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Abstract

We propose and analyze a stochastic Newton algorithm for homogeneous dis-
tributed stochastic convex optimization, where each machine can calculate stochas-
tic gradients of the same population objective, as well as stochastic Hessian-vector
products (products of an independent unbiased estimator of the Hessian of the
population objective with arbitrary vectors), with many such stochastic computa-
tions performed between rounds of communication. We show that our method can
reduce the number, and frequency, of required communication rounds compared to
existing methods without hurting performance, by proving convergence guarantees
for quasi-self-concordant objectives (e.g., logistic regression), alongside empirical
evidence.

1 Introduction

Stochastic optimization methods that leverage parallelism have proven immensely useful in modern
optimization problems. Recent advances in machine learning have highlighted their importance as
these techniques now rely on millions of parameters and increasingly large training sets.

While there are many possible ways of parallelizing optimization algorithms, we consider the
intermittent communication setting (Zinkevich et al., 2010; Cotter et al., 2011; Dekel et al., 2012;
Shamir et al., 2014; Woodworth et al., 2018, 2021), where M parallel machines work together to
optimize an objective duringR rounds of communication, and where during each round each machine
may perform some basic operation (e.g., access the objective by invoking some oracle) K times,
and then communicate with all other machines. An important example of this setting is when this
basic operation gives independent, unbiased stochastic estimates of the gradient, in which case this
setting includes algorithms like Local SGD (Zinkevich et al., 2010; Coppola, 2015; Zhou and Cong,
2018; Stich, 2019; Woodworth et al., 2020a), Minibatch SGD (Dekel et al., 2012), Minibatch AC-SA
(Ghadimi and Lan, 2012), and many others.

We are motivated by the observation of Woodworth et al. (2020a) that for quadratic objectives,
first-order methods such as one-shot averaging (Zinkevich et al., 2010; Zhang et al., 2013)—a special
case of Local SGD with a single round of communication—can optimize the objective to a very high
degree of accuracy. This prompts trying to reduce the task of optimizing general convex objectives to
a short sequence of quadratic problems. Indeed, this is precisely the idea behind many second-order
algorithms including Newton’s method (Nesterov and Nemirovskii, 1994), trust-region methods
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Table 1: Convergence guarantees for different algorithms in the intermittent communication setting.
Notation is as follows: H: smoothness; U : third-order-smoothness; σ: stochastic gradient variance; ρ:
stochastic Hessian-vector product variance; g(x; z): stochastic gradient oracle; h(x, u; z′): stochastic
Hessian-vector product oracle (see Section 2 for complete details). For the sake of clarity, we omit
additional constants and logarithmic factors.

Algorithm
(Reference)

Convergence Rate
Assumption,

Oracle Access

Local SGD
(Woodworth et al., 2020a)

HB2

KR + σB√
MKR

+ H1/3σ2/3B4/3

K1/3R2/3

A1
g(x; z)

FEDAC

(Yuan and Ma, 2020)

HB2

KR2 + σB√
MKR

+ min
{
H1/3σ2/3B4/3

K1/3R
, H

1/2σ1/2B3/2

K1/4R

} A1
g(x; z)

Local SGD
(Yuan and Ma, 2020)

HB2

KR + σB√
MKR

+ U1/3σ2/3B5/3

K1/3R2/3

A3 (3rd-order Smooth)
g(x; z)

FEDAC

(Yuan and Ma, 2020)

HB2

KR2 + σB√
MKR

+H1/3σ2/3B4/3

M1/3K1/3R
+ U1/3σ2/3B5/3

K1/3R4/3

A3 (3rd-order Smooth)

g(x; z)

FEDSN
(Theorem 1)

exp. decay + HB2

KR + σB√
MK

+ ρB2

√
KR

A2 (QSC)
g(x; z), h(x, u; z′)

(Nocedal and Wright, 2006), and cubic regularization (Nesterov and Polyak, 2006), as well as
methods that go beyond second-order information (Nesterov, 2019; Bullins, 2020).

Computing each Newton step requires solving, for convex F , a linear system of the form
∇2F (x)∆x = −∇F (x). Unfortunately, this may be prohibitive in a high dimensional setting,
and may not even be feasible if F is only accessible through a stochastic oracle in a streaming fashion,
as is the case in the setting we consider. To avoid these issues, we reformulate the Newton step
as the solution to a convex quadratic problem, min∆x

1
2∆x>∇2F (x)∆x + ∇F (x)>∆x, which

we then solve using one-shot averaging. Conveniently, computing stochastic gradient estimates
for this quadratic objective does not require computing the full Hessian matrix, as it only requires
stochastic gradients and stochastic Hessian-vector products. This is attractive computationally since,
for many problems, the cost of computing stochastic Hessian-vector products is similar to the cost of
computing stochastic gradients, and both involve similar operations (Pearlmutter, 1994). Furthermore,
highlighting the importance of these estimates, recent works have relied on Hessian-vector products
to attain faster rates for reaching approximate stationary points in both deterministic (Agarwal et al.,
2017; Carmon et al., 2018) and stochastic (Allen-Zhu, 2018; Arjevani et al., 2020) non-convex
optimization.

In the context of distributed optimization, second-order methods have shown promise in the empir-
ical risk minimization (ERM) setting, whereby estimates of F are constructed by distributing the
component functions of the finite-sum problem across machines. Such methods which leverage this
structure have since been shown to lead to improved communication efficiency (Shamir et al., 2014;
Zhang and Xiao, 2015; Reddi et al., 2016; Wang et al., 2018; Crane and Roosta, 2019; Islamov et al.,
2021; Gupta et al., 2021). An important difference, however, is that these methods work in a batch
setting, meaning they allow for repeated access to the same K examples each round on each machine,
giving a total of MK samples. In contrast, we work in the stochastic (one-pass, streaming) setting,
and so our model independently samples a fresh set of MK examples per round, for a total of MKR
examples (see Appendix G.5 for an empirical comparison).

Our results

Our primary algorithmic contribution, which we present in Section 3 (and include a sketch in Ap-
pendix A), is the method FEDERATED-STOCHASTIC-NEWTON (FEDSN), a distributed approximate
Newton method which leverages the benefits of one-shot averaging for quadratic problems. We pro-
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vide in Section 3, under the condition of quasi-self-concordance (Bach, 2010), the main guarantees of
our method (Theorem 1). In Section 4 we show how, for some regimes in terms of M , K, and R, our
method may improve upon the rates of previous first-order methods, including FEDAC (Yuan and Ma,
2020). In Section 5, we compare a more practical version of our method, FEDSN-LITE (Algorithm 6)
against the other methods, showing we can significantly reduce communication compared to other
first-order methods.

2 Preliminaries

We consider the following optimization problem:
min
x∈Rd

F (x), (1)

and throughout we use F ∗ to denote the minimum of this problem. We further use ‖·‖ to denote the
standard `2 norm, we let ‖x‖A :=

√
x>Ax for a positive semidefinite matrix A, and we let I denote

the identity matrix of order d.

Next, we establish several sets of assumptions, beginning with those which are standard for smooth,
stochastic, distributed convex optimization. We would note that we are working in the homogeneous
distributed setting (i.e., each machine may access the same distribution), rather than the heterogeneous
setting (Khaled et al., 2019; Karimireddy et al., 2019; Koloskova et al., 2020; Woodworth et al.,
2020b; Khaled et al., 2020).
Assumption 1 (A1).

(a) F is convex, differentiable, and H-smooth, i.e., for all x, y ∈ Rd, F (y) ≤ F (x) +
∇F (x)>(y − x) + H

2 ‖y − x‖
2.

(b) There is a minimizer x∗ ∈ arg minx F (x) such that ‖x∗‖ ≤ B.

(c) We are given access to a stochastic first-order oracle in the form of an estimator g :
Rd × Z 7→ Rd, and a distribution D on Z such that, for any x ∈ Rd queried by the
algorithm, the oracle draws z ∼ D, and the algorithm observes an estimate g(x; z) that
satisfies:

(i) g(x; z) is an unbiased gradient estimate, i.e., Ezg(x; z) = ∇F (x).
(ii) g(x; z) has bounded variance, i.e., Ez‖g(x; z)−∇F (x)‖2 ≤ σ2.

In order to provide guarantees for Newton-type methods, we will require additional notions of
smoothness. In particular, we consider α-quasi-self-concordance (QSC) (Bach, 2010), which for
convex and three-times differentiable F is satisfied for α ≥ 0 when, for all x ∈ dom(F ), v, u ∈ Rd,

|∇3F (x)[v, u, u]| ≤ α‖v‖
(
∇2F (x)[u, u]

)
,

where we define

∇kF (x)[u1, u2, . . . , uk] :=
∂k

∂u1, ∂u2, . . . , ∂uk

∣∣
t1=0,t2=0,...,tk=0

F (x+ t1u1 + t2u2 + · · ·+ tkuk),

for k ≥ 1, i.e., the kth directional derivative of F at x along the directions u1, u2, . . . , uk. Related to
this is the condition of α-self-concordance, which has proven useful for classic problems in linear
optimization (Nesterov and Nemirovskii, 1994), whereby for all x ∈ dom(F ), u ∈ Rd,

|∇3F (x)[u, u, u]| ≤ 2α
(
∇2F (x)[u, u]

)3/2
.

Though quasi-self-concordance is perhaps not as widely studied as self-concordance, recent work has
brought its usefulness to light in the context of machine learning (Bach, 2010; Karimireddy et al.,
2018; Carmon et al., 2020). Notably, for logistic regression, i.e., problems of the form

min
x
F (x) =

1

N

N∑
i=1

log
(

1 + e−bi〈ai, x〉
)
, (2)

we observe that α-quasi-self-concordance holds with α ≤ maxi{‖biai‖}. Interestingly, this function
is not self-concordant, thus highlighting the importance of introducing the notion of QSC for such
problems, and indeed, neither of these conditions implies the other in general.1

1For the other direction, note that F (x) = − ln(x) is 1-self-concordant but not quasi-self-concordant.
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We now introduce further assumptions in terms of both additional oracle access and other smoothness
notions. The following outlines the requirements for the stochastic Hessian-vector products, though
we again stress that the practical cost of such an oracle is often on the order of that for stochastic
gradients (Pearlmutter, 1994; Allen-Zhu, 2018).

Assumption 2 (A2). In addition to Assumption 1, we have:

(a) F is three-times differentiable and α-quasi-self-concordant, i.e., for all x, v, u ∈ Rd,∣∣∇3F (x)[v, u, u]
∣∣ ≤ α‖v‖∇2F (x)[u, u].

(b) We are given access to a stochastic Hessian-vector product oracle in the form of an estimator
h : Rd × Rd × Z 7→ Rd, and a distribution D on Z such that, for any pair x, u ∈ Rd
queried by the algorithm, the oracle draws z′ ∼ D, and the algorithm observes an estimate
h(x, u; z′) that satisfies:

(i) h(x, u; z′) is an unbiased Hessian-vector product estimate, i.e., Ez′h(x, u; z′) =
∇F 2(x)u.

(ii) h(x, u; z′) has bounded variance of the form Ez′‖h(x, u; z′)−∇2F (x)u‖2 ≤ ρ2‖u‖2.

Meanwhile, other works (e.g., Yuan and Ma, 2020) require different control over third-order smooth-
ness and fourth central moment. We do not require this assumption in our analysis, and include it
here for comparison.

Assumption 3 (A3). In addition to Assumption 1, we have:

(a) F is twice-differentiable and U -third-order-smooth, i.e., for all x, y ∈ Rd, F (y) ≤ F (x) +
∇F (x)>(y − x) + 1

2

〈
∇2F (x)(y − x), y − x

〉
+ U

6 ‖y − x‖
3.

(b) g(x; z) has bounded fourth central moment, i.e., Ez‖g(x; z)−∇F (x)‖4 ≤ σ4.

3 Main results

We begin by describing our main algorithm, FEDSN (Algorithm 1). Namely, our aim is to solve
convex minimization problems minx F (x), subject to Assumption 2.

Algorithm 1 FEDERATED-STOCHASTIC-NEWTON, a.k.a., FEDSN(x0)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x0 ∈ Rd.
Hyperparameters: T : main iterations; and ξ̄: local stability (see Table 4).
Output: Approximate solution to minx F (x) . See Theorem 1

for t = 0, 1, . . . , T − 1 do

∆x̃t = CONSTRAINED-QUADRATIC-SOLVER(xt)
. Approx. min

u:‖u‖≤ 1
2 r̄

ξ̄
2u
>∇2F (xt)u

+∇F (xt)
>u

Update: xt+1 = xt + ∆x̃t
Return: xT

We will rely throughout the paper on several hyperparameter settings and parameter functions, which
we collect in Tables 3 and 4. Recall that M is the amount of parallel workers, R is the number
of rounds of communication, K is the number of basic operations performed between rounds of
communication, and H , B, σ, α, and ρ are as defined in Assumptions 1 and 2.
Among our assumptions, we note in particular the condition of quasi-self-concordance, under which
several works have provided efficient optimization methods. For example, Bach (2010) analyzes
Newton’s method under QSC conditions, in a manner analogous to that of standard self-concordance
analyses, to establish its behavior in the region of quadratic (log log(1/ε)) convergence. More
recently, both Karimireddy et al. (2018) and Carmon et al. (2020) have presented methods which
rely instead on a trust-region approach, whereby, for a given iterate xt, each iteration amounts to
approximately solving a constrained subproblem of the form min∆x:‖∆x‖≤c

ξ
2∆x>∇2F (xt)∆x+

∇F (xt)
>∆x, for some ξ ≥ 1 and problem-dependent radius c > 0. This stands in constrast to the
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Hyperparameter Setting Description

T :=

⌊
R
4ζ log2

((
R
ζ

))⌋
(for ζ = 4096 + 4(80 + 32 logK + 24 log(1 + 2αB))

2)

Main iterations

β := 0 Momentum

r̄ := min
{

32B
T log(TK), 1

5α

}
Trust-region radius

ξ̄ := exp(αr̄) Local stability

λ̄ := max

{
2eH
K−2 ,

2ρ√
K
, 32eH log(51200)

K ,
4ρ
√

2 log(51200)√
K

,

320
√

2ρ√
MK

, 320σ
r̄
√
MK

, 8eH
K−16

} Regularization bound

N :=
⌈
1 + 5

2 log H(B+5T r̄)

3λ̄r̄

⌉
Binary search iterations

C :=
⌈
8 log

(
dlog2Ne

(
4 + eH

λ̄
+ 80H(B+5T r̄)

λ̄r̄

))⌉
Reg. quadratic repetitions

Table 2: Hyperparameters T , β, r̄, ξ̄, λ̄, N , and C, as used by FEDSN and its subroutines.

Parameter Function Description

ηk(λ) :=


ηλ K ≤ 2

λ max
{
ξ̄H + λ, ρ

2

λ

}
or k < K

2

4

λ
(

8
λ max

{
ξ̄H+λ, ρ

2

λ

}
+k−K2

) K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
and k ≥ K

2

Reg. quad.
stepsizes

wk(λ) :=



(1− ληλ + η2
λρ

2)−k−1 K ≤ 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
0 K > 2

λ max
{
ξ̄H + λ, ρ

2

λ

}
and k < K

2

8
λ max

{
ξ̄H + λ, ρ

2

λ

}
+ k − K

2 − 1 K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
and k ≥ K

2

Reg. quad.
weights

Table 3: Parameter functions ηk(λ) and wk(λ), as used by FEDSN and its subroutines, where ξ̄ is as
defined in Table 4, and where ηλ denotes η(λ) := 1

2 min
{

1
ξ̄H+λ

, λ
ρ2

}
.

unconstrained minimization problem min∆x
ξ
2∆x>∇2F (x)∆x+∇F (x)>∆x, which, as we may

recall, forms the basis of the standard (damped) Newton method. Carmon et al. (2020) further use
their trust-region subroutine to approximately implement a certain `2-ball minimization oracle, which
they combine with an acceleration scheme (Monteiro and Svaiter, 2013).

These results show, at a high level, that as long as the radius of the constrained quadratic (trust-region)
subproblem is not too large, it is possible to make sufficient progress on the global problem by
approximately solving the quadratic subproblem. Our method proceeds in a similar fashion: each
iteration of Algorithm 1 provides an approximate solution to a constrained quadratic problem. To
begin, we follow Karimireddy et al. (2018) in defining δ(r)-local (Hessian) stability.

Definition 1. Let δ : R+ 7→ R+. We say that a twice-differentiable and convex function F is
δ(r)-locally stable if, for any r > 0 and any x, y ∈ Rd (x 6= y) such that ‖x − y‖ ≤ r and
‖x− y‖∇2F (x) > 0, we have ‖x− y‖∇2F (y) ≤ δ(r)‖x− y‖∇2F (x).

As the next lemma shows, quasi-self-concordance is sufficient to provide this type of local stability.
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Lemma 1 (Theorem I (Karimireddy et al., 2018)). If F is α-quasi-self-concordant, then F is
δ(r) = exp(αr)-locally stable.

The advantage of local stability is that it ensures that approximate solutions to locally-defined
constrained quadratic problems can guarantee progress on the global objective, and we state this more
formally in the following lemma. Note that this lemma is similar to (Theorem IV Karimireddy et al.,
2018), though we allow for an additive error in the subproblem solves in addition to the multiplicative
error, and its proof can be found in Appendix B.

Lemma 2. Let F satisfy Assumption 2 and be δ(r)-locally stable for δ : R+ 7→ R+, let
x0 ∈ Rd be as input to FEDSN (Algorithm 1), let c > 0, let θ ∈ [0, 1), and define Qt(∆x) :=
δ(5c)

2 ∆x>∇2F (xt)∆x + ∇F (xt)
>∆x, where xt is the tth iterate of Algorithm 1. Furthermore,

suppose we are given that in each iteration of Algorithm 1, ‖∆x̃t‖ ≤ 5c and

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 c
Qt(∆x) ≤ θ

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 c
Qt(∆x)

)
+ ε,

for ε > 0. Then for each T ≥ 0, Algorithm 1 guarantees

EF (xT )− F ∗ ≤ E[F (x0)− F ∗] exp

(
− Tc(1− θ)

2Bδ( 1
2c)δ(5c)

)
+

2Bδ( 1
2c)d(5c)ε

c(1− θ)
.

We have now seen how to turn approximate solutions of constrained quadratic problems into an
approximate minimizer of the overall objective. We next need to ensure that the output of our
method CONSTRAINED-QUADRATIC-SOLVER (Algorithm 2) meets the conditions of Lemma 2. As
previously discussed, Woodworth et al. (2020a) showed that first-order methods can very accurately
optimize unconstrained quadratic objectives using a single round of communication; however, here
we need to optimize a quadratic problem subject to a norm constraint. Our constrained quadratic
solver is thus based on the following idea: the minimizer of the constrained problem minx:‖x‖≤cQ(x)

is the same as the minimizer of the unconstrained problem minxQ(x) + λ∗

2 ‖x‖
2 for some problem-

dependent regularization parameter λ∗. While the algorithm does not know what λ∗ should be a
priori, we show that it can be found with sufficient confidence using binary search. Lemma 3, proven
in Appendix C, provides the relevant guarantees.

Lemma 3. Let F satisfy Assumption 2, let x be as input to CONSTRAINED-QUADRATIC-SOLVER
(Algorithm 2), let ξ̄ be as in Table 4, define

Q(u) :=
ξ̄

2
u>∇2F (x)u+∇F (x)>u, Qλ(u) :=

1

2
u>(ξ̄∇2F (x) + λI)u+∇F (x)>u,

u∗λ := arg min
u
Qλ(u), r∗(λ) := ‖u∗λ‖,

and let λr denote, for any r > 0, the value such that r∗(λr) = r. Let û be the output of Algorithm 2
for hyperparameters r̄, ξ̄, λ̄, N and C as in Table 4, and suppose the output ũλ of REGULARIZED-
QUADRATIC-SOLVER(x, λ) satisfies for all λ ≥ λ̄ that

EQλ(ũλ)−min
u
Qλ(u) ≤ ε(λ) :=

λ(r∗(λ)2 + r̄2)

800
.

Then ‖û‖ ≤ 5r̄ and

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 3

4

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

4
.

We now show that using one-shot averaging (Zinkevich et al., 2010; Zhang et al., 2012) with M
machines—i.e., averaging the results ofM independent runs of SGD—suffices to solve each quadratic
problem to the desired accuracy. The following lemma, which we prove in Appendix D, establishes
that REGULARIZED-QUADRATIC-SOLVER (Algorithm 3) supplies Algorithm 2 with an output û that
satisfies the conditions of Lemma 3.
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Algorithm 2 CONSTRAINED-QUADRATIC-SOLVER(x)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x ∈ Rd.
Hyperparameters: r̄: trust-region radius; ξ̄: local stability; λ̄: regularization bound; N : binary

search iterations; and C: reg. quadratic repetitions (see Table 4).
Output: Approximate solution to minu:‖u‖≤ 1

2 r̄
ξ̄
2u
>∇2F (x)u+∇F (x)>u . See Lemma 3

Λ1 =
{
λ̄
(

3
2

)n−1
: n = 1, . . . , N

}
i← 1
while Λi 6= ∅ do
λ(i) = Median(Λi)
for c = 1, . . . , C do
ũ(i,c) = REGULARIZED-QUADRATIC-SOLVER(x, λ(i))

if
∣∣{ũ(i,c) :

∥∥ũ(i,c)
∥∥ ∈ [ 3

2 r̄,
7
2 r̄
]}∣∣ > C

2 then
ũ = REGULARIZED-QUADRATIC-SOLVER(x, λ(i))

Return: û = min
{

1, 5r̄
‖ũ‖

}
ũ

else if
∣∣{ũ(i,c) :

∥∥ũ(i,c)
∥∥ ≤ 5

2 r̄
}∣∣ > C

2 then
Λi+1 =

{
λ′ ∈ Λi : λ′ < λ(i)

}
else if

∣∣{ũ(i,c) :
∥∥ũ(i,c)

∥∥ > 5
2 r̄
}∣∣ > C

2 then
Λi+1 =

{
λ′ ∈ Λi : λ′ > λ(i)

}
else

Return: û = 0
i← i+ 1

ũ = REGULARIZED-QUADRATIC-SOLVER(x, λ̄)

Return: û = min
{

1, 5r̄
‖ũ‖

}
ũ

Lemma 4. Let F satisfy Assumption 2, let x ∈ Rd, λ ∈ R+ be as input to REGULARIZED-
QUADRATIC-SOLVER (Algorithm 3), let Qλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u, let Q∗λ :=

minuQλ(u), let u∗ := arg minuQλ(u), and let stochastic first-order and stochastic Hessian-
vector product oracles for F , as defined in Assumptions 1 and 2, respectively, be available for
each call to REGULARIZED-QUADRATIC-GRADIENT-ACCESS (Algorithm 4), for either Case 1
(Different-Samples) or Case 2 (Same-Sample). Let û, as output by Algorithm 3, be a weighted
average of the iterates of M independent runs of SGD with stepsizes η0(λ), . . . , ηK−1(λ), i.e.,
û = 1

M
∑K−1
k=0 wk

∑M
m=1

∑K−1
k=0 wku

m
k . Then, for both Cases 1 and 2,

EQλ(û)−Q∗λ ≤



2 max
{
ξ̄H + λ, ρ

2

λ

}
‖u∗‖2 min

{
1
K , exp

(
−K+1

4 min
{

λ
ξ̄H+λ

, λ
2

ρ2

})}
+ 2(σ2+ρ2‖u∗‖2)

λMK if K ≤ 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
96λ‖u∗‖2 exp

(
−K8 min

{
λ

ξ̄H+λ
, λ

2

ρ2

})
+ 96(σ2+ρ2‖u∗‖2)

λMK

if K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
.

Our analysis for Algorithm 3 is based on ideas similar to those of Woodworth et al. (2020a), whereby
the algorithm may access the stochastic oracles via REGULARIZED-QUADRATIC-GRADIENT-
ACCESS (Algorithm 4). However, additional care must be taken to account for the fact that Al-
gorithm 4 supplies stochastic gradient estimates of the quadratic subproblems Qλ(u) as per the
oracles models described in Assumptions 1 and 2. Thus, the estimates—based in part on stochas-
tic Hessian-vector products—have variance that scales with the norm of the respective iterates of
Algorithm 3 (see Assumption 2(b.ii)).
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Algorithm 3 REGULARIZED-QUADRATIC-SOLVER(x, λ)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x ∈ Rd, λ ∈ R+.
Hyperparameters: β: momentum; ξ̄: local stability; and parameter functions ηk(λ), wk(λ) (see

Tables 3 and 4).
Output: Approximate solution to minuQλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u . See

Lemma 4
Initialize: u1

0, . . . , u
M
0 = 0 . Initial iterates on each machine

for Each machine m = 1, . . . ,M in parallel do
for k = 0, . . . ,K − 1 do
γ(umk ; zmk , z

′m
k ) = REGULARIZED-QUADRATIC-GRADIENT-ACCESS(x, umk , λ)

umk+1 = umk − ηk(λ)γ(umk ; zmk , z
′m
k ) + 1{k>0}β(umk − umk−1) 2

Return: ũ = 1
M
∑K
k=1 wk(λ)

∑M
m=1

∑K
k=1 wk(λ)umk

We also note two possible cases for the oracle access: Case 1 (Different-Samples) in Algorithm 4
requires both a call to a stochastic first-order oracle (which draws z ∼ D) and a call to a stochastic
Hessian-vector product oracle (which draws a different z′ ∼ D); while Case 2 (Same-Sample) allows
both stochastic estimators to be observed for the same random sample z ∼ D. These cases differ by
only a small constant factor in the final convergence rate, and we base our practical method on this
single sample model. We refer the reader to Appendix G.4 for discussion of these settings.

Algorithm 4 REGULARIZED-QUADRATIC-GRADIENT-ACCESS(x, u, λ)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x, u ∈ Rd, λ ∈ R+.
Hyperparameters: ξ̄: local stability (see Table 4).
Output: γ(u; z, z′) s.t. Ez,z′ [γ(u; z, z′)] = ∇Qλ(u) and Ez,z′‖γ(u; z, z′)−∇Qλ(u)‖2 ≤ σ2 +

ρ2‖u‖2

Case 1: Different-Samples (z, z′ drawn independently for each stochastic oracle)
• Query the stochastic first-order oracle at x (as in Assumption 1(c)), so that the oracle

draws z ∼ D, and observe g(x; z)
• Query the stochastic Hessian-vector product oracle at x and u (as in Assumption 2(b)), so

that the oracle draws z′ ∼ D, and observe h(x, u; z′)

Case 2: Same-Sample (Same z′ = z used for both stochastic oracles)
• Query the stochastic first-order oracle at x (as in Assumption 1(c)), so that the oracle

draws z ∼ D, and observe g(x; z)
• Query the stochastic Hessian-vector product oracle at x and u (as in Assumption 2(b)) for
z′ = z, and observe h(x, u; z′)

γ(u; z, z′) := ξ̄h(x, u; z′) + λu+ g(x; z)

Return: γ(u; z, z′)

Finally, having analyzed Algorithms 1, 2, 3, and 4, we may put them all together to provide our main
theoretical result, whose proof can be found in Appendix E.

Theorem 1. Let F satisfy Assumption 2. Then, forK ≥ 175 andR ≥ Ω̃(1), and for hyperparameters
T , β, r̄, ξ̄, λ̄, N , C and parameter functions ηk(λ), wk(λ) as in Tables 3 and 4, the output of FEDSN
(Algorithm 1) with initial point x0 ∈ Rd, using Algorithms 2, 3, and 4 (for both Cases 1 and 2)

2We add heavy-ball/Polyak momentum in this step with momentum parameter β. Our theoretical results
do not require any momentum, and thus FEDSN is analyzed for β = 0. For our experiments we compare the
algorithms both with and without momentum, i.e., β = 0 or optimally tuned β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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satisfies

E[F (xT )]−F ∗ ≤ HB2

(
exp

(
− R

Õ(αB)

)
+ exp

(
− K

O(1)

))
+Õ

(
σB√
MK

+
HB2

KR
+

ρB2

√
KR

)
,

where Ω̃, Õ hide terms logarithmic in R, K, and αB.

4 Comparison with related methods and lower bounds

In this section, we compare our algorithm’s guarantees with those of FEDAC, and we include
additional comparisons in Appendix F. A difficulty in making this comparison is determining the
“typical” relative scale of the parameters H , σ, U , α, and ρ. Drawing inspiration from training
generalized linear models, we consider a natural scaling of the parameters that arises when the
objective has the form F (x) = Ez`(〈x, z〉), where |`′|, |`′′|, and |`′′′| are O(1), and where ‖z‖ ≤ D;
this holds, e.g., for logistic regression problems (see (2)). In this case, upper bounds on the derivatives
of F will generally scale with ‖z‖. So if we assume that ‖z‖ ≤ D for some D, then the derivatives of
F would scale as ‖∇F (x)‖ . D, ‖∇2F (x)‖op . D2, and ‖∇3F (x)‖op . D3, where ‖·‖op denotes
the operator norm. Thus, we will take H = D2, σ = D, U = D3, α = D, and ρ = D2. These
parameters could have different relationships, but we focus on this regime for simplicity.

In addition to working within this natural scaling, we consider the case where we have access to
sufficient machines (i.e., M & KR3

D2B2 ) and for K large enough. We explore various regimes w.r.t.
both the number of rounds of communication R and the “size" of the problem DB. Thus, ignoring
constants and terms logarithmic in R, K, and αB, our upper bound from Theorem 1 reduces to

EF (x̂)−F ∗ . D2B2 exp

(
− R

DB

)
+D2B2 exp(−K) +

D2B2

KR3/2
+
D2B2

KR
+
D2B2

√
KR

≈ D2B2

√
KR

.

Comparison with FEDAC

The previous best known first-order distributed method under third-order smoothness assumptions is
FEDAC (Yuan and Ma, 2020), an accelerated variant of Local SGD, which achieves a guarantee of

EF (x̂)− F ∗ ≤ Õ
(
HB2

KR2
+

σB√
MKR

+
H1/3σ2/3B4/3

M1/3K1/3R
+
U1/3σ2/3B5/3

K1/3R4/3

)
.

For the setting as outlined above, this bound reduces to

EF (x̂)− F ∗ . D2B2

KR2
+
D5/3B5/3

K1/3R4/3
.

In the case where DB is not too large (DB . K2R2), the dominant term for FEDAC is D5/3B5/3

K1/3R4/3 ,

and so we see that our algorithm improves upon FEDAC as long as R .
√
K

DB , whereas for R &
√
K

DB ,
FEDAC provides better guarantees than FEDSN.
Comparison with first-order lower bounds

Woodworth et al. (2021) provide lower bounds under other smoothness conditions, including quasi-
self-concordance, which are relevant to the current work. Roughly speaking, they show that under
Assumption 2(a), no first-order intermittent communication algorithm can guarantee suboptimality
less than (ignoring constant and logM factors)

EF (x̂)− F ∗ ≥ HB2

K2R2
+

σB√
MKR

+ min

{
HB2

R2
,
ασB2

√
KR2

,
σB√
KR

}
.

In the same parameter regime as above, the lower bound reduces to

EF (x̂)− F ∗ & D2B2

K2R2
+ min

{
D2B2

√
KR2

,
DB√
KR

}
.

Comparing this lower bound with our guarantee in Theorem 1, we see that, when DB = O(1) and
the number of rounds of communication is small (e.g., R = O(logK)), our approximate Newton
method can (ignoring logK factors) achieve an upper bound of EF (x̂)− F ∗ . 1/

√
K. Therefore,

in this important regime, FEDSN matches the lower bound under Assumption 2(a), albeit using a
stronger oracle. No prior work has matched this lower bound, and so we do not know whether such
an oracle is necessary in order to achieve it, or if perhaps the stronger oracle allows for breaking it.
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(a) (b)

Figure 1: Empirical comparison of FEDSN-LITE (Algorithm 6) to other methods (see Appendix G.1) on
the LIBSVM a9a (Chang and Lin, 2011; Dua and Graff, 2017) dataset for minimizing: (a) in-sample, and (b)
out-of-sample unregularized logistic regression loss using M ∈ {100, 200} machines. We vary the frequency
of communication (horizontal axis of each plot), while keeping the total number of steps on each machine
(theoretical parallel runtime) fixed at KR = 100. Thus, every point in the sub-plot is a separately tuned instance
of an algorithm, where each algorithm besides FEDAC solves an unregularized ERM problem and reports (a) the
best relative sub-optimality w.r.t. the optimal minimizer and (b) the best validation loss on a held-out dataset. All
results are averaged over multiple runs (see Appendix G.3 for full details).

5 Experiments

In Appendix G.1 we present a more practical variant of FEDSN called FEDSN-LITE (Algorithm 6),
which does away with the search over the regularization parameter as in Algorithm 2. We compare
FEDSN-LITE against the two variants of FEDAC (Algorithm 7, Yuan and Ma (2020)), Minibatch
SGD (Algorithm 9, Dekel et al. (2012)), and Local SGD (Algorithm 8, Zinkevich et al. (2010)). We
also study the effect of adding Polyak’s momentum, which we denote by β, to these algorithms (see
Appendix G.1). FEDAC is mainly presented and analyzed for strongly convex functions by Yuan
and Ma (2020). In fact, they assume the knowledge of the strong convexity constant to tune FEDAC,
which is typically hard to know unless the function is explicitly regularized. To handle general
convex functions, Yuan and Ma (2020) build some internal regularization into FEDAC (see Appendix
E.2 in their paper). However, their hyperparameter recommendations in this setting also depend on
unknowns such as the smoothness of the function and the variance of the stochastic gradients. This
poses a difficulty in comparing FEDAC to the other algorithms, which do not require the knowledge
of these unknowns.

To overcome this we take the more carefully optimized version of FEDAC for strongly convex
functions and tune its internal regularization and learning rate. This emulates the setting where the
objective is assumed to be just convex but FEDAC sees a strongly convex function instead. In our
experiments in Figure 6, we notice that FEDSN-LITE is either competitive with or outperforms the
other baselines. This is especially true for the sparse communication settings, which are of most
practical interest. A more comprehensive set of experiments can be found in Appendix G.2 along
with full implementational details in Appendix G.3.3

6 Conclusion

In this work, we have shown how to more efficiently optimize convex quasi-self-concordant objectives
by leveraging parallel methods for quadratic problems. Our method can, in some parameter regimes,
improve upon existing stochastic methods while maintaining a similar computational cost, and we
have further seen how our method may provide empirical improvements in the low communication
regime. It remains open whether the same guarantees we achieve here can also be achieved using
only independent stochastic gradients (a single stochastic gradient on each sample), or whether in the
distributed stochastic setting access to Hessian-vector products is strictly more powerful than access
to only independent stochastic gradients.

3Code is availabe at https://github.com/kishinmh/Inexact-Newton.
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A Algorithm Sketch

Here we provide a sketch of our main algorithm FEDERATED-STOCHASTIC-NEWTON (a.k.a.
FEDSN).

Algorithm(Sketch) FEDERATED-STOCHASTIC-NEWTON, a.k.a., FEDSN(x0)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x0 ∈ Rd.
Hyperparameters: T : main iterations; ξ̄: local stability parameter; and N : binary search iterations

(see Table 4).
Output: Approximate solution to minx F (x)

for t = 0, 1, . . . , T − 1 do
Λ = {λ1, . . . , λN} . Set of regularization parameters
while Λ 6= ∅ do
λ = Median(Λ)
Define: Qλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u . Regularized quadratic subproblem

Run SGD on Qλ(u) independently on each machine (starting with u0 = 0) for K steps,
then communicate the final iterate umK from each machine m, and average them to obtain
ũ = 1

M

∑M
m=1 u

m
K .

if Sufficiently good λ is found then
∆x̃t = ũ
break

else
Reduce the size of Λ by half.

Update: xt+1 = xt + ∆x̃t
Return: xT

B Analysis of Algorithm 1

We will use the following notation in our analysis:

Qσt (∆x) =
σ

2
∆x>∇2F (xt)∆x+∇F (xt)

>∆x. (3)

Lemma 5 (Lemma 5 (Karimireddy et al., 2018)). Let F be δ(r)-locally stable for a given δ : R+ 7→
R+, let ‖x∗‖ ≤ B, let r > 0, let γ = r/B and x∗γ = (1− γ)xt + γx∗, and let xt+1 = xt + ∆x̃t for
‖∆x̃t‖ ≤ r. Then

F (xt+1)− F (xt) ≤ Qδ(r)t (∆x̃t)

F (x∗γ)− F (xt) ≥ Q1/δ(r)
t (x∗γ − xt).

Lemma 6 (Lemma 6 (Karimireddy et al., 2018)). For any convex domain Q and constants a · b ≥ 1,

min
∆x∈Q

Qa(∆x) ≤ 1

ab
min

∆x∈Q
Q1/b(∆x).

We will now prove Lemma 2 from Section 3.

Lemma 2. Let F satisfy Assumption 2 and be δ(r)-locally stable for δ : R+ 7→ R+, let
x0 ∈ Rd be as input to FEDSN (Algorithm 1), let c > 0, let θ ∈ [0, 1), and define Qt(∆x) :=
δ(5c)

2 ∆x>∇2F (xt)∆x + ∇F (xt)
>∆x, where xt is the tth iterate of Algorithm 1. Furthermore,

suppose we are given that in each iteration of Algorithm 1, ‖∆x̃t‖ ≤ 5c and

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 c
Qt(∆x) ≤ θ

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 c
Qt(∆x)

)
+ ε,
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for ε > 0. Then for each T ≥ 0, Algorithm 1 guarantees

EF (xT )− F ∗ ≤ E[F (x0)− F ∗] exp

(
− Tc(1− θ)

2Bδ( 1
2c)δ(5c)

)
+

2Bδ( 1
2c)d(5c)ε

c(1− θ)
.

Proof. To begin, we are given by the assumptions of the theorem statement that Algorithm 1 chooses
the update ∆x̃t such that ‖∆x̃t‖ ≤ 5c and

EQδ(5c)t (∆x̃t)− min
‖∆x‖≤ 1

2 c
Q
δ(5c)
t (∆x) ≤ ε+ θ

(
Q
δ(5c)
t (0)− min

‖∆x‖≤ 1
2 c
Q
δ(5c)
t (∆x)

)
. (4)

Therefore,

E[F (xt+1)− F (xt)] ≤ EQδ(5c)t (∆x̃t) (5)

≤ ε+ (1− θ) min
∆x : ‖∆x‖≤ 1

2 c
Q
δ(5c)
t (∆x) (6)

≤ ε+
1− θ

δ(5c)δ( 1
2c)

min
∆x : ‖∆x‖≤ 1

2 c
Q

1/δ( 1
2 c)

t (∆x) (7)

≤ ε+
1− θ

δ(5c)δ( 1
2c)

Q
1/δ( 1

2 c)
t

((
1− c

2B

)
xt +

c

2B
x∗ − xt

)
(8)

≤ ε+
1− θ

δ(5c)δ( 1
2c)

[
F
((

1− c

2B

)
xt +

c

2B
x∗
)
− F (xt)

]
(9)

≤ ε+
1− θ

δ(5c)δ( 1
2c)

[(
1− c

2B

)
F (xt) +

c

2B
F ∗ − F (xt)

]
(10)

= ε− c(1− θ)
2Bδ(5c)δ( 1

2c)
[F (xt)− F ∗]. (11)

Here we used Lemma 5 for the first inequality, Lemma 6 for the third, Lemma 5 again for the fifth,
and the convexity of F for the sixth.

Rearranging, and unravelling the recursion, we conclude that

E[F (xT )− F ∗] ≤
(

1− c(1− θ)
2Bδ(5c)δ( 1

2c)

)T
E[F (x0)− F ∗] + ε

T∑
t=0

(
1− c(1− θ)

2Bδ(5c)δ( 1
2c)

)t
(12)

≤ E[F (x0)− F ∗] exp

(
− Tc(1− θ)

2Bδ(5c)δ( 1
2c)

)
+

2Bδ(5c)δ( 1
2c)ε

c(1− θ)
. (13)

This completes the proof.

C Proof of Lemma 3

Before we analyze Algorithm 2, we recall some key definitions. For a given x ∈ Rd, we let

Q(u) =
ξ̄

2
u>∇2F (x)u+∇F (x)>u, (14)

and for a regularization penalty λ, we also define

Qλ(u) =
1

2
u>(ξ̄∇2F (x) + λI)u+∇F (x)>u. (15)

We use u∗λ to denote the (unique) minimizer of Qλ(u), and we use r∗(λ) = ‖u∗λ‖ to denote the norm
of the minimizer. For 0 ≤ r ≤ r∗(0), we also use λr to denote the value of λ such that r∗(λr) = r
(Lemma 7 below shows that λr is unique).
Lemma 7 (Lemmas 35 and 36 (Carmon et al., 2020)). For any r, there exists a unique λr ≥ 0 such
that

u∗r = arg min
u:‖u‖≤r

Q(u) = arg min
u∈Rd

Qλr (u) = −(∇2F (x) + λrI)
−1∇F (x).

Also, λr is decreasing in r, and if λr 6= 0 then ‖u∗r‖ = r.
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Lemma 8. For r ≤ r∗(0), λr ∈
[
0, ‖b‖r

]
.

Proof. By Lemma 7, λ ≥ 0. If λ > 0, then since∇2F (x) � 0 ( by convexity of F ), we have that

r = ‖u∗λ‖ = ‖(∇2F (x) + λI)−1∇F (x)‖ ≤ ‖∇F (x)‖
λ

. (16)

Rearranging completes the proof.

Lemma 9. For any r ≥ 0 let λ ≥ γ ≥ 0 such that r∗(λ) = r and r∗(γ) = 2r. Then

E
[
Qγ(u)−Qγ(u∗γ)

]
≤ ε =⇒ E[Q(u)−Q(u∗λ)] ≤ ε.

Furthermore, for any y and γ,

E
[
Qγ(u)−Qγ(u∗γ)

]
≤ ε =⇒ E[Q(u)−Q(y)] ≤ ε+

γ‖y‖2

2
.

Proof. For any u,

E[Qγ(u)−Q(u∗λ)] = E
[
Qγ(u)−Qγ(u∗γ)

]
+Qγ(u∗γ)−Qγ(u∗λ) +

γ

2
‖u∗λ‖

2 (17)

≤ ε+Qγ(u∗γ)−Qγ(u∗λ) +
γ

2
‖u∗λ‖

2
. (18)

By the γ-strong convexity of Qγ , the fact that either γ = 0 or ‖u∗λ‖ = r and ‖u∗γ‖ = 2r, and the
reverse triangle inequality,

Qγ(u∗γ)−Qγ(u∗λ) +
γ

2
‖u∗λ‖

2 ≤ −γ
2

∥∥u∗γ − u∗λ∥∥2
+
γr2

2
≤ −γ(2r − r)2

2
+
γr2

2
= 0. (19)

Combining (19) with (18) completes the first part of the proof. For the second part, we observe that

E
[
Q(u) +

γ

2
‖u‖2 −Q(y)

]
= E

[
Qγ(u)−Qγ(u∗γ)

]
+Qγ(u∗γ)−Qγ(y) +

γ

2
‖y‖2 ≤ ε+

γ‖y‖2

2
.

(20)
Above, we used that Qλ(u∗λ) = minuQλ(u) ≤ Qλ(y).

Lemma 10. Let λ ≥ γ ≥ 0. Then ,
λ

γ
≥
‖u∗γ‖
‖u∗λ‖

.

Proof. By the definition of u∗γ = arg minuQγ(u) and u∗λ = arg minuQλ(u) and the γ- and λ-strong
convexity of Qγ and Qλ, respectively,

λ− γ
2

(∥∥u∗γ∥∥2 − ‖u∗λ‖
2
)

= Qγ(u∗λ)−Qγ(u∗γ) +Qλ(u∗γ)−Qλ(u∗λ) ≥ λ+ γ

2

∥∥u∗λ − u∗γ∥∥2
. (21)

Therefore, by rearranging and applying the reverse triangle inequality

λ− γ
λ+ γ

≥
∥∥u∗γ − u∗λ∥∥2∥∥u∗γ∥∥2 − ‖u∗λ‖

2
≥
(∥∥u∗γ∥∥− ‖u∗λ‖)2∥∥u∗γ∥∥2 − ‖u∗λ‖

2
=

∥∥u∗γ∥∥− ‖u∗λ‖∥∥u∗γ∥∥+ ‖u∗λ‖
. (22)

By Lemma 7, since λ ≥ γ,
∥∥u∗γ∥∥ ≥ ‖u∗λ‖. Therefore, rearranging this inequality completes the

proof.

Lemma 11. Let X ∼ Binomial(C, p) with p ≥ 3
4 . Then,

P
(
X >

C

2

)
≥ 1− exp

(
−C

8

)
.

Proof. This is a simple application of Hoeffding’s inequality:

P
(

1

C
X ≤ 1

2
≤ p− 1

4

)
≤ exp

(
−C

8

)
. (23)
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Lemma 12. Let x ∈ Rd be as input to Algorithm 2, let Qλ(i)(u) = 1
2u
>(δ(5r̄)∇2F (x) + λ(i)

)
u+

∇F (x)>u, let Q∗
λ(i) := minuQλ(i)(u), and for each i, let ũ(i,1), . . . , ũ(i,C) be computed as in

Algorithm 2 such that

EQλ(i)(ũ(i,c))−Q∗λ(i) ≤ ε(λ(i)) ≤
λ(i)
(
r∗(λ(i))2 + r̄2

)
800

.

Then,

r∗(λ(i)) ∈ [2r̄, 3r̄] =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
>
C

2

)
≥ 1− exp

(
−C

8

)

r∗(λ(i)) 6∈ [r̄, 4r̄] =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
≤ C

2

)
≤ exp

(
−C

8

)

r∗(λ(i)) < 2r̄ =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ≤ 5

2
r̄

}
>
C

2

)
≥ 1− exp

(
−C

8

)

r∗(λ(i)) > 3r̄ =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ > 5

2
r̄

}
>
C

2

)
≥ 1− exp

(
−C

8

)
.

Proof. By the λ(i)-strong convexity of Qλ(i) , for each c,

E
[
λ(i)

2
‖ũ(i,c) − u∗λ(i)‖2

]
≤ EQλ(i)(ũ(i,c))−Q∗λ(i) ≤ ε(λ(i)). (24)

Therefore, by Markov’s inequality, for each c

P
(
‖ũ(i,c) − u∗λ(i)‖2 ≥

1

100
r∗(λ(i))2 +

1

100
r̄2

)
≤ 200ε(λ(i))

λ(i)
(
r∗(λ(i))2 + r̄2

) ≤ 1

4
. (25)

Furthermore, by the reverse triangle inequality,∣∣∣‖ũ(i,c)‖ − r∗(λ(i))
∣∣∣ ≤ ‖ũ(i,c) − u∗λ(i)‖ <

√
1

100
r∗(λ(i))2 +

1

100
r̄2 ≤ r∗(λ(i)) + r̄

10
. (26)

Therefore, for each c

P
(

9

10
r∗(λ(i))− 1

10
r̄ ≤ ‖ũ(i,c)‖ ≤ 11

10
r∗(λ(i)) +

1

10
r̄

)
≥ 3

4
. (27)

We now consider several cases:

If r∗(λ(i)) ∈ [2r̄, 3r̄], then

P
(
‖ũ(i,c)‖ ∈

[
3

2
r̄,

7

2
r̄

])
(28)

≥ P
(

17

10
r̄ ≤ 9

10
r∗(λ(i))− 1

10
r̄ ≤ ‖ũ(i,c)‖ ≤ 11

10
r∗(λ(i)) +

1

10
r̄ ≤ 34

10
r̄

)
≥ 3

4
. (29)

Therefore, by Lemma 11

r∗(λ(i)) ∈ [2r̄, 3r̄] =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
>
C

2

)
≥ 1− exp

(
−C

8

)
. (30)

If r∗(λ(i)) > 4r̄, then

P
(
‖ũ(i,c)‖ 6∈

[
3

2
r̄,

7

2
r̄

])
≥ P

(
7

2
r̄ ≤ 9

10
r∗(λ(i))− 1

10
r̄ ≤ ‖ũ(i,c)‖

)
≥ 3

4
. (31)
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Similarly, if r∗(λ(i)) < r̄, then

P
(
‖ũ(i,c)‖ 6∈

[
3

2
r̄,

7

2
r̄

])
≥ P

(
‖ũ(i,c)‖ ≤ 11

10
r∗(λ(i)) +

1

10
r̄ ≤ 12

10
r̄

)
≥ 3

4
. (32)

Therefore, by Lemma 11,

r∗(λ(i)) 6∈ [r̄, 4r̄] =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
≤ C

2

)
≤ exp

(
−C

8

)
. (33)

If r∗(λ(i)) < 2r̄, then

P
(
‖ũ(i,c)‖ ≤ 5

2
r̄

)
≥ P

(
‖ũ(i,c)‖ ≤ 11

10
r∗(λ(i)) +

1

10
r̄ ≤ 23

10
r̄

)
≥ 3

4
. (34)

Therefore, by Lemma 11

r∗(λ(i)) < 2r̄ =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ≤ 5

2
r̄

}
>
C

2

)
≥ 1− exp

(
−C

8

)
. (35)

Finally, if r∗(λ(i)) > 3r̄, then

P
(
‖ũ(i,c)‖ > 5

2
r̄

)
≥ P

(
26

10
r̄ ≤ 9

10
r∗(λ(i))− 1

10
r̄ ≤ ‖ũ(i,c)‖

)
≥ 3

4
. (36)

Therefore, by Lemma 11

r∗(λ(i)) > 3r̄ =⇒ P

(
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ > 5

2
r̄

}
>
C

2

)
≥ 1− exp

(
−C

8

)
. (37)

This completes the proof.

Lemma 13. Let N ≥ 1 + 5
2 log ‖∇F (x)‖

3r̄λ̄
. Then, either λ̄ ≥ λ3r̄ or ∃λ ∈ Λ1 with r∗(λ) ∈ [2r̄, 3r̄].

Proof. In the case that λ̄ ≤ λ2r̄, by Lemma 8, with N ≥ 1 + 5
2 log ‖∇F (x)‖

3r̄λ̄
,

λ̄ ≤ λ3r̄ ≤
‖∇F (x)‖

3r̄
≤ λ̄cN−1. (38)

So, λ3r̄ is between the largest and smallest elements in Λ1. It follows that for some 1 ≤ n ≤ N ,

λ̄cn−1 ≤ λ3r̄ ≤ λ̄cn. (39)

Therefore, by Lemma 10,

3

2
=

λ̄
(

3
2

)n
λ̄
(

3
2

)n−1 ≥
λ̄
(

3
2

)n
λ3r̄

≥ 3r̄

r∗(λ̄
(

3
2

)n
)

=⇒ r∗(λ̄

(
3

2

)n
) ≥ 2r̄ (40)

Finally, by Lemma 7, r∗(λ̄
(

3
2

)n
) ≤ 3r̄, so r∗(λ̄

(
3
2

)n
) ∈ [2r̄, 3r̄] as claimed.

Lemma 14. Let λ satisfy r∗(λ) ≤ 4r̄ and let ũ be chosen so that

EQλ(ũ)−Q∗λ ≤ ε(λ) :=
λ(r∗(λ)2 + r̄2)

800
.

Then if r∗(λ) ≥ r̄,

EQ
(

min

{
1,

5r̄

‖ũ‖

}
ũ

)
− min
u:‖u‖≤ 1

2 r̄
≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ).

Otherwise,

EQ
(

min

{
1,

5r̄

‖ũ‖

}
ũ

)
− min
u:‖u‖≤ 1

2 r̄
≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ) +

λr̄2

8
.
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Proof. First,

EQ
(

min

{
1,

5r̄

‖ũ‖

}
ũ

)
− min
u:‖u‖≤ 1

2 r̄
Q(u)

= EQ
((

1−min

{
1,

5r̄

‖ũ‖

})
0 + min

{
1,

5r̄

‖ũ‖

}
ũ

)
− min
u:‖u‖≤ 1

2 r̄
Q(u) (41)

≤ E

[(
1−min

{
1,

5r̄

‖ũ‖

})(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
(42)

+ min

{
1,

5r̄

‖ũ‖

}(
Q(ũ)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)]
(43)

≤ E
[
‖ũ‖

‖ũ‖+ 5r̄

](
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ EQ(ũ)− min

u:‖u‖≤ 1
2 r̄
Q(u) (44)

≤ E‖ũ‖
E‖ũ‖+ 5r̄

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ EQ(ũ)− min

u:‖u‖≤ 1
2 r̄
Q(u). (45)

For the first inequality we used the convexity of Q, and for the final inequality we used Jensen’s
inequality on the concave function x 7→ x

x+5r̄ . Next, we bound

E‖ũ‖ ≤ r∗(λ) + E‖ũ− u∗λ‖ (46)

≤ 4r̄ +
√

E‖ũ− u∗λ‖2 (47)

≤ 4r̄ +

√
2

λ
EQλ(ũ)−Q∗λ (48)

≤ 4r̄ +

√
2ε(λ)

λ
(49)

≤ 4r̄ +

√
r∗(λ)2 + r̄2

400
(50)

≤ 4r̄ +

√
17r̄2

400
(51)

< 5r̄. (52)

Therefore,

EQ
(

min

{
1,

5r̄

‖ũ‖

}
ũ

)
− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+EQ(ũ)− min

u:‖u‖≤ 1
2 r̄
Q(u).

(53)
If r∗(λ) ≥ r̄, then by the first part of Lemma 9

EQ(ũ)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ EQ(ũ)− min

u:‖u‖≤ 1
2 r
∗(λ)

Q(u) ≤ ε(λ). (54)

Otherwise, by the second part of Lemma 9

EQ(ũ)− min
u:‖u‖≤ 1

2 r̄
Q(u) = EQ(ũ)−Q(u∗λ 1

2
r̄
) ≤ ε(λ) +

λ‖u∗λ 1
2
r̄
‖2

2
= ε(λ) +

λr̄2

8
. (55)

We are now ready to prove Lemma 3.
Lemma 3. Let F satisfy Assumption 2, let x be as input to CONSTRAINED-QUADRATIC-SOLVER
(Algorithm 2), let ξ̄ be as in Table 4, define

Q(u) :=
ξ̄

2
u>∇2F (x)u+∇F (x)>u, Qλ(u) :=

1

2
u>(ξ̄∇2F (x) + λI)u+∇F (x)>u,

19



u∗λ := arg min
u
Qλ(u), r∗(λ) := ‖u∗λ‖,

and let λr denote, for any r > 0, the value such that r∗(λr) = r. Let û be the output of Algorithm 2
for hyperparameters r̄, ξ̄, λ̄, N and C as in Table 4, and suppose the output ũλ of REGULARIZED-
QUADRATIC-SOLVER(x, λ) satisfies for all λ ≥ λ̄ that

EQλ(ũλ)−min
u
Qλ(u) ≤ ε(λ) :=

λ(r∗(λ)2 + r̄2)

800
.

Then ‖û‖ ≤ 5r̄ and

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 3

4

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

4
.

Proof. First, we note that |Λ1| = N , and in each iteration either the algorithm terminates or Λi+1

is chosen such that |Λi+1| ≤ 1
2 |Λi|. Therefore, the algorithm terminates after at most dlog2Ne

iterations.

By Lemma 13, either λ̄ ≥ λ3r̄ or there exists λ ∈ Λ1 for some λ such that r∗(λ) ∈ [2r̄, 3r̄]. If such a
λ exists, we denote this (not necessarily unique) value λ∗.

By Lemma 12 and the union bound, the following holds for all iteration i = 1, 2, . . . with probability
at least 1− 2dlog2Ne exp

(
−C8

)
:

r∗(λ(i)) ∈ [2r̄, 3r̄] =⇒
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
>
C

2
(56)

r∗(λ(i)) 6∈ [r̄, 4r̄] =⇒
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
≤ C

2
(57)

r∗(λ(i)) < 2r̄ =⇒
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ≤ 5

2
r̄

}
>
C

2
(58)

r∗(λ(i)) > 3r̄ =⇒
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ > 5

2
r̄

}
>
C

2
. (59)

For most of the rest of the proof, we condition on this event, which we denote E.

Under E, if λ(i) = λ∗, then the algorithm will terminate on Line 2, and even if λ(i) 6= λ∗, if the
algorithm terminates on Line 2, then λ(i) ∈ [r̄, 4r̄]. In either case, by the first part of Lemma 14

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ(i)). (60)

Finally, since r∗(λ(i)) ≤ 4r̄, λ(i) ≥ λ4r̄.

If the algorithm instead updates

Λi+1 = Λi \
{
λ ∈ Λi : λ ≥ λ(i)

}
(61)

as on Line 2, then conditioned on E,

C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
≤ C

2
<

C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ≤ 5

2
r̄

}
(62)

implies λ(i) < 2r̄. By Lemma 7, since r∗(λ∗) ≥ 2r̄ > r∗(λ(i)), λ∗ < λ(i) and therefore λ∗ ∈ Λi+1.

If the algorithm instead updates

Λi+1 = Λi \
{
λ ∈ Λi : λ ≤ λ(i)

}
(63)
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as on Line 2, then conditioned on E
C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ ∈ [3

2
r̄,

7

2
r̄

]}
≤ C

2
<

C∑
c=1

1

{∥∥∥ũ(i,c)
∥∥∥ > 5

2
r̄

}
(64)

implies λ(i) > 3r̄. By Lemma 7, since r∗(λ∗) ≤ 3r̄ < r∗(λ(i)), we have λ∗ > λ(i), and therefore
λ∗ ∈ Λi+1.

Finally, E implies that the algorithm will never reach Line 2.

Therefore, conditioned on E, if λ∗ ∈ Λ1, then the algorithm will never remove λ∗ from the set of λ’s
under consideration, and it will eventually terminate on Line 2 by returning a point such that

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ(i)). (65)

Otherwise, if such a λ∗ does not exist and the algorithm does not terminate on Line 2, then it
terminates on Line 2 using λ̄ ≥ λ3r̄ ≥ λ4r̄, which implies r∗(λ̄) ≤ 4r̄. Therefore, by the second part
of Lemma 14,

EQ(ũ)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ̄) +

λ̄r̄2

8
. (66)

Therefore since ε(λ) is decreasing in λ, conditioned on E the algorithm’s output satisfies

EQ(ũ)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 1

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

8
. (67)

We now consider the case that E does not hold. In this case, the algorithm’s output is guaranteed to
have norm at most 5r̄. Therefore,

Q(û) =
δ(5r̄)

2
û>∇2F (x)û+∇F (x)>û ≤ 25δ(5r̄)‖∇2F (x)‖2r̄2

2
+ 5r̄‖∇F (x)‖ (68)

= Q(0) +
25δ(5r̄)‖∇2F (x)‖2r̄2

2
+ 5r̄‖∇F (x)‖. (69)

Therefore, conditioned on ¬E,

Q(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u) +

25δ(5r̄)‖∇2F (x)‖2r̄2

2
+ 5r̄‖∇F (x)‖. (70)

We conclude by noting that

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u)

= E[Q(û) |E]P(E) + E[Q(û) | ¬E]P(¬E)− min
u:‖u‖≤ 1

2 r̄
Q(u) (71)

≤ 1 + P(¬E)

2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

8
(72)

+

(
25δ(5r̄)‖∇2F (x)‖2r̄2

2
+ 5r̄‖∇F (x)‖

)
P(¬E) (73)

≤
1 + 2dlog2Ne exp

(
−C8

)
2

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

8

+

(
25δ(5r̄)‖∇2F (x)‖2r̄2

2
+ 5r̄‖∇F (x)‖

)
· 2dlog2Ne exp

(
−C

8

)
(74)

Using the fact that

C ≥ 8 log

(
dlog2Ne

(
4 +

8δ(5r̄)‖∇2F (x)‖2
λ̄

+
80‖∇F (x)‖

λ̄r̄

))
(75)
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we conclude

EQ(û)− min
u:‖u‖≤ 1

2 r̄
Q(u) ≤ 3

4

(
Q(0)− min

u:‖u‖≤ 1
2 r̄
Q(u)

)
+ ε(λ4r̄) +

λ̄r̄2

4
. (76)

This completes the proof.

D Proof of Lemma 4

Lemma 4. Let F satisfy Assumption 2, let x ∈ Rd, λ ∈ R+ be as input to REGULARIZED-
QUADRATIC-SOLVER (Algorithm 3), let Qλ(u) = 1

2u
>(ξ̄∇2F (x) + λI)u+∇F (x)>u, let Q∗λ :=

minuQλ(u), let u∗ := arg minuQλ(u), and let stochastic first-order and stochastic Hessian-
vector product oracles for F , as defined in Assumptions 1 and 2, respectively, be available for
each call to REGULARIZED-QUADRATIC-GRADIENT-ACCESS (Algorithm 4), for either Case 1
(Different-Samples) or Case 2 (Same-Sample). Let û, as output by Algorithm 3, be a weighted
average of the iterates of M independent runs of SGD with stepsizes η0(λ), . . . , ηK−1(λ), i.e.,
û = 1

M
∑K−1
k=0 wk

∑M
m=1

∑K−1
k=0 wku

m
k . Then, for both Cases 1 and 2,

EQλ(û)−Q∗λ ≤



2 max
{
ξ̄H + λ, ρ

2

λ

}
‖u∗‖2 min

{
1
K , exp

(
−K+1

4 min
{

λ
ξ̄H+λ

, λ
2

ρ2

})}
+ 2(σ2+ρ2‖u∗‖2)

λMK if K ≤ 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
96λ‖u∗‖2 exp

(
−K8 min

{
λ

ξ̄H+λ
, λ

2

ρ2

})
+ 96(σ2+ρ2‖u∗‖2)

λMK

if K > 2
λ max

{
ξ̄H + λ, ρ

2

λ

}
.

Proof. We will use ūk = 1
M

∑M
m=1 u

m
k to denote the average of each independent run of SGD’s

kth iterate. This quantity is never explicitly computed until the end, but we can nevertheless use it
for our analysis. Likewise, we will use γ̄k = 1

M

∑M
m=1 γ(umk ; zmk , z

′m
k ) to denote the average of

the stochastic gradients of Qλ(u) computed at time k, whereby we recall that γ(umk ; zmk , z
′m
k ) :=

ξ̄h(x, umk ; z
′m
k ) + λumk + g(x; zmk ) as defined in Algorithm 3, along with the requisite oracle access

as described in Algorithm 4.

We also have that, by Assumptions 1(c) and 2(b), for Case 1:

Ezmk ,z′mk [γ(umk ; zmk , z
′m
k )] = ∇Qλ(u) and Ezmk ,z′mk

∥∥∥γ(umk ; zmk , z
′m
k )−∇Qλ(umk )

∥∥∥2

≤ σ2+ρ2‖umk ‖
2
,

while for Case 2 we have:

Ezmk [γ(umk ; zmk , z
m
k )] = ∇Qλ(u) and Ezmk ‖γ(umk ; zmk , z

m
k )−∇Qλ(umk )‖2 ≤ 2σ2 + 2ρ2‖umk ‖

2
,

where we used the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for any a, b ∈ Rd, and so in either case the
variance term is bounded by 2σ2 + 2ρ2‖umk ‖

2.

A key feature of these stochastic gradients of Qλ(u), which we will use frequently, is that by the
linearity of∇Qλ(u) = (ξ̄∇2F (x) + λI)u+∇F (x),

Eγ̄k =
1

M

M∑
m=1

Eγ(umk ; zmk , z
′m
k ) =

1

M

M∑
m=1

E∇Qλ(umk ) = ∇Qλ(Eūk). (77)
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We begin by expanding,

E‖ūk+1 − u∗‖2

= E‖ūk − u∗‖2 + η2
kE‖γ̄k‖

2 − 2ηkE 〈∇Qλ(ūk), ūk − u∗〉 (78)

= E‖ūk − u∗‖2 + η2
kE‖∇Qλ(ūk)‖2 − 2ηk

[
Qλ(ūk)−Q∗λ +

λ

2
‖ūk − u∗‖2

]
(79)

+ η2
kE‖γ̄k −∇Qλ(ūk)‖2 (80)

≤ (1− ηkλ)E‖ūk − u∗‖2 − 2ηk(1− (ξ̄H + λ)ηk)E[Qλ(ūk)−Q∗λ] (81)

+ η2
k

(
2σ2

M
+

2ρ2

M2

M∑
m=1

E‖umk ‖
2

)
. (82)

Since ηk ≤ 1
2(ξ̄H+λ)

for all k, (1− (ξ̄H + λ)ηk) ≥ 1
2 so we can rearrange

E[Qλ(ūk)−Q∗λ] ≤
(

1

ηk
− λ
)
E‖ūk − u∗‖2 −

1

ηk
E‖ūk+1 − u∗‖2 (83)

+ ηk

(
2σ2

M
+

2ρ2

M2

M∑
m=1

E‖umk ‖
2

)
. (84)

From here, we note that since u1
k, . . . , u

M
k are i.i.d.,

1

M2

M∑
m=1

E‖umk ‖
2

=
1

M2

M∑
m=1

[
E‖umk − Eumk ‖

2
+ ‖Eumk ‖

2
]

(85)

= E‖ūmk − Eūmk ‖
2

+
1

M
‖Eūk‖2 (86)

≤ E‖ūk − u∗‖2 +
1

M
‖Eūk‖2 (87)

≤ E‖ūk − u∗‖2 +
2

M
‖Eūk − u∗‖2 +

2

M
‖u∗‖2. (88)

Furthermore, for each k, since ηk−1 ≤ 1
ξ̄H+λ

‖Eūk − u∗‖2 ≤ ‖Eūk−1 − u∗‖2 + η2
k−1‖∇Qλ(Eūk−1)‖2 − 2ηk−1 〈∇Qλ(Eūk−1), ūk−1 − u∗〉

(89)

≤ ‖Eūk−1 − u∗‖2 + 2(ξ̄H + λ)η2
k−1[Qλ(Eūk−1)−Q∗λ] (90)

− 2ηk−1[Qλ(Eūk−1)−Q∗λ] (91)

≤ ‖Eūk−1 − u∗‖2 ≤ ‖Eū0 − u∗‖2 = ‖u∗‖2. (92)

Therefore, returning to (84),

E[Qλ(ūk)−Q∗λ] ≤
(

1

ηk
− λ
)
E‖ūk − u∗‖2 −

1

ηk
E‖ūk+1 − u∗‖2 +

2ηkσ
2

M
(93)

+ 2ηkρ
2

(
E‖ūk − u∗‖2 +

4

M
‖u∗‖2

)
(94)

=

(
1

ηk
− λ+ ηkρ

2

)
E‖ūk − u∗‖2 −

1

ηk
E‖ūk+1 − u∗‖2 (95)

+
2ηk

(
σ2 + ρ2‖u∗‖2

)
M

. (96)

We first consider the case K ≤
2 max

{
ξ̄H+λ, ρ

2

λ

}
λ , so that

ηk = η = min

{
1

2(ξ̄H + λ)
,
λ

2ρ2

}
and wk = (1− λη + η2ρ2)−k−1.
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Then,

EQλ

(
1∑K

k=0 wk

K∑
k=0

wkūk

)
−Q∗λ

≤ 1

η
∑K
k=0 wk

K∑
k=0

[
wk
(
1− ηλ+ η2ρ2

)
E‖ūk − u∗‖2 − wkE‖ūk+1 − u∗‖2

]
(97)

+
2η
(
σ2 + ρ2‖u∗‖2

)
M

(98)

=
1

η
∑K
k=0 wk

K∑
k=0

[(
1− ηλ+ η2ρ2

)−kE‖ūk − u∗‖2 − (1− ηλ+ η2ρ2
)−(k+1)E‖ūk+1 − u∗‖2

]
(99)

+
2η
(
σ2 + ρ2‖u∗‖2

)
M

(100)

≤ E‖ū0 − u∗‖2

η
∑K
k=0(1− ηλ+ η2ρ2)

−(k+1)
+

2η
(
σ2 + ρ2‖u∗‖2

)
M

(101)

≤ ‖u∗‖2

ηmax
{
K, (1− ηλ+ η2ρ2)

−(K+1)
} +

2η
(
σ2 + ρ2‖u∗‖2

)
M

(102)

≤ 2 max

{
ξ̄H + λ,

ρ2

λ

}
‖u∗‖2 min

{
1

K
, exp

(
−K + 1

4
min

{
λ

ξ̄H + λ
,
λ2

ρ2

})K+1
}

+
2(σ2 + ρ2‖u∗‖2)

λMK
. (103)

For the last line, we used that K ≤
2 max

{
ξ̄H+λ, ρ

2

λ

}
λ = 1

ηλ .

In the second case

(
K >

2 max
{
ξ̄H+λ, ρ

2

λ

}
λ

)
, we consider the first K/2 iterations where

ηk = η = min

{
1

2(ξ̄H + λ)
,
λ

2ρ2

}
:
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EQλ(ūK/2−1)−Q∗λ ≤
(

1

η
− λ+ ηρ2

)
E
∥∥ūK/2−1 − u∗

∥∥2 − 1

η
E
∥∥ūK/2 − u∗∥∥2

(104)

+
2η
(
σ2 + ρ2‖u∗‖2

)
M

(105)

=⇒ E
∥∥ūK/2 − u∗∥∥2 ≤

(
1− ηλ+ η2ρ2

)
E
∥∥ūK/2−1 − u∗

∥∥2
+

2η2
(
σ2 + ρ2‖u∗‖2

)
M

(106)

=
(
1− ηλ+ η2ρ2

)K/2E‖ū0 − u∗‖2 (107)

+
2η2
(
σ2 + ρ2‖u∗‖2

)
M

K/2−1∑
k=0

(
1− ηλ+ η2ρ2

)k
(108)

= ‖u∗‖2
(
1− ηλ+ η2ρ2

)K/2
(109)

+
2η2
(
σ2 + ρ2‖u∗‖2

)
M

1−
(
1− ηλ+ η2ρ2

)K/2
ηλ− η2ρ2

(110)

≤ ‖u∗‖2
(
1− ηλ+ η2ρ2

)K/2
+

2η
(
σ2 + ρ2‖u∗‖2

)
M(λ− ηρ2)

(111)

≤ ‖u∗‖2
(

1− 1

2
ηλ

)K/2
+

4η
(
σ2 + ρ2‖u∗‖2

)
λM

. (112)

This bounds the distance of the (K/2)th iterate to the optimum, from which we can upper bound the
suboptimality of the averaged iterate. Let W =

∑K
k=0 wk =

∑K
k=K/2 wk. Then by the convexity of

Qλ(u),

EQλ

(
1

W

K∑
k=0

wkūk

)
−Q∗λ

≤ 1

W

K∑
k=0

wk( 1

ηk
− λ+ ηkρ

2

)
E‖ūk − u∗‖2 −

wk
ηk

E‖ūk+1 − u∗‖2 +
2wkηk

(
σ2 + ρ2‖u∗‖2

)
M


(113)

≤
wK/2

(
1

ηK/2
− λ+ ηK/2ρ

2
)
E
∥∥ūK/2 − u∗∥∥2

W

+
1

W

K∑
k=K/2+1

(wk
ηk
− wkλ+ wkηkρ

2 − wk−1

ηk−1

)
E‖ūk − u∗‖2 +

2wkηk

(
σ2 + ρ2‖u∗‖2

)
M

 .
(114)
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With our setting of wk = (a+k−K/2−1) and ηk = 4
λ(a+k−K/2) with a = 8

λ max
{
ρ2

λ , ξ̄H + λ
}

,
we have for k > K/2,

ηk−1

ηk
− ηk−1λ+ ηk−1ηkρ

2 =
a+ k −K/2

a+ k −K/2− 1
− 4

a+ k −K/2− 1
(115)

+
16ρ2

λ2(a+ k −K/2)(a+ k −K/2− 1)
(116)

=
a+ k −K/2

a+ k −K/2− 1
(117)

+
1

a+ k −K/2− 1

(
2− 4 +

16ρ2

λ2(a+ k −K/2)

)
(118)

≤ wk−1

wk
+

1

a+ k −K/2− 1

(
−2 +

16ρ2

λ2a

)
(119)

≤ wk−1

wk
. (120)

Therefore, we have

EQλ(x̂)−Q∗λ

≤
wK/2

(
1

ηK/2
− λ+ ηK/2ρ

2
)
E
∥∥ūK/2 − u∗∥∥2

W
+

2

W

K∑
k=K/2+1

wkηk

(
σ2 + ρ2‖u∗‖2

)
M

(121)

=
(a− 1)

(
λa
4 − λ+ 4ρ2

λa

)
E
∥∥ūK/2 − u∗∥∥2

W
(122)

+
2(σ2 + ρ2‖u∗‖2)

WM

K∑
k=K/2+1

4(a+ k −K/2− 1)

λ(a+ k −K/2)
(123)

≤
λa2E

∥∥ūK/2 − u∗∥∥2

4W
+

8K(σ2 + ρ2‖u∗‖2)

λWM
(124)

≤ λa2

4W

‖u∗‖2(1− 1

2
ηλ

)K/2
+

4η
(
σ2 + ρ2‖u∗‖2

)
λM

+
8K(σ2 + ρ2‖u∗‖2)

λWM
(125)

=
λa2‖u∗‖2

4W

(
1− 1

2
ηλ

)K/2
+

(σ2 + ρ2‖u∗‖2)

λWM

(
8K + ηλa2

)
(126)

=
λa2‖u∗‖2

4W

(
1−min

{
λ

4(ξ̄H + λ)
,
λ2

4ρ2

})K/2
+

(8K + 4a)(σ2 + ρ2‖u∗‖2)

λWM
,

(127)

where, for the third-to-last line we used (112), and the last line we used that η =

min
{

1
2(ξ̄H+λ)

, λ
2ρ2

}
= 4

λa . Finally, we lower bound

W =

K∑
k=K/2

(a+ k −K/2) =

K/2∑
i=0

a+ i ≥ 1

2
aK +

1

8
K2. (128)

Thus, since K ≥ 2
λ max

{
ρ2

λ , ξ̄H + λ
}

= a
4 , we conclude

EQλ(x̂)−Q∗λ ≤ 96λ‖u∗‖2
(

1−min

{
λ

4(ξ̄H + λ)
,
λ2

4ρ2

})K/2
+

96(σ2 + ρ2‖u∗‖2)

λMK
. (129)

Combining this and (103) completes the proof.
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E Proof of Theorem 1

Theorem 1. Let F satisfy Assumption 2. Then, forK ≥ 175 andR ≥ Ω̃(1), and for hyperparameters
T , β, r̄, ξ̄, λ̄, N , C and parameter functions ηk(λ), wk(λ) as in Tables 3 and 4, the output of FEDSN
(Algorithm 1) with initial point x0 ∈ Rd, using Algorithms 2, 3, and 4 (for both Cases 1 and 2)
satisfies

E[F (xT )]−F ∗ ≤ HB2

(
exp

(
− R

Õ(αB)

)
+ exp

(
− K

O(1)

))
+Õ

(
σB√
MK

+
HB2

KR
+

ρB2

√
KR

)
,

where Ω̃, Õ hide terms logarithmic in R, K, and αB.

Proof. We first recall the hyperparameters from Table 4, whose settings we will refer to throughout
the course of the proof:

Hyperparameter Setting Description

T :=

⌊
R
4ζ log2

((
R
ζ

))⌋
(for ζ = 4096 + 4(80 + 32 logK + 24 log(1 + 2αB))

2)

Main iterations

β := 0 Momentum

r̄ := min
{

32B
T log(TK), 1

5α

}
Trust-region radius

ξ̄ := exp(αr̄) Local stability

λ̄ := max

{
2eH
K−2 ,

2ρ√
K
, 32eH log(51200)

K ,
4ρ
√

2 log(51200)√
K

,

320
√

2ρ√
MK

, 320σ
r̄
√
MK

, 8eH
K−16

} Regularization bound

N :=
⌈
1 + 5

2 log H(B+5T r̄)

3λ̄r̄

⌉
Binary search iterations

C :=
⌈
8 log

(
dlog2Ne

(
4 + eH

λ̄
+ 80H(B+5T r̄)

λ̄r̄

))⌉
Reg. quadratic repetitions

Table 4: Hyperparameters T , β, r̄, ξ̄, λ̄, N , and C, as used by FEDSN and its subroutines.

We also note that since all of the updates ∆x̃t have norm at most 5r̄, ‖xt − x∗‖ ≤ B + 5T r̄ for all t,
and therefore by the H-smoothness of F , ‖∇F (xt)‖ ≤ H(B + 5T r̄) for all t. Furthermore, since F
is H-smooth and r̄ ≤ 1

5α , ξ̄∇2F (xt) � eHI for all t. Therefore, our settings of N and C satisfy the
conditions of Lemma 3, and for each t,

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 r̄
Qt(∆x) ≤ 3

4

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 r̄
Qt(∆x)

)
+ ε(λ4r̄) +

λ̄r̄2

4
(130)

as long as the error guarantee of Algorithm 3 satisfies for all λ ≥ λ̄

EQλ(û)−min
u
Qλ(u) ≤ ε(λ) =

λ(r∗(λ)2 + r̄2)

800
. (131)
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By Lemma 4, since the objectives are such that
∥∥ξ̄∇2F (xt) + λI

∥∥
2
≤ eH + λ for all t and λ, the

output with optimally chosen stepsizes have error at most

EQλ(û)−min
u
Qλ(u) ≤ ε̃(λ) (132)

:=



2 max
{
eH + λ, ρ

2

λ

}
r∗(λ)2 exp

(
−K+1

4 min
{

λ
eH+λ ,

λ2

ρ2

})
+ 2(σ2+ρ2r∗(λ)2)

λMK

K ≤ 2
λ max

{
eH + λ, ρ

2

λ

}
96λr∗(λ)2 exp

(
−K8 min

{
λ

eH+λ ,
λ2

ρ2

})
+ 96(σ2+ρ2r∗(λ)2)

λMK

K > 2
λ max

{
eH + λ, ρ

2

λ

} .
(133)

With our choice of

λ̄ = max

{
2eH

K − 2
,

2ρ√
K
,

32eH log(51200)

K
,

4ρ
√

2 log(51200)√
K

,
320
√

2ρ√
MK

,
320σ

r̄
√
MK

,
8eH

K − 16

}
,

(134)
we note that

K ≥ 2

λ
max

{
eH + λ,

ρ2

λ

}
, (135)

so for λ ≥ λ̄

ε̃(λ) ≤ 96λr∗(λ)2 exp

(
−K

8
min

{
λ

eH + λ
,
λ2

ρ2

})
+

96(σ2 + ρ2r∗(λ)2)

λMK
. (136)

Furthermore, K ≥ 175 and λ ≥ λ̄ ≥ max

{
32eH log(51200)

K ,
4ρ
√

2 log(51200)√
K

}
implies

96 exp

(
−K

8
min

{
λ

eH + λ
,
λ2

ρ2

})
≤ 1

1600
. (137)

Likewise, λ ≥ λ̄ ≥ 320
√

2ρ√
MK

implies
96ρ2

λ2MK
≤ 1

1600
. (138)

Finally, λ ≥ λ̄ ≥ 320σ
r̄
√
MK

implies
96σ2

λ2MK
≤ r̄2

800
. (139)

Putting these together, we conclude that for λ ≥ λ̄

ε̃(λ) ≤ λ(r∗(λ)2 + r̄2)

800
= ε(λ). (140)

Combining this with (130), we conclude that the output of Algorithm 2 satisfies

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 r̄
Qt(∆x)

≤ 3

4

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 r̄
Qt(∆x)

)

+ 512λr̄2 exp

(
−K

8
min

{
λ

eH + λ
,
λ2

ρ2

})
+

96(σ2 + 16ρ2r̄2)

λMK
+
λ̄r̄2

4
(141)

≤ 3

4

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 r̄
Qt(∆x)

)

+ 512λr̄2 exp

(
−K

8
min

{
λ

eH + λ
,
λ2

ρ2

})
+
σr̄ + 16ρr̄2

2
√
MK

+
λ̄r̄2

4
. (142)
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Now, we upper bound λ 7→ λ exp
(
−K8 min

{
λ

eH+λ ,
λ2

ρ2

})
for λ ∈ Λ1. First,

λ exp

(
−K

8
min

{
λ

eH + λ
,
λ2

ρ2

})
= max

{
λ exp

(
− λK

8eH + 8λ

)
, λ exp

(
−λ

2K

8ρ2

)}
. (143)

Considering each term separately,

d

dλ

[
λ exp

(
− λK

8eH + 8λ

)]
= exp

(
− λK

8eH + 8λ

)(
1− eHKλ

8(eH + λ)2

)
. (144)

This is less than zero if 8(eH + λ)2 ≤ eHKλ, i.e.,

eH

16

(
K − 16−

√
(K − 16)2 − 16

)
≤ λ ≤ eH

16

(
K − 16 +

√
(K − 16)2 − 16

)
. (145)

With our choice of λ̄ ≥ 8eH
K−16 , for any λ ≥ λ̄ and K ≥ 175,

λ ≥ 8eH

K − 16
≥ eH

16

(
K − 16−

√
(K − 16)2 − 16

)
, (146)

so the left side of this inequality is satisfied. Thus, for λ ∈ Λ1 such that λ ≤
eH
16

(
K − 16 +

√
(K − 16)2 − 16

)
,

λ exp

(
− λK

8eH + 8λ

)
≤ λ̄ exp

(
− λ̄K

8eH + 8λ̄

)
. (147)

Also, if λ > eH
16

(
K − 16 +

√
(K − 16)2 − 16

)
, then since K ≥ 175

λ exp

(
− λK

8eH + 8λ

)
≤ λ exp

(
−

eH(K−16)
16 K

8eH + eH(K−16)
2

)
≤ λ exp

(
−K

10

)
. (148)

Furthermore, for λ ∈ Λ1,

λ ≤ λ̄
(

3

2

)N−1

≤ 3λ̄

2

H(B + 5T r̄)

3λ̄r̄
=

3H(B + 5T r̄)

6r̄
. (149)

Therefore, for any λ ∈ Λ1

λ exp

(
− λK

8eH + 8λ

)
≤ max

{
λ̄ exp

(
− λ̄K

8eH + 8λ̄

)
,

3H(B + 5T r̄)

6r̄
exp

(
−K

10

)}
. (150)

Similarly,
d

dλ

[
λ exp

(
−λ

2K

8ρ2

)]
= exp

(
−λ

2K

8ρ2

)(
1− λ2K

4ρ2

)
. (151)

This is negative for all λ ≥ λ̄ ≥ 2ρ√
K

, so

λ exp

(
−λ

2K

8ρ2

)
≤ λ̄ exp

(
− λ̄

2K

8ρ2

)
. (152)

We conclude that

EQt(∆x̃t)− min
∆x:‖∆x‖≤ 1

2 r̄
Qt(∆x)

≤ 3

4

(
Qt(0)− min

∆x:‖∆x‖≤ 1
2 r̄
Qt(∆x)

)
+
σr̄ + 16ρr̄2

2
√
MK

+
λ̄r̄2

4

+ 512r̄2 max

{
λ̄ exp

(
− λ̄K

8eH + 8λ̄

)
,

3H(B + 5T r̄)

6r̄
exp

(
−K

10

)
, λ̄ exp

(
− λ̄

2K

8ρ2

)}
.

(153)
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Now, because F is α-quasi-self-concordant, by Lemma 1, F is exp(αr)-locally stable, so with our
choice of r̄ ≤ 1

5α , we have that exp( 1
2 r̄) exp(5r̄) ≤ e1.1 ≤ 4. Thus, it follows from Lemma 2, for

θ = 3
4 , combined with the guarantee on the output of Algorithm 2 from Lemma 3, that

EF (xT )− F ∗

≤ E[F (x0)− F ∗] exp

(
− T r̄

32B

)
+

32B

r̄

(
σr̄ + 16ρr̄2

2
√
MK

+
λ̄r̄2

4

)
+

32B

r̄
· 512r̄2 max

{
λ̄ exp

(
− λ̄K

8eH + 8λ̄

)
,

3H(B + 5T r̄)

6r̄
exp

(
−K

10

)
, λ̄ exp

(
− λ̄

2K

8ρ2

)}
(154)

≤ E[F (x0)− F ∗] exp

(
− T r̄

32B

)
+

32σB + 512ρBr̄

2
√
MK

+ 8λ̄Br̄

+ 214 max

{
λ̄Br̄ exp

(
− λ̄K

8eH + 8λ̄

)
,

3H(B2 + 5TBr̄)

6
exp

(
−K

10

)
, λ̄Br̄ exp

(
− λ̄

2K

8ρ2

)}
(155)

≤ E[F (x0)− F ∗] exp

(
− T r̄

32B

)
+

32σB + 512ρBr̄

2
√
MK

+ λ̄Br̄

(
8 + 214 max

{
exp

(
− λ̄K

8eH + 8λ̄

)
,

3H(B + 5T r̄)

6λ̄r̄
exp

(
−K

10

)
, exp

(
− λ̄

2K

8ρ2
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.

(156)

We have, for a constant c,

λ̄ = max

{
2eH

K − 2
,

2ρ√
K
,

32eH log(51200)

K
,

4ρ
√

2 log(51200)√
K

,
320
√

2ρ√
MK

,
320σ

r̄
√
MK

,
8eH

K − 16

}
(157)

= max

{
32eH log(51200)

K
,

4ρ
√

2 log(51200)√
K

,
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√

2ρ√
MK

,
320σ

r̄
√
MK

}
(158)

= c ·max

{
H

K
,

ρ√
K
,

σ

r̄
√
MK

}
. (159)

So, for a constant c′, and using EF (x0)− F ∗ ≤ HB2

2 ,

EF (xT )− F ∗

≤ c′ ·
(
HB2 exp

(
− T r̄

32B

)
+
σB + ρBr̄√

MK

+ λ̄Br̄

(
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exp

(
− λ̄K
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)
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H(B + T r̄)
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)
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≤ c′ ·
(
HB2 exp

(
− T r̄

32B

)
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σB + ρBr̄√

MK
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λ̄Br̄, H(B2 + TBr̄) exp
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= c′ ·
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HB2 exp
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− T r̄

32B

)
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σB + ρBr̄√
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ρBr̄√
K
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σB√
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= c′ ·
(
HB2 exp
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− T r̄

32B

)
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σB√
MK

+
HBr̄

K
+
ρBr̄√
K

+H(B2 + TBr̄) exp

(
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So, since r̄ = min
{

32B
T log(TK), 1

5α

}
, and using the fact that, for ζ, a, b > 0, e−ζmin{a,b} ≤

e−ζa + e−ζb, we have, for a constant c′′,

EF (xT )− F ∗ ≤ c′′ ·
(
HB2 exp

(
− T

160αB

)
+
HB2

TK
+

σB√
MK

+
HB2 log TK

TK

+
ρB2 log TK

T
√
K

+HB2 log(TK) exp

(
−K

10

))
(164)

≤ c′′ ·
(
HB2 exp

(
− T

160αB

)
+

σB√
MK

+
HB2 log TK

TK

+
ρB2 log TK

T
√
K

+HB2 log(TK) exp

(
−K

10

))
, (165)

where the last inequality follows from the fact log(TK) ≥ 1, since TK ≥ 175.

Finally, each call to Algorithm 2 requires at most C dlogNe rounds of communication (one for each
call to Algorithm 3). Therefore, we can implement up to R/(C dlogNe) iterations of Algorithm 1
using our R rounds of communication. We recall that N and C are set as

N =

⌈
1 +

5

2
log

H(B + 5T r̄)

3λ̄r̄

⌉
(166)

C =

⌈
8 log

(
dlog2Ne

(
4 +

eH

λ̄
+

80H(B + 5T r̄)

λ̄r̄

))⌉
. (167)

Therefore, we need to choose T such that T ≤ R
CdlogNe . To provide an explicit lower bound on how

large T can be, we therefore lower bound the right hand side. First, we have

N =

⌈
1 +

5

2
log

H(B + 5T r̄)

3λ̄r̄

⌉
(168)

≤ 2 +
5

2
log

H
(
B + 5T B

T log(TK)
)

3 2eH
K−2 min

{
32B
T log(TK), 1

5α

} (169)

≤ 2 +
5

2
log

BK log(TK)

emin
{

32B
T log(TK), 1

5α

} (170)

≤ 2 +
5

2
max{log(TK log(TK)), log(2αBK log(TK))} (171)

≤ 2 + 5 log(1 + 2αB) + 5 log(TK). (172)

Similarly,

C =

⌈
8 log

(
dlog2Ne

(
4 +

eH

λ̄
+

80H(B + 5T r̄)

λ̄r̄

))⌉
(173)

≤ 1 + 8 log

(
dlog2Ne

(
4 +

eH
2eH
K−2

+ 240 max{TK log(TK), 2αBK log(TK)}

))
(174)

≤ 1 + 8 log
(
dlog2Ne

(
4K + 240 max

{
T 2K2, 2αBTK2

}))
(175)

≤ 1 + 8 log
(
(1 + logN)

(
353T 2K2 + 693αBTK2

))
(176)

≤ 1 + 8 log(693) + 16 log(TK) + 8 log(1 + αB) + 8 log(1 + log(N)) (177)
≤ 54 + 16 log(TK) + 8 log(1 + αB) + 16 log logN (178)
≤ 80 + 32 log(TK) + 24 log(1 + 2αB). (179)
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Therefore,

R

C dlogNe
≥ R

(80 + 32 log(TK) + 24 log(1 + 2αB)) dlog(2 + 5 log(1 + 2αB) + 5 log(TK))e
(180)

≥ R

(80 + 32 log(TK) + 24 log(1 + 2αB))
2 (181)

≥ R

2048 + 2(80 + 32 logK + 24 log(1 + 2αB))
2 . (182)

So, it suffices to choose T such that

T log2(T ) ≤ R

2048 + 2(80 + 32 logK + 24 log(1 + 2αB))
2 . (183)

Note that equality holds for

T = exp

2W

( R

4096 + 4(80 + 32 logK + 24 log(1 + 2αB))
2

)1/2
,

where W (·) denotes the Lambert W function. Thus, because W (x) ≥ log(x)− log log(x) for x ≥ e,
and since we assume

R ≥ Ω̃(1) = e2
(

4096 + 4(80 + 32 logK + 24 log(1 + 2αB))
2
)
,

we have that

exp
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· log2
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Thus, letting

T =

⌊
1

4

(
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4096 + 4(80 + 32 logK + 24 log(1 + 2αB))
2

)

· log2

((
R

4096 + 4(80 + 32 logK + 24 log(1 + 2αB))
2

))⌋
,

and using Õ notation to hide polylogarithmic factors in R, K, and αB, we have

E[F (xT )]− F ∗ ≤ HB2

(
exp

(
− R

Õ(αB)

)
+ exp

(
− K

O(1)

))
+ Õ

(
σB√
MK

+
HB2

KR
+

ρB2

√
KR

)
.

(184)

This completes the proof.
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F Additional Comparisons

Here we include additional comparisons, recalling that we we are working in the natural scaling of
parameters that arises when the objective has the form F (x) = Ez`(〈x, z〉), where |`′|, |`′′|, and
|`′′′| are O(1), and where ‖z‖ ≤ D, which provides for setting the parameters as H = D2, σ = D,
U = D3, α = D, and ρ = D2.

Comparison with Local SGD

Recall that, under third-order smoothness assumptions (Yuan and Ma, 2020), Local SGD converges
at a rate of

EF (x̂)− F ∗ ≤ Õ
(
HB2

KR
+

σB√
MKR

+
U1/3σ2/3B5/3

K1/3R2/3

)
.

For the setting as outlined above, this bound reduces to

EF (x̂)− F ∗ . D2B2

KR
+
D2B2

KR2
+
D5/3B5/3

K1/3R2/3
≈ D2B2

KR
+
D5/3B5/3

K1/3R2/3
.

In the case where DB is not too large (DB . K2R), the dominant term for Local SGD is D5/3B5/3

K1/3R2/3 ,

and so we see that our algorithm improves upon Local SGD as long as R & D1/3B1/3

K1/6 .

Comparison with min-max method under Assumption 1

Woodworth et al. (2021) identified the min-max optimal (up to logarithmic factors) stochastic first-
order method in the distributed setting we consider, and under Assumption 1. Namely, a min-max
optimal method can be obtained by combining Minibatch-Accelerated-SGD (Cotter et al., 2011),
which enjoys a guarantee of

EF (x̂)− F ∗ ≤ O
(
HB2

R2
+

σB√
MKR

)
,

with Single-Machine Accelerated SGD, which runs KR steps of an accelerated variant of SGD
known as AC-SA (Lan, 2012), and enjoys a guarantee of

EF (x̂)− F ∗ ≤ O
(
HB2

K2R2
+

σB√
KR

)
.

Therefore, an algorithm which returns the output of Minibatch Accelerated SGD when K ≤ σ2R3

H2B2 ,
and otherwise returns the output of Single-Machine Accelerated SGD, achieves a guarantee of

EF (x̂)− F ∗ ≤ O
(
H2B2

K2R2
+

σB√
MKR

+ min

{
HB2

R2
,
σB√
KR

})
.

As shown by Woodworth et al. (2021), this matches the lower bound for stochastic distributed
first-order optimization under Assumption 1, up to O(log2M) factors.

For the setting as outlined above, this bound reduces to

EF (x̂)− F ∗ . D2B2

K2R2
+
D2B2

KR2
+ min

{
D2B2

R2
,
DB√
KR

}
≈ D2B2

K2R2
+ min

{
D2B2

R2
,
DB√
KR

}
.

Thus, for DB . R3/2
√
K

, the dominant term is D2B2

R2 , in which case FEDSN is better as long as

R .
√
K. Furthermore, for R

3/2
√
K

. DB . K3/2R3/2, the dominant term is DB√
KR

, in which case
FEDSN is better as long as R & D2B2. In these regimes, we see that Assumption 2 allows FEDSN
to improve over the best possible when relying only on Assumption 1. We also note that when
DB & K3/2R3/2, the combined algorithm described above is better than the guarantee we prove for
FEDSN—we do not know whether this is a weakness of our analysis or represents a true deficiency
of FEDSN in this regime.
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G Additional Information for Experiments

G.1 Baselines

We first present a more practical version of our algorithm FEDSN, called FEDSN-LITE. It differs
from FEDSN in two major ways: first, it directly uses REGULARIZED-QUADRATIC-SOLVER
(Algorithm 3) (with ξ̄ = 1) as an approximate quadratic solver without requiring a search over the
regularization parameter as in Algorithm 2; and in addition, it scales the Newton update with a
stochastic approximation of the Newton decrement (see Nesterov (1998); Boyd and Vandenberghe
(2004)) and a constant stepsize ν (we use ν = 1.25 throughout our experiments). Because of these
changes, the Newton update is fairly robust to the choice of ν, so we then only need to tune the
learning rate of REGULARIZED-QUADRATIC-SOLVER, making it as usable as any other first-order
method.

Algorithm 6 FEDSN-LITE(x0)

(Operating on objective F (·) with stochastic gradient g(·; ·) and Hessian-vector product h(·; ·, ·)
oracles.)

Input: x0 ∈ Rd.
Hyperparameters: T : main iterations; ν: Newton stepsize scale; and β: momentum.

for t = 0, 1, . . . , T − 1 do
REGULARIZED-QUADRATIC-SOLVER(xt, 0)

νt := ν
(
1 + (∆x̃>t h(xt,∆x̃t; z))

1/2
)−1

. h(xt,∆x̃t; z) is s.t. Ez[h(xt,∆x̃t; z)] =

∇2F (xt)∆x̃t
4

Update: xt+1 = xt + νt∆x̃t
Return: xT

Note that in each step of FEDSN-LITE, the subroutine REGULARIZED-QUADRATIC-SOLVER
approximately solves a quadratic subproblem using a variant of one-shot averaging (we set the
parameter functions as η(λ) = η and w(λ) = 1

K ). Moreover, we implement FEDSN-LITE such that
each call to the stochastic oracle from within REGULARIZED-QUADRATIC-SOLVER uses only a
single sample (Case 2 in Algorithm 4), and so it is asymptotically as expensive as the gradient oracle
(i.e., O(d), if d is the dimension of the problem). For a discussion of the computational cost of using
a Hessian-vector product oracle, see Appendix G.4.

We have compared FEDSN-LITE against the two variants of FEDAC (Yuan and Ma, 2020), Minibatch
SGD (Dekel et al., 2012), and Local SGD (Zinkevich et al., 2010). Two settings of hyperparameters
are considered for FEDAC in Yuan and Ma (2020) for strongly convex functions:

• FEDAC-I: η ∈ (0, 1/H], γ = max
{√

η
λK , η

}
, α = 1

γλ , β = α+ 1;

• FEDAC-II: η ∈ (0, 1/H], γ = max
{√

η
λK , η

}
, α = 3

2γλ −
1
2 , β = 2α2−1

α−1 ,

where H is the smoothness constant as in Assumption 1, λ is an estimate of the strong convexity, and
η is the learning rate which has to be tuned. Thus, a limitation of FEDAC is that it requires either the
knowledge of λ (say, through explicit λ-regularization), or that the algorithm adds regularization to
the objective itself (this is how Yuan and Ma (2020) present FEDAC for general convex functions). In
our experiments we have both of these settings, i.e., FEDAC with internal regularization λ (c.f., figures
1a and 1b) or explicitly λ-regularized objectives (c.f., figures 4 and 5). For brevity, in Algorithm 7 we
present FEDAC with five hyperparameters: α, β, η, γ, and λ. When the objective is regularized we
use λ = 0, whereas otherwise we tune λ, to ensure the best possible performance for FEDAC.

4We can calculate an approximation to the Newton decrement at ∆x̃t, i.e., (∆x̃>t ∇2F (xt)∆x̃t)
1/2, using a

call to the Hessian-vector product oracle (see Assumption 2(b)), along with an additional dot product, namely
∆x̃>t h(xt,∆x̃t; z).
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Algorithm 7 FEDAC(x0, α, β, η, γ, λ)

(Operating on objective F (·) + λ/2‖.‖2 as opposed to F (.) with stochastic gradient oracle gλ(·; ·)5.)
Intitialize: xag,m0 = xm0 = x0 for all m ∈ [M ]
for t = 0, 1, . . . , T − 1 do

for every worker m ∈ [M ] in parallel do
xmd,mt ← β−1xmt + (1− β−1)xag,mt

gmt ← gλ(xmd,mt , zmt ) . Query the stochastic first-order oracle at xmd,mt , for zmt ∼ D
vag,mt+1 ← xmd,mt − η · gmt
vmt+1 ← (1− α−1)xmt + α−1xmd,mt − γgmt
if t mod K = −1 then
xmt+1 ← 1

M

∑M
m′=1 v

m′

t+1

xag,mt+1 ← 1
M

∑M
m′=1 v

ag,m′

t+1
else
xmt+1 ← vmt+1

xag,mt+1 ← vag,mt+1

Return: x̄agT = 1
M

∑M
m′=1 x

ag,m′

T

In Algorithm 8 we describe Local SGD (a.k.a. FEDAVG) (Zinkevich et al., 2010) with learning rate η
and Polyak’s momentum (a.k.a. heavy ball method) parameter β. Setting β = 0 recovers the familiar
algorithm as analyzed in Woodworth et al. (2020a). Finally, in Algorithm 9 we describe Minibatch
SGD with fixed learning rate η and momentum parameter β.

Algorithm 8 Local SGD(x0, β, η)

(Operating on objective F (·) with stochastic gradient oracle g(·; ·).)
Intitialize: xm0,0 ← x0 for all m ∈ [M ]
for r = 0, . . . , R− 1 do

for every worker m ∈ [M ] in parallel do
for k = 0, . . . ,K − 1 do
gmr,k ← g(xmr,k; zmr,k) . Query the stochastic first-order oracle at xmr,k (for zmr,k ∼ D drawn
by the oracle)
xmr,k+1 ← xmr,k − ηgmr,k + 1k>0β(xmr,k − xmr,k−1)

xr+1 ← 1
M

∑M
m′=1 x

m′

r,K

Return: xR

Algorithm 9 Minibatch SGD(x0, β, η)

(Operating on objective F (·) with stochastic gradient oracle g(·; ·).)
Intitialize: xm0 = x0 for all m ∈ [M ]
for r = 0, . . . , R− 1 do

for every worker m ∈ [M ] in parallel do
for k = 0, . . . ,K − 1 do
gmr,k ← g(xr; z

m
r,k) . Query the stochastic first-order oracle at xr (for zmr,k ∼ D drawn by

the oracle)
gr ← 1

KM

∑K−1
k′=0

∑M
m′=1 g

m′

r,k′

xr+1 ← xr − ηgr + 1r>0β(xr − xr−1)
Return: xR

Note that in our experiments we compare the algorithms using the same number of machines M ,
communication rounds R and theoretical parallel runtime T against each other, where T = KR.

5Note that gλ(x; z) = g(x; z) + λx, i.e., the stochastic oracle for the regularized objective can always be
obtained using the oracle for the unregularized objective (see Assumption 1).)
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Also note that unlike Algorithm 7, there is no internal regularization in Algorithms 8 and 9. While
conducting experiments for figures 4 and 5, we assume that F (.) is regularized, so that Algorithms 8
and 9 instead minimize F (.) + λ

2 ‖.‖
2 and have access to gλ(.; .). The reason why λ is not presented

as a hyperparameter for any algorithms beside FEDAC, is because the regularization is a part of the
optimizer FEDAC itself determines its other hyper-parameters.

In addition, we may see that REGULARIZED-QUADRATIC-SOLVER with ηk(λ) = η and wk(λ) = 1
K

(as in each iteration of FEDSN-LITE) is a special case of Local SGD (Algorithm 8) with R = 1.
Thus to summarize, in our experiments, we have compared the following algorithms:

• FEDSN-LITE (which uses REGULARIZED-QUADRATIC-SOLVER) without momentum i.e.,
β = 0 or with optimally tuned momentum β ∈ {0.1, 0.3, 0.5, 0.7, 0.9},

• FEDAC-1 and FEDAC-2, with either no internal regularization i.e., λ = 0 (in experiment
2 when the objective is explicitly regularized) or optimally tuned internal regularization
λ ∈ {1e- 2, 1e-3, 1e-4, 1e-5, 1e-6} (in experiment 1),

• Local SGD without momentum i.e., β = 0 or with tuned momentum β ∈
{0.1, 0.3, 0.5, 0.7, 0.9},

• Minibatch SGD without momentum i.e., β = 0 or with tuned momentum β ∈
{0.1, 0.3, 0.5, 0.7, 0.9},

We search for the best learning rate η ∈ {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
0.1, 0.2, 0.5, 1, 2, 5, 10, 20} for every configuration of each algorithm. We verify (along with Yuan
and Ma (2020)) that the optimal learning rate always lies in this range.

G.2 More extensive experiments

First, we present more comprehensive versions of the experiments presented in Section 5.

Figure 2: The same experiment as in fig. 1a but with a broader range of values of M . All optimization runs
were repeated 30 times.

Figure 3: The same experiment as in fig. 1b but with a broader range of values of M . All optimization runs
were repeated 20 times.

Recall, how comparison to FEDAC requires the knowledge of the strong convexity constant. To
alleviate this in figures 2 and 3 we added an internal regularization parameter to FEDAC and tuned

36



it. Another way to deal with this is to solve a regularized empirical risk minimization problem,
where FEDAC knows the level of regularization, which serves as a proxy for strong convexity. Next
we consider exactly this setting in figures 4 and 5, where we provide FEDAC the regularization
strength µ. Unlike previous experiments, here we report regularized training loss, i.e., we train the
models to optimize F (x) + r(x) =

∑
i∈S fi(x) + µ

2 ‖x‖
2
2, for a finite dataset S. We also vary the

regularization strength µ, to understand the algorithms’ dependence on the problem’s conditioning.
This was precisely the experiment conducted by Yuan and Ma (2020) (c.f., Figures 3 and 5 in their
paper).

Figure 4: Empirical comparison of FEDSN-LITE (Algorithm 6) to other methods (see Appendix G.1 for
complete details) on the LIBSVM a9a (Chang and Lin, 2011; Dua and Graff, 2017) dataset for minimizing
µ-regularized logistic regression loss using M machines and µ regularization strength. We vary the frequency
of communication (horizontal axis of each plot), while keeping the total number of steps on each machine
(theoretical parallel runtime) fixed at KR = 100. Each algorithm besides FEDAC solves a regularized ERM
problem, and reports the best relative sub-optimality w.r.t. the optimal minimizer. For FEDAC we use µ as the
strong convexity constant to tune its hyperparameters. For the other algorithms we tune the learning rate for
either β = 0, i.e., without momentum, or for all β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, to choose the optimum level of
momentum. We repeat this tuning procedure for each value of µ,M,R, and thus each point in the plot represents
an optimal configuration of that algorithm for that setting. All optimization runs were repeated 70 times with the
tuned hyperparameters.

G.3 More implementation details

Dataset. Following the setup in Yuan and Ma (2020), we use the full LIBSVM a9a (Chang and Lin,
2011; Dua and Graff, 2017) dataset. It is a binary classification dataset with 32,561 points and 123
features. For generating figures 1a, 2, 4 and 5 we use the entire dataset as a training set. On the other
hand, For generating figures 1b and 3 we split the dataset, using 20,000 points as the training set and
the rest as the validation set.
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Figure 5: Same setting as figure 4 but with a longer parallel run-time of T = 1000.

Figures 4 and 5. As described in the body of the paper, each sub-plot (in Figure 4) shows the perfor-
mance of the different algorithms and their variants (as discussed above) on µ-regularized logistic
regression. For the experiments we vary the values of µ, M , and R, for fixed theoretical parallel
runtime KR. Each of these is a different setting, reflecting different computation-communication-
accuracy trade-offs. For each of these settings, we run an algorithm configuration (with some β and
λ = 0 for FEDAC), with different learning rates η, and record the best loss (which is the Regularized
ERM-loss on the entire dataset) obtained at any point during optimization. Based on this run we
pick the optimal learning rate for each setting for each algorithm from the set {0.0001, 0.0002,
0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20}.
Note that this means every point in a sub-plot is an individual experiment, for which we have tuned.
Since we are only concerned with optimization, we tune and report the accuracy only on the training
set (with 32,561 points). Both the stochastic first-order oracle and the Hessian-vector product oracle,
used by the respective algorithms, do sampling with replacement. Following Yuan and Ma (2020),
we ensure that our learning rate tuning grid was both wide and fine enough for the algorithms to
achieve their optimal training losses. Since we are using stochastic algorithms which sample with
replacement, without any definite order on the dataset (as opposed to making a single pass), the best
suboptimality is potentially different for each run of the algorithm, even when choosing the same
learning rate and initialization. Thus, once we have the optimal parameters (η, β, λ), we rerun the
algorithm multiple times on the corresponding setting. The error bars represent the standard deviation
of the best suboptimality obtained when using this optimal learning rate.

Note that changing the regularization strength changes the optimal error value on the RERM task.
Thus, to get the optimal loss value, we run exact Newton’s method separately on each of these settings
(for different values of µ), until the algorithm had converged up to ≈ 12 decimal places. We also
ensure that our optimal loss values look similar to Yuan and Ma (2020). The reported suboptimality
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in Figure 1a is obtained after subtracting this optimal error value from the algorithms’ error, followed
by dividing this excess error with the optimal value.

Figures 1a and 2. As described in the body of the paper, each sub-plot in Figure 1a shows the
performance of the different algorithms and their variants (as discussed above) on logistic regression
for getting the best possible unregularized training loss. We train FEDAC on an appropriately
regularized RERM problem on the training set. This is achieved through its internal regularization
parameter λ as described above. All other algorthms minimize an ERM problem on the dataset. We
vary M and R while keeping the parallel runtime KR to be fixed. Our hyperparameter tuning and
repetitions are similar to the description for the experiment above, though we additionally tune the
regularization strength λ in the RERM problem for FEDAC. All the algorithms do sampling with
replacement on the training set, and can make multiple passes on the dataset. The optimal training
loss is again obtained using 100 iterations of the Newton method.

Figures 1b and 3. As described in the body of the paper, each sub-plot in Figure 1b shows the
performance of the different algorithms and their variants (as discussed above) on logistic regression
for getting the best possible validation loss. We train FEDAC on an appropriately regularized RERM
problem on the training set. All other variants minimize an ERM problem on the training set. This is
achieved through the internal regularization parameter for FEDAC as discussed above. We vary M
and R while keeping the parallel runtime KR to be fixed. Our hyperparameter tuning and repetitions
are similar to the description for the experiments above, though we additionally tune the regularization
strength λ in the RERM problem for FEDAC. We use the same split of training and validation datasets
across the multiple repetitions. All the algorithms do sampling without replacement on the training
set, and can make at most one pass on the training dataset.

Note that in all our experiments, we are concerned with minimizing a convex function F (x). In some
cases we are supposedly minimizing a finite sum, i.e., F (x) =

∑
i∈S fi(x) where S is our training

dataset, for e.g., in Figure 1a. In others F (x) = Ez∈D[f(x; z)], i.e., a stochastic optimization
problem where we access the distribution D through our finite sample S, for e.g., in Figure 1b. To
estimate the true-error on D, we split S into Strain and Sval, then sampled without replacement from
Strain to train our models, and reported the final performance on Sval.

Hardware details. All the experiments were performed on a personal computer, Dell XPS 7390.
The total compute time (CPU) on the machine was about 300 hours. No GPUs were used in any of
the experiments in this paper.

G.4 Computational cost of a Hessian-vector product oracle

Consider minimizing the function F (x) = Ez[f(x; z)] given access to various stochastic oracles.
Note that FEDAC, Minibatch SGD, and Local SGD are all first-order algorithms, in that they use a
first-order stochastic oracle. Thus, each time they observe a stochastic gradient (as per Assumption
1), the oracle uses a single unit of randomness (e.g., a single data point, when thinking in terms of a
finite training dataset).

In contrast, our main theoretical method FEDSN proceeds via two possible options: for Case 1
as established in Algorithm 4, the algorithm queries both a stochastic gradient and a stochastic
Hessian-vector product oracle at two independent samples, while in Case 2, we consider a different
setting which allows the algorithm to observe, for any x, u, both a stochastic gradient and stochastic
Hessian-vector product using the same random sample z. We may note that the final theoretical
guarantee for Case 1 differs by only a small constant factor from that of Case 2, and our results as
presented in Theorem 1 apply to both cases.

Thus, in order to maintain a fair comparison between these first-order methods and our practical
method FEDSN-LITE, we have implemented FEDSN-LITE so that it also uses a single random
sample (single data point), as outlined via Case 2 (Same-Sample) in Algorithm 4.

In addition to keeping the number of samples consistent, it is important to understand how both
oracle models compare computationally. Clearly every oracle call for FEDSN-LITE is at least as
expensive as a first-order stochastic oracle, as it subsumes the latter. Moreover, it is unclear a priori
if the Hessian-vector product can be computed efficiently (say, in as much time as vector addition
or multiplication). However, it turns out that the Hessian-vector product for logistic regression
can be efficiently computed, since the Hessian matrix for a given sample is actually rank one
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(i.e., an outer product of known vectors). This is generally true for loss functions which belong
to the family of generalized linear models. To see this, note that for loss functions of the form
F (x) =

∑N
i=1 φ(bix

>ai), we have by a simple calculation that

∇xF (x) =

N∑
i=1

φ′(bix
>ai)bi · ai and ∇2

xF (x) := ∇x(∇xF (x)) =

N∑
i=1

φ′′(bix
>ai)b

2
i · aia>i ,

and so for any v ∈ Rd,

∇2
xF (x)v =

N∑
i=1

φ′′(bix
>ai)b

2
i · ai · (a>i v),

which means each summand can be calculated in O(d) time. When maximizing the log-likelihood in
the logistic regression model with labels in {−1, 1}, we need to minimize the following function,

F (x) =

N∑
i=1

(
−bix>ai + ln

(
1 + exp

(
bix
>ai
)))

,

which is an instance of the generalized linear models as considered above. Thus, in terms of vector
operations, the Hessian-vector product oracle and the stochastic gradient oracle are asymptotically
similar in the logistic regression model. We also note that for a general class of differentiable
functions, Pearlmutter (1994) provides a technique to compute the Hessian-vector product using
two passes of backpropagation (in the context of neural networks). For instance, we may consider a
twice-differentiable function F : Rd 7→ R and note that for a vector v ∈ Rd,

∇2
xF (x)v = ∇x

(
∇xF (x)>v

)
,

which can be obtained using two passes of backpropagation.

For the scale of our problem, it turns out that the difference in the number of vector operations
is outweighed by other implementational overhead (for, e.g., loops, memory operations, etc.). In
Table 5 we show the average per-step runtimes (over 250 runs) for three different algorithms for
M = 1, R = 1,K = 100000.

Algorithm Avg. Runtime/Step (in 10−5 sec.) Std. Dev. of Runtime/Step (in 10−5 sec.)

FEDSN-LITE 6.67 1.42

Local SGD 6.39 1.37

FEDAC 7.48 1.58

Table 5: Comparing the wall-clock runtimes of different algorithms in our implementation. We run
every repetition of each algorithm as an individual job, so that the runs are independent, i.e., we don’t
introduce extraneous biases for any one algorithm (e.g., thermal throttling affecting the runtimes for a
single algorithm). We run each algorithm 1700 times so that the 95% error margins for the average
runtime/step estimate are within 1% of its value. Specifically, we calculate the empirical standard
deviation σ of our average runtime/step estimate x̄ by running it for n = 1700 runs. Then we report
the error margin δ = zσ/

√
n, where z = 1.96, is the z*-value from the standard normal distribution

for a 95% confidence level. We ensure that n = 1700 is large enough, so that δ/x̄ ≤ 0.01. Finally
we round x̄ to two significant digits, respecting the 1% error margin. We also report the standard
deviation estimate of the runtime/step so that its 95% error margins are within 4% of its value.

G.5 Comparison with GIANT

Recall that we are optimizing a convex function F , which is accessible only through stochastic oracles
in an online fashion. To do so, we implement an inexact Newton method, where we reformulate the
Newton step as the solution to a convex quadratic problem, min∆x

1
2∆x>∇2F (x)∆x+∇F (x)>∆x.

We then solve this problem using one-shot averaging, with access to stochastic gradient and Hessian-
vector product oracles. If instead we were solving a batch problem, where we had a finite dataset, we
could use it to determine the exact Newton step.
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(a) (b)

Figure 6: (a) Empirical comparison between GIANT and FEDSN-LITE, when equalizing for the number of
data-accesses per communication round. We vary the frequency of communication (horizontal axis of each plot),
while keeping the total number of steps on each machine (theoretical parallel runtime) fixed at KR = 1000
for FEDSN-LITE. We choose s, q such that n/M + sq = K for GIANT. For R > 10, GIANT could not
be run in this setup, as q was less than one. Note that this is the same reason why GIANT performs worse
going from K = 200 to K = 100, as the value of q gets closer to one. We suspect that this worsening of
performance does not happen for s = bn/Mc, as in that case the effect of increasing Newton steps is more
dominant than decreasing q. All experiments were repeated 20 times. (b) Empirical comparison between GIANT
and FEDSN-LITE when keeping the number of oracle accesses equal. For both the methods we count the
stochastic oracle access as well as the Hessian-vector product oracle access as two oracle accesses. The dark
lines depict the minimum error obtained across multiple runs, and the error strips denote the maximum error
across those runs.

More specifically, if F (x) = 1
n

∑
i∈[n] f(x; zi), where zi indexes an example in the training dataset,

then we can obtain a sketch of the Hessian matrix ∇2F̃m(x) on each machine, by distributing the
examples across M machines. Then we can solve the linear system∇2F̃m(x)pm = ∇F (x) where
∇F (x) could be computed exactly and broadcasted to each machine. The linear system can be
effectively solved with a conjugate gradient method. Finally the directions pm can be aggregated to
get an approximate Newton direction. This was precisely the idea proposed by Wang et al. (2018), in
their algorithm called GIANT. In fact, there has been much work in the batch setting (Shamir et al.,
2014; Zhang and Xiao, 2015; Reddi et al., 2016; Crane and Roosta, 2019; Islamov et al., 2021; Gupta
et al., 2021) similar to this, but as we point out before, we work in a strictly more difficult setting.
The ability to index the examples in the training set, and possibly re-use them in multiple rounds is
commonly used in the batch setting, but it cannot be exploited in the online setting (except perhaps
with an additional generalization error when F (x) := Ez∼D[f(x; z)]).

Moreover, typically the computation per communication round for batch methods is much higher
than our method. For instance if GIANT uses s examples on each machine for making a sketch of
the Hessian and uses q steps of the conjugate gradient method, then since it still needs to compute
the full gradient per communication round, the computation per round is ∝ n+Msq, as opposed to
KM for FEDSN-LITE. Nevertheless, we compared GIANT to our method for a range of values of s
in Figure 6a. We note that in the sparse communication regime we beat GIANT. If communication
is not a bottleneck, we can also compare both these methods while keeping the number of oracle
accesses equal. In such a setting, as we note in Figure 6b, FEDSN-LITE has an advantage initially
(when GIANT is not even applicable), but eventually GIANT’s updates are more accurate, and it
outperforms FEDSN-LITE. The bottom line is that these methods perform very similar updates,
i.e., inexact Newton steps, but FEDSN-LITE is applicable in the online setting while GIANT is not.
Moreover, FEDSN-LITE can have an advantage in the sparse communication regime.
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