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1 Architecture and Implementation Details

In this section, we describe in detail the proposed architecture and its implementation.
Our architecture is composed by an encoder and a decoder.

The encoder receives as input a predefined number of learnable latent probes L P, together with the
point coordinates of the target point cloud X7. Each layer of the encoder performs an operation of
cross-attention between L P and X followed by a self-attention on L P. Each attention is followed
by a feed-forward layer. Before the cross-attention, input 3d-coordinates are embedded in a higher
dimensional space through an MLP. We also use positional encoding on LP. The output of the
encoder is a list of latent vectors LS of the same size of the input latent probes.

Specularly, the decoder receives as input the source point cloud 3d coordinates X s and the latent
vectors LS, and is composed by layers that perform operations of cross-attention between X s and
LSt and self-attention on X, each followed by a feed-forward layer. X are also embedded in
a higher dimensional space by an MLP layer, which, conversely from the encoder, shares weights
among all layers. We also use positional encoding on LS7. The output of the decoder goes through
a final MLP before outputting the new 3d coordinates of the input pointcloud X s registered to the
target Xr.

In our implementation we use 32 latent probes of dimension 64. Point embedders are composed by
four linear layers of size (8, 16,32, 64) interleaved by ReLU activation. As standard in transformers,
the feed—forward layer is made of two linear layers of size (512, 64) interleaved by ReLUs. The final
MLP block is composed of five linear layers of decreasing sizes: (48,24, 12, 6, 3) also interleaved by
ReLUs. We also use multi-head attention with 4 heads. The encoder and decoder blocks, light grey
in Figure 2 in the main paper, are repeated 8 times each, weights are not shared.

When performing matching, we switch the target and source shape and we pick the version minimizing
the registration’s chamfer distance error.
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The model was trained using an NVIDIA 2080ti. Keops [3]] was used to improve the scalability
capacity of the model. In fact, thanks to its peculiar memory efficient implementation, it enables the
processing of shapes with more than 200 thousand points (SHREC’ 19 dataset).

2 Refinement Procedure

As described in the Methods section in the main paper, the peculiar structure of our architecture
allows us to refine the registration results. Here we provide additional details on this procedure.

A key choice in the refinement process is the number of refinement steps. As can be seen in Figure[I]
the graph suggests there is a large decline in geodesic error during the first twenty iterations, while
lower marginal returns are obtained after this threshold. This is confirmed visually with the first
refined registration (25 steps) having the largest decrease in error. Later iterations however contribute
to more visually appealing registrations. In all experiments we perform 100 refinement steps for
both the refined versions of 3DC and our method. The optimization is performed using the Adam
optimizer with a learning rate of 5e — 3.
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Figure 1: On the left, a pair of qualitative examples showing the registration quality improvement
using an increasing number of refinement steps of our algorithm. On the right, the mean geodesic
error of our method with different number of refinement steps on FAUST1K.

3 SMAL Dataset

We report qualitative results on animal shapes, confirming the ability to generalize to other types of
shapes other than humans and rigid objects.

The SMAL [6] model provides the equivalent of SMPL for several animals. We employed this model
to generate 20300 shapes of different animals. We trained on 20000 examples and tested on the
remaining 300 datapoints.

In Figure[2] we can observe the results we obtain with our method on this dataset. On the extremities
we have the source (left) and the target (right) shapes, colored accordingly to the predicted matching
between the two. The shapes in the middle are gradual interpolations of the two, obtained by linearly
interpolating their latent representation. Thanks to the great flexibility of our architecture, we can
generate smooth transitions and obtain high quality matching between animals of different classes in
different poses.

4 Outliers

We have tested our model resilience to outliers using the same setup and data proposed in LinInv
[4]], consisting in a strong Gaussian perturbation (standard deviation of 0.03) applied to the point
positions of the input point clouds.



Figure 2: Interpolation examples on two pairs of animals belonging to different classes: horse-lion
(first row), hippo-dog (second row). These results are possible only thanks to the high-quality
registration provided by our method.

We report in Table [I] quantitative performance for all the competitors in this setup, showing that
our method is resilient to noise and manages to outperform all other methods. We also show some
qualitative results in Figure ] (last row) and in Figure[7] (last two rows).

Table 1: Comparison of the average geodesic error on FAUST(1k-outliers). This dataset is obtained
sampling 1k points from FAUST and perturbing each vertex with Gaussian noise with high standard
deviation (0.03).

Method FAUST(1k-outliers)

3DC 0.2306
DiffNet 0.3509
LinInv 0.1738
Our 0.1657
3DCgr 0.2101
Ourp 0.1479

5 Additional Results and Visualizations
In this section, we report further qualitative results and comparisons with other methods.

Out of distribution samples In Figure 3| we show results involving shapes coming from different
datasets, being significantly different from the ones observed during training. In particular, we show
a registration from TOSCA’s alien and a FAUST shape, and vice-versa. We see that our method
provides a good correspondence in both cases. Then, we also tested on two statues from the Scan
the World project [[1], these two present clutters and topological noises (e.g. the glued hands of the
first or the beard of the second). In the second row of the same image, we report an experiment with
partiality (the backside of the shape is absent). Notice that partial shapes were not seen at training
time.

Registration In Figure [ [5] and [6] we show some registrations results. Notice that DiffNet and
LinInv output point-to-point correspondences which naturally lie on the surface of the target shape,
while registration methods have to find the correct alignment. Our registration provides a better
alignment of the shapes and more accurate reconstructions of the finer details (e.g. the shape of the
heads in the first row or the torso in the second one).

Matching In Figure [/| we report some shape-to-shape matching on FAUST 1K (in the first two
rows) and on the outliers dataset proposed in [4] (in the last two rows). For each pair, we visualize the
matching as color transfer, showing from left to right, the ground-truth, the outcome of 3DC without
and with refinement, DiffusionNet, LinInv, and our method without and with refinement. For our
method, we observe a general resilience to sparsity and noise.

In Figure (8| we collect further color transferring qualitative results, with also the matching error
reported as hot map on the point clouds. In Figure[9] we visualize some results in the same setup but
with additional noise on the point clouds.



Figure 3: Qualitative results on shapes that present significant differences to the training examples.
We report registrations between a FAUST shape and an alien from TOSCA, two statues from the
Scan the World project, and a partial shape (second row).

Finally, in Figure [10] we report a texture transfer performed between two shapes from SHREC19
dataset [3].
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Figure 4: Qualitative comparisons of arbitrary shape registration on the FAUST (1k) [2] dataset
(first two rows) and the dataset of outliers from LinInv [4] (last row). The registration are performed
between two arbitrary shapes, however, 3DC can only register the template and not the source shape
into the target shape.



“h ”n“n

3DCgr DiffNet LinInv Ourp

3DCr DiffNet Linlnv Ourg

LI

3DCr DiffNet Linlnv Ourg
Figure 5: Qualitative comparisons of template registration on FAUST.
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Figure 6: Qualitative comparisons of template registration on FAUST (1k).
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Figure 7: Qualitative comparisons of shape matching on the FAUST (1k) [2] dataset (first two rows)
and the dataset of outliers from LinInv [4] (last two rows).
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Figure 8: A qualitative comparison of template registration on FAUST [2]. In particular, 3DCgr
exhibits an error due to topological changes between S and 7, LinInv shows small but widespread
errors.
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Figure 9: A qualitative comparison of shape matching on the perturbed FAUST [2] dataset.
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Figure 10: Two qualitative comparisons of texture transfer on the SHREC19 [5] dataset. From left
to right, the source shape S, the ground truth transfer to the target geometry 7, the results of the
competitors and our result. In the top row we report an easy example of texture transfer, where almost
all competitors perform reasonably well. In the bottom row, we report an hard example of texture
transfer caused by the large variation in the pose, the missing parts (fingers) and the presence of extra
object (in the hand of the source shape).
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