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A Implementation details

A.1 Dataset

SynLiDAR [23] is a large-scale synthetic dataset that is captured with the Unreal Engine [6]. It has
13 LiDAR point cloud sequences with 198,396 scans in total, where each scan has around 98,000
points on average. Precise point-wise annotations of 32 semantic classes are provided for fine-grained
3D scene understanding. It includes 12 LiDAR point cloud sequences (sequence 00 to 11) and has
19,840 point clouds for training following the authors’ instructions [23]].

SemanticKITTI [2] is a comprehensive autonomous driving dataset consisting of LIDAR acquisitions
of famous KITTI Vision Odometry Benchmark [[7, [8]. The LiDAR point clouds are captured in
Karlsruhe (Germany) by a 64-beam LiDAR sensor, with point-level annotations over 19 semantic
classes. It includes 22 LiDAR point cloud sequences that are split into a train set (sequence 00 to
10, where 08 is used for validation) and a test set (sequence 11 to 21). Following [17} 18] 24, [25]],
we do not use the test set, and only use the train set for training and validation in all experiments.

SemanticPOSS [15]] consists of 2,988 real-world scans with point-level annotations over 14 semantic
classes. The data is collected in Peking University and uses the same data format as SemanticKITTI.
It includes 6 LiDAR point cloud sequences (sequence 00 to 05) and we use the sequence 03 for
validation and the remaining sequences for training based on the official benchmark guidelines [[15].

nuScenes [3] is another large-scale LIDAR segmentation dataset widely adopted in academia. It
provides 1,000 driving scenes, where each scene is collected by a 32-beam LiDAR sensor from
Boston and Singapore. We follow the official train and val sample splittings. The total number of
LiDAR scans is 40000. The training and validation sets contain 28130 and 6019 scans, respectively

Class mapping. To ensure all tasks are well-defined, we formalize consistent and compatible
semantic class vocabulary across the above datasets, ensuring there is a one-to-one mapping be-
tween all semantic classes. Table summarizes the unified label space for SynLiDAR [25]],
SemanticKITTI [2], SemanticPOSS [15], and nuScenes [3]]]

A.2 Training details

Model configuration. For our main experiments, we employ two common network architectures:
MinkNet [4] and SPVCNN [20]. The voxel size /A1 = 0.05 for training and we adopt coordinates
and intensity of point clouds as input features. For non-voxelization backbones, we set the range
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SynLiDAR  SemanticKITTI SemanticPOSS  nuScenes Lo 84
car car car vehicle.car 1 1 1
moving-car
bicycle bicycle bike vehicle.bicycle 2 2
truck trudf 4
moving-truck
motorcycle motorcycle 3
bus bus 5
moving-bus
sidewalk sidewalk flat.sidewalk 11 4
female human.pedestrian.adult
male person 1 person human.pedestrian.police_officer 6 3 2
kid moving-person 2+ person human.pedestrian.child
human.pedestrian.construction_worker
vegetation vegetation plants 15 8
road foad . ground flat.driveable_surface 9 5 3
ane-marking
terrain terrain flat.terrain 17 5
other-ground  other-ground flat.other 12
pole pole pole 18 10 6
other-vehicle
on-rails 5
other-vehicle  moving-on-rails
moving-other
building building building 13
. . bicyclist
bicyclist mozing—bicyclist 7 4
trunk trunk trunk 16
traffic sign 1
traffic-sign traffic-sign traffic sign 2 19 11 6
traffic sign 3
parking parking 10 3
motorcyclist motqrcychst . 8 4
moving-motorcyclist
fence fence fence 14 7 6
garbage-can garbage-can 12
traffic-cone cone/stone movable.trafficcone 13
rider 4
static.manmade 6

Table Al: Unified label space for SynLiDAR, SemanticKITTI, SemanticPOSS, nuScenes: there are
over 50 object categories and we list them for individual datasets. In details, we also list training IDs

for SynLiDAR ~% KITTI, SynLiDAR ~2 POSS, KITTI - nuScenes, and nuScenes — KITTL

image size to 1024 x 64 for SalsaNext [5] (range-view). We extract point features and set the grid size
to (480, 360, 32) for PolarNet [26] (bev-view). All these networks start from randomly initialized
weights. As for ASFDA and ADA settings, we have an additional warm-up stage, i.e., the network is
pre-trained on the corresponding source domain for 10 epochs with the standard cross-entropy loss.

Training configuration. All methods are implemented using PyTorch [16] on a single NVIDIA
Tesla A100 GPU. We utilize the SGD optimizer with an initial learning rate of 0.01. The training
process spans 50 epochs and a cosine learning rate decay schedule is also applied for stable training.
Both source and target data have a batch size of 16. For our voxel-centric active learning baseline, we
maintain Ay = 0.25 for the selection process, unless otherwise specified.

B Additional experimental results

B.1 Computation cost and annotation cost

As previously discussed in the method section, striking a balance between computation cost and
annotation cost is a crucial challenge in active learning. In Table we provide a comprehensive
breakdown of the computation cost for the SynLiDAR — KITTI task. This highlights the ability of
Annotator to achieve an optimal equilibrium between high performance and low cost, encompassing
both computation and annotation expenses. In the future, we are committed to exploring even more
efficient strategies to further reduce the costs associated with both computation and annotation.



phase total epoch \ running time (hour) mloU

pre-train on SynLiDAR 10 2.34 22.0
active learning 50 18.04 53.7
active source-free domain adaptation 50 18.39 54.1
active domain adaptation 50 28.48 57.7

Table A2: Computation cost analysis for the SynLiDAR — KITTI task.

training loss validation loss
— SynLiDAR2POSS_MinkNet_AL = SynLiDAR2POSS_MinkNet_ASFDA — SynLiDAR2POSS_MinkNet_AL = SynLiDAR2POSS_MinkNet_ASFDA

Step Step
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Figure Al: Training and validation loss curves on the task of SynLiDAR — POSS under AL and
ASFDA settings (MinkNet [4]).

B.2 Training curves

In Figure [AT] we present the training and validation loss curves for the SynLiDAR — POSS task
under both AL and ASFDA settings. Both training loss and validation loss consistently decrease over
time, indicating effective model training. Notably, the final validation loss is smaller than the training
loss, suggesting a lack of overfitting. Another interesting observation is that the validation loss of the
ASFDA approach is smaller than that of the AL approach, underscoring the potency of the auxiliary
model in enhancing model performance.

B.3 Comparison with existing active learning methods

We report mloU results across existing AL approaches in Table[A3] Notably, while LESS [13] obtains
the best results with the fewest point labels, it does so by incorporating a complex pre-segmentation
stage. In contrast, Annotator with a simpler baseline manages to deliver promising results.

Method Budget | MinkNet SPVCNN  Cylinder3D
ReDAL [23] 1% 47.5 48.5 -
LiDAL [10] 1% 37.8 42.6

LESS [13]] 0.01% - - 61.0
Annotator 0.1% 53.7 52.8 -

Table A3: Performance comparison on the SemanticKITTI val under active learning setting.

Method \Randorn Entropy Margin SSDR-AL Annotator
Total budget | 40.9% 46.7%  43.0% 11.7% 9.9%

Table A4: Comparing the percentage of labeled points required to achieve 90% accuracy on S3DIS
dataset for different active learning methods.

B.4 Comparison with indoor semantic segmentation methods

Following SSDR-AL [19], we apply Annotator to indoor semantic segmentation task and conduct
experiments on the S3DIS [[1] dataset. In Table[A4] we compare the percentage of labeled points
required to achieve 90% accuracy across various methods based on RandLA-Net [9]]. It’s noteworthy



that Annotator is able to annotate 1.8% fewer points than SSDR-AL in achieving the 90% performance
of the fully-supervised method.

B.5 Per-class performance

Table[A3]and Table[A6] provide the class-wise IoU scores on two real-to-real tasks using MinkNet [4]
for different algorithms and comparison results with state-of-the-art DA methods [12} 14} 17, (18| 22].

Table[A7]- [AT0]provide the detailed class-wise IoU scores based on SPVCNN [20].

Model \vehicle person road sidewalk terrain manmade vegetation \ mloU
Source-Only \ 47.1 1.6 526 14.6 2.0 33.3 47.9 \ 284
Mix3D [14] 33.7 11.2  58.5 12.9 5.3 50.4 48.6 31.5
CoSMix [17] | 359 0.0 58.1 11.6 9.0 45.2 49.1 29.8
g SN [22]] 214 0.0 605 15.1 6.2 31.9 45.7 25.8
RayCast [[12] | 28.8 0.0 593 16.1 12.5 49.7 49.8 30.9
LiDOG [18] 24.0 149 70.6 24.6 14.0 453 50.9 349
Random 83.4 157 90.7 485 65.0 81.2 77.6 66.0
— Entropy [21] | 86.2 0.0 88.1 38.1 64.8 72.8 67.8 59.7
< Margin [[11] 82.6 0.0 86.3 38.0 60.4 78.9 75.0 60.2
Annotator 88.1 44.2 919 56.7 67.1 75.5 69.5 70.4
« Random 85.0 237 899 486 65.3 81.6 78.0 67.5
E Entropy [21]] | 86.3 0.0 883 42.8 64.3 73.9 66.3 60.3
2 Margin [11] 81.7 0.0 86.1 39.0 58.1 77.0 72.4 59.2
Annotator 88.5 49.6 92.5 58.6 68.7 717.7 71.0 72.4
Random 83.6 51.6 919 56.4 64.5 80.9 75.0 71.9
g Entropy [21] | 86.2 59.2 90.2 539 66.3 80.3 75.5 73.1
< Margin [11] 88.5 46.8 91.7 58.1 65.0 78.4 71.2 714
Annotator 88.8 586 93.1 62.6 68.4 82.4 77.3 75.9
Target-Only \ 89.2 732 956 714 75.2 87.9 85.1 \ 82.5

Table AS: Per-class results on task of KITTI — nuScene (MinkNet [4]]) using only 5 voxel budgets.
DA results are reported from [[18]].

B.6 Additional qualitative results

In order to provide more qualitative insights, we show the error maps that depict the differences
between our model’s predictions and the Ground-Truth labels. These error maps are showcased on
the KITTI val set and models are trained on the adaptation tasks of SynLiDAR — KITTI (Figure[A2)
and nuScenes — KITTI (Figure[A3), respectively. It is important to emphasize that Annotator (ADA)
emerges as the top-performer, capitalizing on the advantages of pre-trained models and the presence
of annotations in the source domain.



Model ‘vehicle person road sidewalk terrain manmade vegetation ‘ mloU

Source-Only \ 44.1 43 676 394 349 41.2 10.5 \ 34.6
Mix3D [14] 37.9 6.7 420 5.7 27.6 41.2 65.4 324
CoSMix [17] | 44.6 139 36.1 10.2 29.3 54.4 69.1 36.8

é SN [22] 25.7 5.5 19.6 2.2 23.5 27.7 61.1 23.6
RayCast [12]] | 28.3 16.1 458 9.4 20.6 38.6 61.8 31.5
LiDOG [18] 60.1 9.0 474 16.4 32.6 54.2 68.8 41.2
Random 95.5 00 862 703 74.1 83.3 86.8 70.9

- Entropy [21] | 96.4 0.0 843 689 75.7 82.8 87.0 70.7

< Margin [11]] 94.8 353 836 688 65.2 80.8 83.0 73.1
Annotator 96.9 339 868 734 73.3 86.5 87.0 76.8

« Random 94.3 0.0 850 675 72.1 83.1 86.3 69.7

E Entropy [21] | 95.6 0.0 837 665 73.1 79.8 85.0 69.1

2 Margin [11]] 94.1 24.6 82.1 66.4 64.2 78.8 82.1 70.3
Annotator 96.6 21.9 88.5 75.7 74.1 84.2 86.1 75.3
Random 95.1 426 887 700 69.8 75.3 81.5 74.7

g Entropy [21] | 96.0 322 862 69.1 70.8 79.6 84.0 74.0

< Margin [11] 94.5 596 894 694 70.2 74.5 79.6 76.7
Annotator 95.8 66.1 885 749 75.9 84.2 86.9 81.8

Target-Only \ 97.6 60.6 90.7 793 76.5 89.1 89.2 \ 83.3

Table A6: Per-class results on task of nuScenes — KITTI (MinkNet [4]) using only 5 voxel budgets.
DA results are reported from [[18]].
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Source-Only | 67.1 69 228 05 59 301 569 42 183 63 311 03 308 118 639 299 429 255 41 | 242
Random 922 00 104 258 185 236 00 08 852 232 694 12 832 445 862 568 731 548 278 | 409

Entropy [21] | 944 61 562 679 386 572 724 00 803 222 641 32 836 445 864 587 727 587 350 527
Margin [L1 904 00 342 539 312 458 68.1 0.0 805 194 668 02 793 463 823 568 644 515 232 | 471
Annotator 939 1.6 499 489 364 502 718 0.1 862 246 723 14 866 531 864 631 725 617 428 | 52.8

AL

< Random 928 00 0.0 333 246 1.I 00 00 90.0 357 761 00 869 525 87.1 593 754 579 229 | 41.7
E Entropy [21] | 951 1.0 59.8 623 440 554 773 1.0 772 184 603 0.1 826 445 849 595 704 600 36.1 | 52.1
2 Margin [11 90.7 1.6 456 632 314 486 63.8 0.0 8.0 276 705 00 81.5 481 841 574 699 548 232 | 499
Annotator 945 10.6 476 719 435 539 67.1 00 869 246 734 18 858 511 856 641 71.6 60.8 417 | 54.6
Random 923 109 407 423 288 508 719 0.0 881 275 738 25 843 496 836 596 699 542 386 | 51.0
é Entropy [21] | 942 16.1 533 60.1 392 614 798 22 824 186 654 14 817 46.1 838 61.0 652 551 353 | 5238

Al

Margin [11 92.1 1.0 569 475 321 507 828 00 845 255 685 02 783 540 817 578 648 522 318 | 50.7
Annotator 947 148 567 568 453 604 79.0 13 873 286 730 18 854 543 839 652 665 60.0 409 | 55.6

Target-Only | 96.7 256 73.6 810 615 736 909 02 930 461 799 0.1 899 587 868 673 715 651 488 | 63.7

Table A7: Per-class results on task of SynLiDAR £> KITTI (SPVCNN [20]]) with 5 voxel budgets.

Model | car bike pers. rider grou. buil. fence plants trunk pole traf. garb. cone. | mloU
Source-Only | 51.7 3.1 467 460 800 577 372 664 292 288 1.1 213 123 ] 370
Random 353 439 377 92 770 678 425 707 278 288 215 0.0 0.0 35.5
- Entropy [21] | 24.1 359 350 226 784 612 421 719 144 221 152 160 18.6 | 352
< Margin [IT] | 335 413 551 47.0 784 544 366 670 417 275 233 201 314 | 429
Annotator 31.6 449 564 468 787 658 504 732 32,6 269 362 16.1 237 | 449
< Random 383 48.1 445 168 767 689 467 71.1 208 302 296 0.0 0.0 37.8
E Entropy [21] | 345 427 544 394 776 666 397 713 190 275 315 23 199 | 40.5
(2 Margin [11] | 32.7 44.1 57.6 522 779 593 428 703 41.6 334 314 229 164 | 448
Annotator | 42.8 493 587 529 762 674 527 714 269 315 337 160 37.6 | 475
Random 51.8 448 550 47.1 754 696 516 712 323 273 202 2.1 1.3 423
a‘: Entropy [21] | 545 427 653 576 794 608 550 702 292 288 187 5.0 405 | 468
< Margin [11] | 36.8 30.0 655 581 814 651 442 707 374 315 254 355 306 | 47.1
Annotator 642 40.8 62.1 557 7178 675 572 708 312 353 285 243 46.2 | 50.9

Target-Only | 465 573 69.6 539 798 796 60.5 809 379 323 324 161 176 | 519

Table A8: Per-class results on task of SynLiDAR 1% poss (SPVCNN [20]]) with 5 voxel budgets.



Model | vehicle person road sidewalk terrain manmade vegetation | mloU

Source-Only \ 344 02 297 8.5 6.5 25.9 44.0 \ 21.3
Random 82.8 319 87.6 41.2 59.3 77.8 74.8 65.0

— Entropy [21] | 77.9 363 856 289 58.3 73.6 68.5 61.3
< Margin [[11] 77.9 204 84.3 34.6 48.8 71.7 67.3 57.8
Annotator 85.9 470 923 576 65.8 77.9 73.4 71.4

« Random 83.8 349 889 454 59.5 79.3 76.5 66.9
E Entropy [21]] | 87.6 344 874  36.6 60.1 80.3 75.7 66.0
2 Margin [L1] | 77.6 251 854  40.6 54.8 70.9 67.7 60.3
Annotator 88.4 46.8 92.8 58.7 66.4 78.1 73.8 72.1
Random 84.1 27.1 91.0 53.0 55.1 72.1 67.9 64.3

é Entropy [21] | 89.7 442  89.8 51.3 53.7 71.7 63.7 66.3
< Margin [L1] | 85.4 171 918 550 55.3 72.1 65.8 63.2
Annotator 89.5 50.2 921 575 66.3 78.6 72.2 72.3
Target-Only ‘ 93.1 71.7 94.6 66.3 72.1 87.0 84.0 ‘ 81.3

Table A9: Per-class results on task of KITTI z nuScene (SPVCNN [20]]) with 5 voxel budgets.

Model \ vehicle person road sidewalk terrain manmade vegetation \ mloU
Source-Only | 657 445 562  32.6 30.5 53.2 470 | 471
Random 94.2 00 847 68.1 73.9 84.4 87.6 70.4
- Entropy [21] | 94.2 13.0 79.0 604 73.1 80.8 85.8 69.5
< Margin [11] | 93.6 294 840  69.9 64.4 81.4 83.5 72.3
Annotator 96.7 482 879 74.6 75.8 85.8 87.8 79.5
< Random 94.3 35 816 608 68.8 81.9 85.7 68.1
E Entropy [21]] | 95.1 11.0 772  55.6 69.5 78.8 84.5 67.4
2 Margin [L1] | 925 329 850 705 65.2 81.6 83.1 73.0
Annotator 96.7 554 877 753 75.6 85.5 87.5 80.5
Random 94.1 395 889 73.0 71.3 80.0 83.4 75.8
g Entropy [21] | 90.2  63.6 842 709 65.9 66.5 66.6 72.6
< Margin [11] | 927 586 882 710 69.3 71.4 75.3 75.3
Annotator 95.0 550 86.5 69.0 74.9 82.8 86.0 78.4
Target-Only | 980 717 910 799 74.6 90.5 89.0 | 85.0

Table A10: Per-class results on task of nuScenes 1> KITTI (SPVCNN [20]) with 5 voxel budgets.
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Figure A2: Visualization of error maps for the task SynLiDAR L2 KITTI (MinkNet [4]). From left
to right: Ground-Truth, Target-Only, Source-Only, our Annotator under AL, ASFDA, and ADA are
shown one by one. The correct and incorrect predictions are painted in blue and red to highlight the
differences. Best viewed in color.
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Figure A3: Visualization of error maps for the task nuScenes l) KITTI (MinkNet [4]]). From left
to right: Ground-Truth, Target-Only, Source-Only, our Annotator under AL, ASFDA, and ADA are
shown one by one. The correct and incorrect predictions are painted in blue and red to highlight the
differences. Best viewed in color.
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Public Resources Used

We acknowledge the use of the following public resources, during the course of this work:
« SynLiDAR| ... ..o MIT License
e SemanticKITTIE ........ ... ... .. ... ... .. CCBY-NC-SA 4.0
e SemanticKITTI-APE ........ .. ... . . MIT License
e SemanticPOSS ... ... CC BY-NC-SA 3.0
© NUSCENEST ..ttt CC BY-NC-SA 4.0
. nuScenes-derilE] ............................................... Apache License 2.0
* Minkowski Engine{Z] ................................................... MIT License
« SPYNASH ..o MIT License
@ PCSe@| Apache License 2.0
e LaserMix[T] .. ..o CC BY-NC-SA 4.0
« GIPSOT ... GNU General Public License v3.0
o SalsaNel™ . ..o MIT License
e PolarNe(D] . ... . BSD 3-Clause License
« RIPUM Lo MIT License
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