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Abstract

Large language models frequently generate001
unfaithful content that deviates from given002
contexts, a phenomenon known as faithfulness003
hallucination. Existing mitigation methods004
often require model retraining, architectural005
modifications, or manipulation of the entire006
output distribution, leading to significant007
computational overhead. In this paper, we008
propose Context-Fidelity Boosting (CFB), a009
lightweight decoding-time approach that en-010
hances contextual alignment through strategic011
logit adjustments. Inspired by watermarking012
techniques, CFB implements three progres-013
sively sophisticated strategies: static boosting014
with fixed parameters, global adaptive015
boosting based on distribution divergence, and016
token-wise adaptive boosting that leverages017
attention patterns and semantic relevance.018
Extensive experiments demonstrate that CFB019
significantly improves both faithfulness metrics020
and generation quality while maintaining com-021
putational efficiency. Notably, CFB provides022
a practical solution for improving context023
fidelity without requiring model retraining or024
architectural changes. Our code is released025
at https://anonymous.4open.science/r/CFB-026
C716.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities in various natural030

language tasks. In numerous scenarios, the model031

needs to follow the context provided by the user032

to generate responses, such as in RAG, summa-033

rization (Laban et al., 2024), question answering034

(Chen et al., 2025), and role-playing (Huang et al.,035

2024). When external knowledge conflicts with036

the model’s internal knowledge parameters, the037

generated content may become inconsistent with038

the user’s instructions or contextual information039

(Mallen et al., 2023; Liu et al., 2024c), resulting040

in faithfulness hallucinations (Huang et al., 2023).041
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Figure 1: Illustration of context-faithful decoding: Tra-
ditional decoding relies on parametric knowledge (fa-
voring “Tokyo”), while our watermarking-inspired ap-
proach adjusts token probabilities to align with the given
context about “Paris 2024”.

This issue is particularly concerning in high-stakes 042

domains such as healthcare (Zhu et al., 2024), le- 043

gal (Cui et al., 2024), and financial services (Lee 044

et al., 2025), where accurate interpretation of medi- 045

cal records, legal documents, or financial reports is 046

crucial. In these scenarios, models must prioritize 047

faithfulness to the given context over their poten- 048

tially outdated or incorrect parametric knowledge. 049

Current approaches to addressing this challenge 050

broadly fall into three categories: (1) training-time 051

methods requiring expensive model fine-tuning or 052

architectural modifications (Hu et al., 2024), (2) 053

prompting techniques relying on careful engineer- 054

ing but offering limited reliability (Zhang et al., 055

2024), and (3) decoding-time methods that mod- 056

ify the generation process (Shi et al., 2024; Wang 057

et al., 2024). While decoding-time approaches 058

show promise through their model-agnostic nature 059

and computational efficiency, existing methods of- 060

ten face a challenging trade-off between context 061

fidelity and output fluency, or require complex cali- 062

bration procedures. 063

In this work, we draw inspiration from recent 064

advances in text watermarking (Kirchenbauer et al., 065

2024; Liu et al., 2024a; Liu and Bu, 2024), where 066

subtle modifications to token probabilities can ef- 067
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fectively guide model behavior without compro-068

mising generation quality. As illustrated in Figure069

1, similar to how watermarking techniques modify070

logit distributions to embed signals, we propose to071

adjust token probabilities to favor context-aligned072

information. Just as watermarking uses green lists073

to boost specific token probabilities, our approach074

identifies and boosts context-relevant tokens while075

maintaining the natural flow of language genera-076

tion. This parallel between watermarking’s token077

manipulation and context-faithful decoding pro-078

vides an elegant framework for addressing the faith-079

fulness challenge.080

We introduce Context-Faithful Boosting (CFB),081

a novel decoding-time approach that dynamically082

adjusts token probabilities based on their contex-083

tual relevance. CFB operates through three increas-084

ingly sophisticated strategies: static boosting with085

fixed parameters, global adaptive boosting based086

on distribution divergence, and token-wise adaptive087

boosting leveraging attention patterns and semantic088

relevance. This mechanism enables flexible control089

over the fidelity-fluency trade-off without requiring090

model modifications or additional training. No-091

tably, our method achieves this through lightweight092

computation during decoding, making it practical093

for real-world applications where trustworthiness094

and reliability are paramount.095

Our key contributions include:096

• A lightweight, model-agnostic decoding frame-097

work that significantly improves context fidelity098

while preserving output quality, particularly cru-099

cial for high-stakes applications.100

• A novel three-level boosting mechanism that au-101

tomatically calibrates to different contexts and102

tasks, ensuring reliable performance across di-103

verse domains.104

• Extensive empirical validation across multiple105

model scales and diverse tasks, including sum-106

marization and question answering that require107

high context faithfulness.108

2 Related Work109

2.1 Faithfulness Hallucinations in LLMs110

Despite their impressive capabilities, LLMs fre-111

quently generate unfaithful content that deviates112

from provided context or source documents (Hase113

et al., 2024; Chuang et al., 2024; Ming et al., 2024).114

Recent studies have identified two types of halluci-115

nations: factuality hallucination (Yang et al., 2024)116

manifests when LLM outputs diverge from verifi- 117

able real-world facts (e.g., stating incorrect histor- 118

ical dates or attributing quotes to wrong authors), 119

while faithfulness hallucination (Wu et al., 2024; 120

Qiu et al., 2024) occurs when outputs contradict or 121

fabricate content from the given input context (e.g., 122

including details in a summary that were never 123

present in the source document). This issue be- 124

comes particularly severe when models encounter 125

information that conflicts with their parametric 126

knowledge learned from training data, such as re- 127

cent events or domain-specific knowledge. Various 128

metrics have been proposed to measure faithfulness, 129

including semantic similarity scores, entailment- 130

based measures, and fact-checking frameworks 131

(Niu et al., 2024; Hong et al., 2024). 132

2.2 Existing Mitigation Methods 133

Prior research has explored diverse approaches to 134

mitigate hallucinations in LLMs, operating at dif- 135

ferent stages of the model pipeline (Huang et al., 136

2023). Training-time methods focus on architec- 137

tural changes and objective refinements, such as en- 138

hanced attention mechanisms and knowledge graph 139

integration, though these often require substan- 140

tial computational resources and may face cross- 141

domain generalization challenges (Tonmoy et al., 142

2024). Prompting techniques, including chain- 143

of-thought (Wei et al., 2023) reasoning and self- 144

consistency verification, offer model-agnostic solu- 145

tions but vary in effectiveness across different mod- 146

els and tasks (Hou et al., 2024). Decoding-time in- 147

terventions modify the generation process through 148

methods like constrained decoding, though they 149

often struggle to balance faithfulness with output 150

fluency (Gema et al., 2024). While each approach 151

presents unique advantages, they all face distinct 152

limitations that must be considered in practical ap- 153

plications, highlighting the ongoing challenge of 154

developing reliable and faithful LLMs. 155

2.3 Watermarking in LLMs 156

Recent work on text watermarking has advanced 157

our understanding of how subtle probability modi- 158

fications can effectively control model outputs in 159

LLMs. These techniques have primarily focused on 160

partitioning the vocabulary into “green” and “red” 161

token lists, carefully adjusting logit distributions 162

to embed detectable statistical patterns while pre- 163

serving the overall quality of generated text (Liu 164

et al., 2024b). Key developments in this field have 165

included soft watermarking schemes that dynam- 166
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Figure 2: An overview of the proposed CFB method. Our method includes three strategies: static boosting with fixed
parameters (directly adjusting the model’s logits output), global adaptive boosting based on distribution divergence
(determining delta based on JSD divergence), and token-wise adaptive boosting leveraging attention patterns and
semantic relevance.

ically adjust token probabilities based on context167

(Kirchenbauer et al., 2024), sophisticated methods168

for maintaining generation quality while embed-169

ding robust signals (Liu et al., 2024a), and theoret-170

ical frameworks that analyze the critical trade-off171

between watermark strength and text naturalness172

(Golowich and Moitra, 2024). This controlled ma-173

nipulation of token distributions suggests a promis-174

ing direction for hallucination mitigation, as similar175

probability adjustment techniques could be applied176

to guide model outputs toward greater faithfulness177

to source content while maintaining natural lan-178

guage generation capabilities.179

3 Methodology180

We introduce Context-Fidelity Boosting (CFB), a181

decoding-time approach that enhances language182

models’ faithfulness to given contexts by adaptively183

adjusting token probabilities during generation. In-184

spired by watermarking techniques that success-185

fully control model outputs through subtle probabil-186

ity modifications, CFB implements a hierarchical187

boosting framework that promotes the selection of188

context-relevant tokens while maintaining natural189

text generation, as illustrated in Figure 2.190

3.1 Problem Formulation191

Given a context passage C and a query Q, our192

goal is to enhance the generation fidelity of the193

model to the context during decoding by increas-194

ing the probability of tokens that appear in C.195

Let P (yt|y<t, C,Q) denote the model’s generation 196

probability at timestep t. The key challenge is to 197

ensure the generated sequence maintains higher 198

probabilities for contextual tokens while preserv- 199

ing natural and fluent generation. 200

Traditional decoding methods treat all vocab- 201

ulary tokens equally, which may lead to context 202

neglect and hallucination. We propose to adjust the 203

logits of context tokens before computing genera- 204

tion probabilities: 205

l̃t(w) =

{
lt(w) + f(It), if w appears in C;

lt(w), otherwise.
(1) 206

Here, lt(w) is the original logit for token w in the 207

vocabulary, f(It) is a boosting function based on 208

importance measure It, and l̃t(w) is the adjusted 209

logit corresponding to token w. 210

3.2 Context-Fidelity Boosting Framework 211

In this section, we propose three progressive levels 212

of boosting strategies for context tokens. 213

3.2.1 Static Boosting 214

The most straightforward approach adopts a fixed 215

boosting value δ for all tokens that appear in the 216

context C: 217
f(It) = δ, (2) 218

where δ is preset manually. 219

This strategy provides a baseline enhancement 220

of context token probabilities but lacks adaptivity 221

to different contexts and token importance. 222
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Algorithm 1: Context-Fidelity Boosting via Logit Adjustment

Input: Context tokens C = {c1, c2, ..., cn}, Query Q
Language Model M with vocabulary V , where each token in C and Q is from V

Parameters: Base boost value δ for static mode
δmin, δmax for adaptive modes
λ1, λ2: weights for attention and semantic similarity (λ1 + λ2 = 1)

Output: Generated sequence with boosted probabilities for tokens appearing in context C

Phase 1: Logit Adjustment Function
1: function ComputeTokenWeights(C):
2: α← GetAttentionScores(C) ▷ Cross-attention scores from decoder to C
3: s← ComputeSemanticSimilarity(C) ▷ Token-query semantic relevance
4: return λ1α+ λ2s ▷ Weighted combination
5: function AdjustLogits(lt, C, mode):
6: l̃t(w)← lt(w) for all tokens w in model outputs ▷ Initialize adjusted logits
7: if mode is "static":
8: l̃t(w)← lt(w) + δ for w appearing in C ▷ Fixed boost for context tokens
9: else: ▷ Adaptive modes
10: D ← JSD(M(C +Q),M(Q)) ▷ Context-query relevance
11: δ(D)← δmin + (δmax − δmin) ·D
12: if mode is "token-wise":
13: w(t)← ComputeTokenWeights(C) ▷ Get token-specific weights
14: l̃t(w)← lt(w) + δ(D) · w(t) for w ∈ C ▷ Token-specific boost
15: else:
16: l̃t(w)← lt(w) + δ(D) for all w ∈ C ▷ Global adaptive boost
17: return l̃t

Phase 2: Generation with Context-Boosted Probabilities
18: function Generate(C, Q):
19: input_ids← Tokenize(C +Q)
20: output_ids← input_ids
21: while not terminated do:
22: lt ←M(output_ids)[−1] ▷ Get original logits
23: l̃t ← AdjustLogits(lt, C,mode) ▷ Boost context tokens
24: P ∗ ← Softmax(l̃t) ▷ Get valid probability distribution
25: next_token← Sample(P ∗) ▷ Sample from adjusted distribution
26: output_ids← [output_ids;next_token]
27: return Decode(output_ids)

Table 1: Implementation details of the proposed Context-Fidelity Boosting (CFB) algorithm.

3.2.2 Global Adaptive Boosting223

To dynamically adjust boosting strength based on224

context-query relevance, we measure the distribu-225

tion difference between context-aware and context-226

free predictions:227

D = JSD(Pw||Pwo), (3)228

where Pw and Pwo denote the predicted distribu-229

tions with and without context respectively, and230

JSD is the Jensen-Shannon divergence (Menén-231

dez et al., 1997). The global adaptive boosting232

value is then computed as:233

f(It) = δ(D) = δmin + (δmax − δmin) ·D, (4)234

where D is clipped to [0, 1], δmin and δmax are235

the minimum and maximum boosting values. This236

allows stronger boosting when the context signifi-237

cantly influences predictions.238

3.2.3 Token-wise Adaptive Boosting 239

Further extending the adaptivity to token level, we 240

compute token-specific boost values considering 241

both attention patterns and semantic relevance: 242

f(It) = δ(D) · w(t). (5) 243

For each token w in the context, its importance 244

weight w(t) combines attention scores and seman- 245

tic similarity. Specifically, w(t) is calculated as: 246

w(t) = λ1α(t) + λ2s(t), (6) 247

where λ1, λ2 are weighting coefficients (λ1+λ2 = 248

1). The attention score α(t) captures the token’s 249

dynamic importance during generation through the 250

model’s cross-attention weights from the final de- 251

coder layer. This helps identify which context to- 252

kens the model is actively focusing on while gen- 253

erating the current output. The semantic similarity 254
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s(t) is computed using cosine similarity between255

the token’s embedding and the averaged query em-256

beddings. That is,257

s(t) = cosine(ht,
1

|Q|
∑
q∈Q

hq), (7)258

where ht and hq are the hidden representations of259

the context token and query tokens respectively.260

By combining these two measures, our method261

captures both local dependencies (through atten-262

tion) and global topical relevance (through seman-263

tic similarity).264

3.3 Implementation Details265

Table 1 presents the complete implementation of266

CFB. The framework maintains efficiency by com-267

puting importance scores in parallel and caching268

token weights when possible. For practical deploy-269

ment, our empirical validation suggests optimal270

parameter settings of δmin = 1.0 and δmax = 10.0271

for the adaptive boosting range. The importance272

weighting coefficients are set to λ1 = 0.6 and273

λ2 = 0.4, which effectively balances the prioritiza-274

tion of local attention patterns while maintaining275

global semantic relevance. The computational over-276

head primarily stems from importance estimation,277

which scales linearly with context length, while278

the actual boosting operations introduce negligible279

additional cost to the standard generation process.280

4 Experiments281

4.1 Experiment Setup282

Models We evaluate our method on several state-283

of-the-art LLMs including Llama2-13B-chat-hf,284

Llama3-8B-Instruct, and Mixtral-7B-Instruct.285

Datasets We consider two types of tasks.286

• Summarization: We use CNN-DM (See et al.,287

2017) and XSum (Narayan et al., 2018) datasets288

to evaluate the model’s ability to generate faith-289

ful summaries. For these tasks, we measure290

ROUGE-L (Lin, 2004) for summary quality, fac-291

tKB (Feng et al., 2023) for knowledge consis-292

tency, and BERT-P (Zhang et al., 2020) for se-293

mantic preservation.294

• Question Answering: We use NQ-SWAP (Long-295

pre et al., 2021) and NQ-Synth (Wang et al.,296

2024) to evaluate the model’s ability to lever-297

age context information. NQ-SWAP contains298

synthetic knowledge conflicts, while NQ-Synth299

consists of examples where context aligns with300

the model’s parametric knowledge. For these 301

tasks, we report accuracy scores. 302

Baselines We compare our method against sev- 303

eral strong baselines: Context-aware Decoding 304

(CAD) (Shi et al., 2024), which uses a fixed hyper- 305

parameter to control adjustment of output proba- 306

bilities; Adaptive Context-Aware Decoding (ADA- 307

CAD) (Wang et al., 2024), which dynamically in- 308

fers adjustment based on Jensen-Shannon diver- 309

gence; and Contextual Information-Entropy Con- 310

straint Decoding (COIECD) (Yuan et al., 2024), 311

which employs distinct strategies for conflicting 312

and non-conflicting tokens. For consistent com- 313

parison, we use top-p sampling across all methods 314

under a zero-shot setting, with hyperparameters 315

following their original papers. 316

4.2 Results 317

Overall Performance Our experimental results 318

demonstrate that Context-Fidelity Boosting meth- 319

ods consistently outperform or remain competi- 320

tive with strong baselines across different models 321

and tasks. Notably, our methods show particular 322

strength in maintaining factual consistency while 323

preserving semantic quality. 324

Summarization Performance For summariza- 325

tion tasks, as shown in Table 2, our methods demon- 326

strate significant improvements across different 327

metrics. On CNN-DM, our methods achieve su- 328

perior ROUGE-L scores across all models, with 329

improvements up to 4.15 points on Llama3-8B. 330

The Global Adaptive CFB variant particularly ex- 331

cels, achieving the best ROUGE-L scores for both 332

Llama2-13B (37.52) and Llama3-8B (36.78). For 333

factual consistency, measured by factKB, our meth- 334

ods demonstrate strong performance, with Static 335

CFB achieving the highest score of 96.35 on 336

Llama2-13B. BERT-P scores remain consistently 337

high across our methods, indicating strong seman- 338

tic preservation, with the Static CFB variant achiev- 339

ing the best BERT-P score of 91.17 on Llama2- 340

13B. On XSum, our Token-wise Adaptive CFB 341

shows strong performance in ROUGE-L scores, 342

while Global Adaptive CFB maintains better fac- 343

tual consistency, suggesting different variants may 344

be optimal for different summarization scenarios. 345

Question Answering Performance In QA tasks, 346

as shown in Table 3, we observe distinct patterns 347

across different models and datasets. On NQ- 348

Synth, our Static and Global Adaptive CFB vari- 349

ants achieve remarkable performance, reaching 350
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Model Method CNN-DM XSum

ROUGE-L factKB BERT-P ROUGE-L factKB BERT-P

Mistral-7B

CAD (Shi et al., 2024) 33.19 96.37 91.42 16.57 39.22 89.93
ADACAD (Wang et al., 2024) 25.71 89.38 87.56 14.46 29.19 86.42
COIECD (Yuan et al., 2024) 22.65 78.92 86.13 11.93 27.09 84.27

Static CFB (ours) 34.44 95.40 91.17 14.66 56.12 90.90
Global Adaptive CFB (ours) 34.16 94.71 91.05 15.32 50.90 90.94
Token-wise Adaptive CFB (ours) 34.51 95.77 90.86 16.18 41.24 90.42

Llama2-13B

CAD (Shi et al., 2024) 35.63 95.27 91.08 13.96 26.91 88.86
ADACAD (Wang et al., 2024) 24.10 93.45 86.84 10.74 38.83 83.68
COIECD (Yuan et al., 2024) 19.37 83.90 84.58 9.49 9.51 84.16

Static CFB (ours) 37.39 96.35 91.17 13.77 54.38 89.53
Global Adaptive CFB (ours) 37.52 96.26 91.16 14.62 55.02 89.49
Token-wise Adaptive CFB (ours) 37.38 95.99 90.10 15.25 37.91 89.57

Llama3-8B

CAD (Shi et al., 2024) 29.09 84.48 90.98 12.92 45.77 87.05
ADACAD (Wang et al., 2024) 21.80 93.11 85.41 8.69 42.81 82.07
COIECD (Yuan et al., 2024) 19.11 84.47 84.63 10.59 51.90 83.80

Static CFB (ours) 36.24 92.61 91.06 12.63 63.88 89.88
Global Adaptive CFB (ours) 36.78 93.31 91.11 12.25 67.78 89.32
Token-wise Adaptive CFB (ours) 36.21 90.57 90.47 13.23 55.29 88.45

Table 2: Results on summarization tasks. We report ROUGE-L, factKB and BERT-P scores for CNN-DM and
XSum datasets. Best results for each model are shown in bold.

Model Method QA Accuracy

NQ-Synth NQ-SWAP

Mistral-7B

CAD 48.25 57.82
ADACAD 67.46 74.00
COIECD 48.46 3.19

Static (ours) 85.84 36.06
Global (ours) 83.60 59.67
Token-wise (ours) 78.60 39.67

Llama2-13B

CAD 47.80 45.56
ADACAD 39.70 74.21
COIECD 20.60 1.58

Static (ours) 73.39 55.69
Global (ours) 70.50 26.03
Token-wise (ours) 71.10 11.13

Llama3-8B

CAD 66.80 58.49
ADACAD 48.40 86.40
COIECD 32.10 6.33

Static (ours) 93.10 34.98
Global (ours) 93.10 34.91
Token-wise (ours) 90.40 34.73

Table 3: Results on question answering tasks. We report
accuracy (%) on NQ-SWAP and NQ-Synth datasets.
Best results for each model are shown in bold.

93.10% accuracy with Llama3-8B, significantly351

outperforming baselines. For NQ-SWAP, ADA-352

CAD shows stronger performance, particularly353

with Llama3-8B (86.40%). However, our Global354

Adaptive CFB achieves the best performance on355

Mistral-7B (59.67%), suggesting model-specific356

effectiveness. The performance gap between our357

methods and baselines varies across models, indi-358

cating that the effectiveness of context boosting359

may be model-dependent. 360

Model-Specific Analysis Different models show 361

varying responsiveness to our methods. Mistral- 362

7B shows balanced performance across tasks, with 363

our Token-wise Adaptive CFB achieving the best 364

ROUGE-L scores on CNN-DM (34.51). Llama2- 365

13B demonstrates particularly strong performance 366

with our methods on CNN-DM, suggesting bet- 367

ter compatibility with longer-form summarization. 368

Llama3-8B shows impressive gains on NQ-Synth 369

with our methods, indicating strong potential for 370

factual question answering. These results suggest 371

that the effectiveness of CFB methods may be in- 372

fluenced by the underlying model architecture and 373

pre-training approach. 374

4.3 Human Evaluation 375

To assess the qualitative aspects of our method, we 376

conduct human evaluation through both expert an- 377

notations and LLM-based analysis. We randomly 378

sample 100 examples each from CNN-DM and NQ- 379

SWAP datasets, comparing outputs from baseline 380

CAD, ADACAD and our CFB method. 381

Evaluation Protocol Three expert annotators in- 382

dependently rated each output on three dimensions: 383

faithfulness (accuracy and factual consistency), flu- 384

ency (grammatical correctness and natural flow), 385

and informativeness (completeness and relevance), 386

each on a 1-5 scale. 387
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Human Ratings LLM Evaluation

Method Faith. Flu. Info. Consist. Hall. Contra.

CAD 3.82 4.15 3.76 0.83 1.24 0.12
ADACAD 4.03 4.21 3.89 0.87 0.95 0.09
Full CFB (Ours) 4.31 4.18 4.12 0.91 0.67 0.05

Table 4: Human and LLM-based evaluation results.
Faith. is short for faithfulness, Flu. is short for flu-
ency, Info. is short for fnformativeness, Consist. is short
for consistency, Hall. is short for average hallucinations
per output, and Contra. is short for contradiction rate.
Human ratings are on a 1-5 scale.

LLM-based Analysis We additionally employ388

GPT-4o as an automated evaluator, analyzing 500389

samples using a structured evaluation template.390

The results show significant improvements in fac-391

tual consistency (91% vs 83% baseline) and re-392

duced hallucination rates (0.67 vs 1.24 average393

instances per output).394

Qualitative Analysis Our CFB method demon-395

strates particular strengths in several key areas.396

First, it excels at maintaining numerical accuracy397

and temporal information, with a 43% reduction398

in numerical inconsistencies compared to baseline399

approaches. Second, the preservation of proper400

names and specific details shows marked improve-401

ment, with named entity retention increasing by402

28%. Finally, we observe a substantial reduction in403

unsupported generalizations, dropping from 0.89404

to 0.34 instances per output.405

However, CFB shows minimal improvement in406

scenarios requiring complex reasoning or multi-407

hop inference. These cases often involve implicit408

logical connections or require synthesizing infor-409

mation across distant parts of the source text. This410

limitation suggests potential areas for future work411

in enhancing the model’s reasoning capabilities412

while maintaining factual consistency.413

As shown in Table 4, our method achieves the414

highest scores across most metrics, with particu-415

larly strong performance in faithfulness (4.31/5.0)416

and informativeness (4.12/5.0). While fluency417

scores remain comparable across methods, the sig-418

nificant reductions in hallucination (0.67 average419

instances) and contradiction rates (5%) demon-420

strate the effectiveness of our constrained factual421

boosting approach.422

4.4 Ablation Studies423

We conduct ablation studies to analyze the contri-424

bution of different components in our method using425

Llama3-8B on the CNN-DM dataset. As shown426

Method Variant ROUGE-L factKB BERT-P

Full CFB 36.21 90.57 90.47
- w/o Distribution JSD 34.91 84.70 81.44
- w/o Attention Score 33.60 82.01 83.92
- w/o Semantic Sim 35.16 84.92 80.33

Table 5: Ablation study on Llama3-8B on CNN-DM
showing the impact of key components.

in Table 5, the full model achieves the best perfor- 427

mance across all metrics. Removing the Distribu- 428

tion JSD component results in significant degrada- 429

tion across all metrics, with ROUGE-L dropping to 430

34.91 and factKB to 84.70, highlighting the impor- 431

tance of dynamic contrast adjustment. The atten- 432

tion score component proves crucial, as its removal 433

leads to the largest performance drop, demonstrat- 434

ing its vital role in contextual information selection. 435

While removing semantic similarity maintains rea- 436

sonable ROUGE-L, it significantly impacts seman- 437

tic preservation. 438

4.5 Case Studies 439

Case 1: High Knowledge Conflict As shown in 440

Table 6, when presented with conflicting informa- 441

tion about the Great Wall’s length (21,196 vs 8,850 442

kilometers), greedy decoding and COIECD default 443

to the common knowledge length of 8,850 kilome- 444

ters, ignoring the 2012 survey data. While CAD 445

acknowledges the new measurement, our method 446

provides the most complete response by presenting 447

both figures and their relationship, demonstrating 448

superior conflict resolution. 449

Case 2: Complementary Knowledge For ques- 450

tions where context adds to model knowledge 451

(like survey dates and measurement methods), our 452

method effectively combines both sources while 453

maintaining coherence. Unlike other methods that 454

might favor one knowledge source, our approach 455

integrates both the historical context and new find- 456

ings. 457

Case 3: Low Knowledge Conflict In cases with 458

minimal conflict, such as basic facts about the 459

Great Wall, our method appropriately reduces the 460

context boost, behaving similarly to standard de- 461

coding. This adaptive adjustment contrasts with 462

CAD’s fixed adjustment strategy, preventing poten- 463

tial over-correction in low-conflict scenarios. 464

5 Discussion 465

5.1 Impact of Model Scale 466

Our experiments across different model scales (7B, 467

8B, and 13B parameters) reveal interesting pat- 468
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Component Content

Context The Great Wall of China’s actual length was determined in 2012 to be 21,196 kilometers (13,171 miles),
much longer than the previously believed 8,850 kilometers. This finding came after a detailed archaeological
survey using advanced mapping techniques, which also revealed that the wall contained sections from more
diverse historical periods than originally thought...

Question What is the actual length of the Great Wall of China according to the 2012 survey, and how does it compare
to previous estimates?

Gold Answer According to the 2012 survey, the Great Wall is 21,196 kilometers long, which is much longer than the
previous estimate of 8,850 kilometers.

Greedy The Great Wall of China is approximately 8,850 kilometers long.
CAD The 2012 survey found the Great Wall to be 21,196 kilometers, longer than previous estimates.
COIECD The Great Wall is about 13,171 miles (8,850 kilometers) long based on traditional measurements.
CFB (Ours) According to the 2012 survey, the Great Wall is 21,196 kilometers long, much longer than the previously

believed 8,850 kilometers.

Table 6: Qualitative comparison showing how different methods handle knowledge conflicts.

(a) CNN-DM (b) NQ-Synth

Figure 3: Impact of boost values (δ) on fact scores and ROUGE metrics using Llama3-8B. We show the average
fact score (top-left), ROUGE-1 (top-right), ROUGE-2 (bottom-left), and ROUGE-L (bottom-right) scores.

terns in knowledge integration capabilities. While469

Llama2-13B shows superior performance on CNN-470

DM summarization with higher ROUGE-L scores471

(37.52 vs 34.51 for Mistral-7B), this advantage472

does not consistently translate to other tasks. For473

instance, Llama3-8B achieves the highest accuracy474

on NQ-Synth (93.10%) despite its smaller size,475

while Mistral-7B demonstrates competitive perfor-476

mance on XSum factuality metrics. This suggests477

that raw model size may be less crucial than archi-478

tectural differences and pre-training approaches for479

context-faithful generation. Notably, the benefits480

of our adaptive boosting approach remain relatively481

consistent across all three model scales, indicating482

its robustness across different model architectures483

and sizes.484

5.2 Impact of Boost Values485

Analysis across different datasets reveals distinct486

patterns in how boost values (δ) affect model per-487

formance. As illustrated in Figure 3, for CNN-488

DM, the average fact score shows sharp initial im-489

provement, peaking at δ = 4 before experienc-490

ing significant fluctuations and an overall decline. 491

Its ROUGE metrics similarly peak at lower δ val- 492

ues (2-4) but show consistent degradation there- 493

after. In contrast, NQ-Synth exhibits more stable 494

behavior, with fact scores steadily increasing until 495

δ = 6 before plateauing. Its ROUGE metrics show 496

consistent improvement up to δ = 6 and main- 497

tain relatively stable performance afterward. These 498

patterns suggest that while moderate boost values 499

(δ = 4−6) generally optimize performance, dataset 500

characteristics significantly influence the stability 501

and effectiveness of the boosting mechanism. 502

6 Conclusion 503

We present Context-Fidelity Boosting, a decod- 504

ing framework that enhances factual consistency 505

in language model outputs. Our experiments 506

demonstrate significant reductions in hallucinations 507

while maintaining generation quality across sum- 508

marization and question-answering tasks. Future 509

work could explore integration with other decoding 510

strategies to more complex reasoning tasks. 511

8



Limitations512

While Context-Fidelity Boosting demonstrates513

promising results, several limitations warrant dis-514

cussion. Despite being more efficient than training-515

time approaches, CFB introduces additional com-516

putational overhead during decoding due to its dis-517

tribution divergence calculations and token-wise518

importance scoring mechanisms. A fundamen-519

tal limitation is that CFB requires direct access520

to model internals, specifically attention patterns521

and logit distributions, making it inapplicable to522

black-box API models like GPT-4. Although our523

adaptive mechanisms reduce the burden of manual524

tuning, several hyperparameters still require careful525

calibration, including the bounds of the boosting526

factor and the relative weights between semantic527

similarity and attention scores, with optimal values528

varying across different model architectures. These529

limitations point to important future research di-530

rections: reducing computational overhead, devel-531

oping methods compatible with black-box models,532

and designing more robust hyperparameter selec-533

tion strategies.534
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