+1/n)
.

Observe that with sufficiently small step size, the above recursion can be simplified to give a similar
form as (25). Solving the recursion then lead to Lt+B

t+1 = O(γt−B+1) and the convergence of
θ̃(t+ 1, t+B) → 0.

Lastly, we remark that the above analysis only gives a crude bound to the convergence of DSGD-GD in
the time varying graph setting. It is possible to give tighter bounds through further optimizing the
constants in the above analysis.
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H Extension to Local Distributions Influenced by All Agents

This section outlines how to extend our analysis to the scenario when the local distributions Di(·)
are simultaneously influenced by other agents in the network similar to the competitive Multi-
PfD considered by [Narang et al., 2022, Piliouras and Yu, 2022].

We define the concatenated decision vector ϑ := (θ1, . . . ,θn) ∈ Rnd and state the modified
consensus Multi-PfD problem (1) as follows

minθi∈Rd, i=1,...,n
1
n

∑n
i=1 EZi∼Di(ϑ)

[
ℓ(θi;Zi)

]
s.t. θi = θj , ∀ (i, j) ∈ E. (63)

With a slight abuse of notation, we also define fi(θ;ϑ) := EZi∼Di(ϑ)

[
ℓ(θi;Zi)

]
.

Following [Narang et al., 2022], we consider the following modification to A3:

A8. For any i = 1, . . . , n, there exists a constant ϵi > 0 such that

W1(Di(ϑ),Di(ϑ
′)) ≤ ϵi ∥ϑ− ϑ′∥ , ∀ ϑ′,ϑ ∈ Rnd, (64)

where W1(D,D′) denotes the Wasserstein-1 distance between the distributions D,D′.

Specifically, we notice that if ϑ satisfies the consensus constraint, i.e., ϑ = 1n ⊗ θ = (θ, . . . ,θ),
then A8 is equivalent to A3 with the latter’s sensitivity parameter given by ϵ′i =

√
nϵi since

∥1n ⊗ θ − 1n ⊗ θ′∥ =
√
n∥θ − θ′∥. This observation immediately leads to the following corollary

of Proposition 1:

Corollary 1. Under A1, A2, A8. Define the map M : Rd → Rd

M(θ) = argminθ′∈Rd
1
n

∑n
i=1 fi(θ

′;1n ⊗ θ) (65)

If
√
nϵavg < µ/L, then the map M(θ) is a contraction with the unique fixed point θPS = M(θPS).

If
√
nϵavg ≥ µ/L, then there exists an instance of (11) where limT→∞

∥∥MT (θ)
∥∥ = ∞.

The proof is attained by simply observing that if θi = θj (as constrained by (65) (and (63)), then A8
is equivalent to A3 with ϵ′i =

√
nϵi.

Comparison to [Narang et al., 2022]. Notice that in [Narang et al., 2022], the existence of a
performative stable equilibrium requires

√∑n
i=1 ϵ

2
i < µ/L. Meanwhile, Corollary 1 requires

(1/
√
n)
∑n

i=1 ϵi < µ/L. Due to norm equivalence, we have

(1/
√
n)
∑n

i=1 ϵi ≤
∑n

i=1 ϵ
2
i .

Thus, the consensus constrained performative stable solution in cooperative Multi-PfD will be
attainable under a more relaxed condition than the competitive Multi-PfD.

DSGD-GD Algorithm for (63). The extension of Theorem 1 to (63) via the DSGD-GD algorithm is more
involved and thus the details are skipped in this brief discussion. However, it remains straightforward
to extend the analysis through a careful modification of Lemma 3 with A8. In particular, one only
needs to pay attention to the use of A8 in (37) and (40) for the proof.

Remarks. We emphasize that as explained in the main paper, the original scenario considered by (1)
and A3 is relevant to the decentralized learning scenario of the current paper. It captures the effects of
‘geographical’ barriers where the population of users are not simultaneously influenced by all agents.
Nevertheless, a future direction is to study the Multi-PfD problem (cooperative or competitive) where
users can be influenced by the decisions from a few neighboring agents.
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