
Algorithm 1: Message passing GNN with L layers decomposed in three operations
Input: A directed graph G with d nodes, adjacency matrix A and node features X.
Output: H = {hL

i }di=1.
h
0
i = xi 8i

for l = 1, . . . , L; // For each layer l

do
for i = 1, . . . , d; // For node i

do
m

l
ij = f

m(hl�1
i , h

l�1
j ; ✓lm) 8j 2 Ni; // Compute the messages

M
l
i = f

a({ml
ij | j 2 Ni}) ; // Compute the aggregated message

h
l
i = f

u(hl�1
i ,M

l
i ; ✓

l
u) ; // Compute the node features at layer l

end
end

A Background details on message passing Graph Neural Networks546

Let us refer as feature a vector with dimension F that belongs to RF . A directed graph with d547

nodes can be represented as G := (X,E), where X 2 Rd⇥FX denotes the features of the nodes (the548

row index identifies the node, i.e., the i-th row contains the FX -dimensional features of the node i)549

and E ✓ {(i, j) | i 2 [d], j 2 [d]} denotes the set of directed edges in the graph from j to i. The550

adjacency matrix A 2 {0, 1}d⇥d of G is defined as Aij = 1 if there is an edge from j to i and Aij = 0551

otherwise. Then, a directed graph can be alternatively represented as G = (X,A). Given a graph G,552

a Graph Neural Network (GNN) with parameters ✓ is a function f✓ : Rd⇥FX ⇥ {0, 1}d⇥d ! Rd⇥FH553

that takes into account the graph structure contained in the adjacency matrix A 2 {0, 1}d⇥d and554

transforms the node features X into different features H 2 Rd⇥FH , i.e., H = f(X,A; ✓) (for555

readability we consider f✓(·) ⌘ f(·; ✓)). Importantly, at the output of the GNN we have a graph556

(H,E) that preserves the structure of the input graph (X,E).557

A GNN based on message passing [12] is a type of spatial convolution GNNs [55] in which558

information is passed following the message passing process: In each layer l of the GNN each node i559

receives information from its neighbors Ni, a.k.a. the parents of i. In a message passing GNN, the560

feature vector of the i-th node at the output of a layer l—i.e., hl
i—is computed in three steps:561

1. Message. The message from node j to node i is defined as m
l
ij = f

m(hl�1
i , h

l�1
j ; ✓lm),562

where h
l�1
i are the features of node i at layer l � 1, hl�1

j are the features of node j at the563

previous layer l� 1, and f
m is a neural network (usually a linear layer) parametrized by ✓

l
m.564

2. Aggregator. The aggregator is a function in charge of combining all the incoming565

messages at each node i into a single message, a.k.a. the aggregated message M
l
i =566

f
a({ml

ij | j 2 Ni}). Notice that fa does not have any parameters. Some choices of fa are567

the mean, standard deviation, max or min over the inputs, i.e., messages [8].568

3. Update. The update function h
l
i = f

u(hl�1
i ,M

l
i ; ✓

l
u) takes the aggregated message and the569

representation of node i at layer l � 1 and outputs the new representation for node i at layer570

l. The function f
u is defined as a neural network (usually a linear layer) with parameters ✓lu.571

Putting the three steps together, we obtain the general form of a message passing based GNN layer as572

h
l
i = f

u
�
h
l�1
i , f

a
�
{fm(hl�1

i , h
l�1
j ; ✓lm) | j 2 Ni}

�
; ✓lu

�
. Algorithm 1 describes the propagation573

of information (i.e., messages ) in a GNN with L layers.574

B Proofs575

For the sake of completeness, in this section we first formalize the meaning of causal factorization,576

interventions and the abduction step in VCAUSE.577
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VCAUSE causal factorization refers to the factorization of the joint distribution as578

p✓(X | Z,A) =
Y

i

p✓i(Xi;⌘i),

where the likelihood parameters ⌘i = ⌘i(Zan⇤(i)) are a function of all (and only) the features of the579

ancestors of i and the features of i.580

A VCAUSE intervention is performed by removing all the edges towards the intervened node i, such581

that Ni = ?, while the rest of the edges remains untouched.582

In a VCAUSE abduction step, the posterior distribution factorizes as583

q�(Z | X) =
Y

i

q�i
(Zi;⌘

enc
i ),

where the distribution parameters ⌘enc
i = ⌘enc

i (Xpa⇤(i)) are a function of all (and only) the features584

of node i and the features of its the parents.585

Notation. Consider a causal graph G := (X,E), which is a directed acyclic graph (DAG). Let us586

define a path of length n from node u to node v in G as p(u, v) = (u,w1, w2, . . . , wn�1, v), which587

is an ordered sequence of unique nodes such that i) there exists an edge in G between concurrent588

nodes, ii) the first node is u, iii) and the last node is v. We refer to the length of the path as |p(u, v)|,589

i.e., the number of edges in the path, or alternatively, the number of nodes minus one. Let us define590

P (u, v) as the set of unique paths connecting u to v. Let us define the shortest path from u to v591

as p�(u, v) (i.e. the path with the minimum number of edges to go from u to v) and its length as592

d
�(u, v) = |p�(u, v)|. Let us define the longest path from u to v as p+(u, v) (i.e. the path with the593

maximum number of edges to go from u to v) and its length as d+(u, v) = |p+(u, v)|. Let us define594

the set of ancestors of node i (i.e., an(i)) as the set of nodes with paths to i, i.e., {j | |P (j, i)| > 0}.595

As for a GNN, we define the number of hidden layers (total number of layers minus one) as Nh.596

Then, we define the diameter � of the graph G to be the length of the longest shortest path and � to be597

the length of the longest path of the graph, which we compute as598

� = max
u,v2G

d
�(u, v) and � = max

u,v2G
d
+(u, v).

Lemma 1. A message passing Graph Neural Network (GNN) has at least Nh hidden layers if and599

only if the output feature of every node i (i.e., h
Nh+1
i ) receives information from any other node j via600

paths p(j, i) such that |p(j, i)|  Nh + 1.601

Proof. Step 1. The statement is that the feature of every node i at the output of a GNN with Nh602

hidden layers (i.e., hNh+1
i ) receives information from any other node j via paths p(j, i) such that603

|p(j, i)|  Nh + 1. We give a proof by induction on Nh for an arbitrary node i, with input feature to604

the GNN h
0
i and output feature h

Nh+1
i .605

Base case: The statement holds for Nh = 0. By definition, a message passing GNN with one layer606

only exchanges messages between neighboring nodes. Hence, i) the output feature of node i is607

h
1
i = f({h0

i } [ {h0
j |j 2 Ni}; ✓), which is only a function of the 1-hop ancestors (i.e., parents); ii)608

information is exchanged via paths that fulfill |p(j, i)|  1.609

Inductive step: We assume the statement holds for Nh = k � 1. In this case, i) the output feature610

of node i is hk
i = f({hk�1

i } [ {hk�1
j |j 2 Ni}; ✓), which is a function of the k-hop ancestors; ii)611

information is exchanged via paths that fulfill |p(j, i)|  k. For Nh = k, the output feature of node i612

is hk+1
i = f({hk

i } [ {hk
j |j 2 Ni}; ✓). Since hk

j is a function of k-hop ancestors of node j, it follows613

that hk+1
i is a function of the ancestors of hk

j and on parents of node i, i.e., the output feature of node614

i is a function of its (k + 1)-ancestors. Then, it follows that for Nh = k, information is exchanged615

via paths that fulfill |p(j, i)|  k + 1.616

Step 2. We assume that the output feature of every node i receives information from any other617

node j via paths p(j, i) such that |p(j, i)|  Nh + 1. Then, there exist node i and j such that618

|p(j, i)| = Nh + 1. Then, by definition, a message passing GNN needs at least Nh hidden layers to619

capture paths p(j, i) with length |p(j, i)|  Nh + 1.620
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Remark. Lemma 1 implies that, for a given GNN with Nh hidden layers, the set of paths through621

which the output feature of node i is a function of node j is622

PGNN(j, i) = {p(j, i) | p(j, i) 2 P (j, i) and |p(j, i)|  Nh + 1}. (7)

Additionally, if |PGNN(j, i)| = ? then the output feature of node i is not a function of node j.623

Proposition 1 (Causal factorization). VCAUSE satisfies causal factorization, p✓(X | Z,A) =624 Q
i p✓i(Xi | Zan⇤(i)), if and only if the number of hidden layers in the decoder is greater or equal625

than � � 1, with � being the length of the longest shortest path between any two endogenous nodes.626

Proof. Consider a causal graph G := (X,E) with diameter � and a GNN decoder with Nh hidden627

layers. We assume VCAUSE to satisfy causal factorization, i.e., ⌘i is a function Zan⇤(i) for all i.628

Therefore, there exist node i and j such that d�(j, i) = � (notice that this implies that j is an ancestor629

of i). Thus, by Lemma 1, the GNN decoder has Nh � � � 1 hidden layers. The converse is true630

because Lemma 1 is a bi-conditional statement.631

Proposition 2 (Causal interventions). VCAUSE captures causal interventions if and only if the632

number of hidden layers in its decoder is greater than or equal to � � 1, with � being the length of633

the longest path between any two endogenous nodes in G.634

A causal intervention involves to severe all the incoming edges to the intervened nodes. Thus,635

VCAUSE can only capture causal interventions, if it can model all the causal paths, i.e., PGNN(j, i) =636

P (j, i) 8i, j. Otherwise, severing some path will have no effect in the resulting intervention, as we637

prove next.638

Proof. Consider a causal graph G := (X,E) with length of the longest path between two nodes �639

and a GNN decoder with Nh hidden layers. We assume that the GNN decoder models all the causal640

paths, i.e., PGNN(j, i) = P (j, i) 8i, j. By definition of �, there exists at least one node i with an641

ancestor j such that d+(j, i) = �. Thus, by Lemma 1, the GNN decoder has Nh � � � 1 hidden642

layers. The converse is true because Lemma 1 is a bi-conditional statement.643

Proposition 3 (Abduction). The abduction step of an observed sample x = {x1, . . . , xd} in644

VCAUSE satisfies that for all i the posterior of Zi is independent on the subset {xj}j 62pa⇤(i) ✓ x, if645

and only if the encoder GNN has no hidden layers.646

Proof. Consider a causal graph G := (X,E) and a GNN encoder with Nh hidden layers. We assume647

the posterior of Zi is independent on the subset {xj}j 62pa⇤(i) ✓ x, i.e., the parameters ⌘enc
i (the648

output of the GNN) is a function of {xj}j2pa⇤(i). Then, the GNN only models paths p(j, i) such649

that d+(j, i) = 1. It follows, by Lemma 1, that the number of hidden layers of the encoder GNN is650

Nh = 0. The converse is true because Lemma 1 is a bi-conditional statement.651

C VCAUSE implementation details652

In this section, we extend Section 4.4 and provide further details about the implementation of653

VCAUSE for complex real-world datasets and causal graphs.654

C.1 Heterogeneous endogenous variables655

As described in Appendix A, each layer l of a GNN uses the same parameters ✓ = {✓lm, ✓
l
u}656

(corresponding to f
m and f

u) to update the features of every node, i.e., hl
i = f({hl�1

i } [ {hl�1
j |657

j 2 Ni}; ✓) with f✓ being reused for all i. Nonetheless, the structural equations of an SCM define658

a unique function fi for each node (see Property 1). To mimic this behavior, we will rely on port659

numbering. In particular, for a given causal graph G, we uniquely identify each node with an index i660

and each edge with the pair of indexes of the nodes it connects. Then, we define a disjoint GNN layer661

by the following characteristics:662

• The node indexes define unique update functions fu
i for each node, with parameters ✓ui.663

• The edge indexes define unique message functions fm
ij for each edge, with parameters ✓mij .664

16



Figure 6: Heterogeneous VCAUSE decoder architecture.

Figure 7: Heterogeneous VCAUSE encoder architecture.

Consequently, parameters are not shared among nodes and we can mimic the diversity of the structural665

equations of an SCM and model heterogeneous endogenous variables. In our GitHub repository, we666

present a PyTorch Geometric implementation of the disjoint GNN layer.667

C.2 Heterogeneous causal nodes668

Assume an SCM with d endogenous variables. As described in Section 4.4, is it possible to model an669

endogenous variable Xi of the SCM as a heterogeneous node, i.e., Xi = {Xi1, . . . , Xiki
}, where ki670

is the number of random variables in node i. In this section we describe the implications this has on671

the design of the encoder and decoder of VCAUSE.672

Implications for the decoder. Given the heterogeneous nature of the nodes, the likelihood of673

VCAUSE factorizes as follows674

p✓(X | Z) =
dY

i=1

p✓i(Xi;⌘i) =
dY

i=1

kiY

j=1

p✓i(Xij ;⌘ij) where ⌘i = ⌘i(Zan⇤(i)) and ⌘ij = ⌘ij(Zan⇤(i)).

Note, each p(Xij ;⌘ij) can be model with a different distribution, e.g., Gaussian or categorical. This675

implies that the likelihood parameters ⌘ij may differ for each random variable Xij dependent on676

its type of distribution. However, the decoder GNN transforms the latent features into different677

features H 2 Rd⇥Fh , where the feature vector of each node i has the same dimensionality Fh. As678

a consequence, H cannot model the diversity in the likelihood parameters ⌘i. To overcome such679

limitation, we add at the output of the GNN decoder a neural network (NN) per node i with parameters680

✓
dec
i . Such a NN transforms hi, i.e. the output features of node i, into the set of likelihood parameters681

of each node ⌘i = {⌘ij}
ki

j=1, such that the likelihood parameters of each random variable ⌘ij satisfy682

the constraints of the corresponding likelihood p(Xij ;⌘ij) (e.g., non-negativity of variance for a683

Gaussian distribution). See Figure 6 for an illustration.684

Implications for the encoder. Due to the heterogeneous nature of nodes, each endogenous variable685

Xi = {Xi1, . . . , Xiki
}, can have a different number of random variables ki and thus the node i686

corresponding to it in the GNN will have features of different dimensions. However, as described687

in Appendix A, a GNN takes as input in general a matrix feature X 2 Rd⇥Fxenc . This implies,688

the features of every node share the same dimensionality Fxenc . To overcome this limitation, we689

include for each node i a neural network (NN) with parameters ✓enci that transforms the corresponding690

heterogeneous random variable Xi into a feature vector with the dimension Fxenc . See Figure 7 for691

an illustration.692
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D Experiments: setting, metrics and further results693

This section provides a complete description of the experimental set-up, including the (semi-)synthetic694

datasets (Section D.1), training of VCAUSE , MultiCVAE [17] and CAREFL [18] (Section D.2) and695

metrics reported in the experiments (Section D.3).696

D.1 Datasets697

The following (semi-)synthetic datasets are taken from or inspired by [17]. The distribution of698

exogenous variables p(U) for triangle, chainand collider follows Table 4 with with MoG denoting a699

mixture of Gaussian distributions.700

Table 4: Distribution of exogenous variables p(U) for SCM triangle, chain, collider.

SCM p(U1) p(U2) p(U3)

LIN MoG(0.5N (�2, 1.5) + 0.5N (1.5, 1)) N (0, 1) N (0, 1)
NLIN MoG(0.5N (�2, 1.5) + 0.5N (1.5, 1)) N (0, 0.1) N (0, 1)
NADD MoG(0.5N (�2.5, 1) + 0.5N (2.5, 1)) N (0, 0.25) N (0, 0.0625)

Collider. The collider is a synthetic dataset, which consists of 3 endogenous variables. The structural701

equations are shown in Table 5. Figure 8 illustrates the corresponding causal graph with d = |X| = 3702

nodes, diameter � = 1 and longest path � = 1.703

Table 5: Structural equations F̃ for SCM collider with U ⇠ p(U) in Table 4. Function sgn(x) is
returning an element-wise indication of the sign of x.

SCM f̃1 := X1 f̃2 := X2 f̃3 := X3

LIN U1 U2 0.05X1 + 0.25X2 + U3

NLIN U1 U2 0.05X1 + 0.25(X2)
2 + U3

NADD U1 U2 �1 + 0.1 sgn(U3)((X1)
2 + (X2)

2)U3

X3

X2X1

Figure 8: Causal graph for variables X of SCM collider.

Triangle. The triangle is a synthetic dataset, which consists of 3 endogenous variables. The structural704

equations are shown in Table 6. Figure 9 illustrates the corresponding causal graph with d = |X| = 3705

nodes, diameter � = 1 and longest path � = 2.706

Table 6: Structural Equations F̃ for SCM triangle with U ⇠ p(U) in Table 4. Function sgn(x) is
returning an element-wise indication of the sign of x.

SCM f̃1 := X1 f̃2 := X2 f̃3 := X3

LIN U1 �X1 + U2 X1 + 0.25X2 + U3

NLIN U1 �1 + 3
(1+exp(�2X1))

+ U2 X1 + 0.25(X2)
2 + U3

NADD U1 0.25 sgn(U2) ⇤ (X1)
2(1 + (U2)

2) �1 + 0.1 sgn(U3)((X1)
2 + (X2)

2) + U3
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X1

X3X2

Figure 9: Causal graph for variables X of SCM triangle.

Chain. The chain is a synthetic dataset, which consists of 3 endogenous variables. The structural707

equations are shown in Table 7. Figure 10 illustrates the corresponding causal graph with d = |X| = 3708

nodes, diameter � = 2 and longest path � = 2.709

Table 7: Structural Equations F̃ for SCM chain with U ⇠ p(U) in Table 4. Function sgn(x) is
returning an element-wise indication of the sign of x.

SCM f̃1 := X1 f̃2 := X2 f̃3 := X3

LIN U1 �X1 + U2 0.25 ⇤X2 + U3

NLIN U1 �1 + 3
(1+exp(�2X1))

+ U2 0.25 ⇤ (X2)
2 + U3

NADD U1 0.25 sgn(U2)(X1)
2(1 + (U2)

2) �1 + 0.1 sgn(U3)((X2)
2) + U3

X1 X2 X3

Figure 10: Causal graph for variables X of SCM chain.

M-graph. The M-graph is a synthetic dataset, which consists of 5 endogenous variables. Here,710

the distributions of exogenous variables follow Ui ⇠ p(Ui) = N (0, 1) 8i 2 1 . . . 5. The structural711

equations are shown in Table 8 and Figure 11 illustrates the corresponding causal graph with712

d = |X| = 5 nodes, diameter � = 1 and longest path � = 1.713

Table 8: Structural Equations F̃ for SCM M-graph with Ui ⇠ p(Ui) = N (0, 1) 8i 2 1 . . . 5.

SCM f̃1 := X1 f̃2 := X2 f̃3 := X3 f̃4 := X4 f̃5 := X5

LIN U1 U2 X1 + U3 �X2 + 0.5X1 + U4 �1.5X2 + U5

NLIN U1 U2 X1 + 0.5(X1)
2 + U3 �X2 + 0.5(X1)

2 + U4 �1.5(X2)
2 + U5

NADD U1 U2 X1 ⇤ U3 (�X2 + 0.5 ⇤ (X1)
2)U4 (�1.5(X2)

2)U5

X4

X2X1

X5X3

Figure 11: Causal graph for variables X of SCM M-graph.

Loan. The loan is a semi-synthetic dataset from [17], which reflects a loan approval setting in the714

real-world inspired by German Credit dataset [10]. It consists of 7 endogenous variables: gender G,715

age A, education E, loan amount L, loan duration D, income I and savings S with the following716

structural equations and distributions of exogenous variables:717
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fG : G = UG, UG ⇠ Bernoulli(0.5)
fA : A = �35 + UA UA ⇠ Gamma(10, 3.5)

fE : E = �0.5 +

✓
1 + e

�
⇣
�1+0.5G+(1+e�0.1A)�1

+UE

⌘◆�1

UE ⇠ N (0, 0.25)

fL : L = 1 + 0.01(A � 5)(5 � A) +G+ UL, UL ⇠ N (0, 4)
fD : D = �1 + 0.1A+ 2G+ L+ UD, UD ⇠ N (0, 9)
fI : I = �4 + 0.1(A+ 35) + 2G+GE + UI , UI ⇠ N (0, 4)
fS : S = �4 + 1.5I{I>0}I + US , US ⇠ N (0, 25)

718

Note, the authors model variables w.r.t. their relative meaning in terms of deviation from the mean.719

See [17] for further details. Figure 12 illustrates the corresponding causal graph with d = |X| = 7720

nodes, diameter � = 2 and longest path � = 3.721

G

A

L D

E I S

Figure 12: Causal graph for variables X of SCM loan.

D.2 Training and cross-validation722

This section details the hyperparameter configurations of VCAUSE , MultiCVAE [17] and [18] for723

the experiments in Tables 1, 2 and Table 12. Across experiments and models we generate synthetic724

datasets consisting of 5000 training samples, 2500 test samples and 2500 validation samples and we725

use a batch size of 1000.726

VCAUSE. We train the ELBO [20] for the encoder and the IWAE [3] with K = 5 for the decoder.727

The objective metric is the IWAE with K = 100. We use the Rectified Linear Unit (ReLU) as728

activation function. For the experiments in Table 1 and 2 we trained with a learning rate ⌘ = 0.005729

for a maximum of 500 epochs, or alternatively until the objective metric does not improve in 50730

epochs. Also, we regularize the training of VCAUSE using a novel parents dropout: randomly731

removing all incoming edges to the nodes with probability p 2 [0, 1). In our experiments, we observe732

that adding this regularization improves overall performance.733

We cross-validated the parents dropout rate with values {0.1, 0.2}, the number of hidden layers of734

the decoder {0, 1, 2} with 16 neurons each and the number of hidden layers in the message passing735

function f
m in the encoder {1, 2} with 16 neurons each. The best models – according to the objective736

metric – are reported in Table 9. We use a latent variable dimension of 4 and a Gaussian likelihood737

with a small variance �
2 = �KLD/2 with �KLD = 0.05.738

MultiCVAE. In [17] the authors propose to train a conditional variational autoencoder (CVAE) for739

each endogenous variable that is not a root node in the causal graph (MultiCVAE). Different from740

[17], our implementation also models non-root nodes as CVAEs, since our goal is to model the joint741

distribution, while [17] target counterfactual distributions for algorithmic recourse only. Additionally,742

we perform the necessary modifications for training on normalized data.743

The configuration of the algorithm is displayed in Table 10. The hyperparameter selection for744

the causal graph triangle with the three different types of structural causal equations (LIN, NLIN,745

NADD) was used as reported by the authors. We also chose the same configuration for chain and746

collider. The hyperparameter selection for the causal graph loan was obtained for all non-root nodes747

({X3, . . . , X7}) using the provided code by [17] sweeping over different configurations as indicated748

by the authors resulting in the configuration with the minimum MMD statistic between real and749

reconstructed samples. As we perform training on normalized data we assume �KLD = 0.05 for all750

SCMs and CVAEs.751

CAREFL. In [18] the authors propose CAREFL, an autoregressive causal flows model for causal752

discovery, which also allows to answer interventional and counterfactual queries. The authors rely753

on real-valued non-volume preserving (real NVP) transformations, since they mainly focus on the754
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Table 9: Hyperparemeter selection for our VCAUSE training for the SCMs on the synthetic datasets
triangle, collider, chain and M-graph and on the semi-synthetic dataset loan. Note, the encoder
architecture refers to the layers in function f

m, while the decoder architecture refers to the different
GNN layers.

SCM Encoder Arch. Decoder Arch. Parents Dropout

c
h

a
in

LIN 1⇥ 16⇥ 16 16⇥ 16⇥ 1 0.2
NLIN 1⇥ 16⇥ 16 16⇥ 1 0.2
NADD 1⇥ 16⇥ 16 16⇥ 16⇥ 1 0.1

c
o

ll
id

e
r LIN 1⇥ 16 16⇥ 16⇥ 1 0.2

NLIN 1⇥ 16 16⇥ 1 0.2
NADD 1⇥ 16 16⇥ 1 0.2

tr
ia

n
g

le LIN 1⇥ 16⇥ 16 16⇥ 1 0.2
NLIN 1⇥ 16⇥ 16 16⇥ 1 0.1
NADD 1⇥ 16⇥ 16 16⇥ 16⇥ 1 0.2

M
-
g
r
a
p
h LIN 1⇥ 16 1 0.2

NLIN 1⇥ 16 16⇥ 16⇥ 1 0.2
NADD 1⇥ 16 16⇥ 16⇥ 1 0.2

loan - 1⇥ 16 16⇥ 16⇥ 16⇥ 1 0.2

Table 10: Hyperparemeter selection for MultiCVAE [17] training for the SCMs on the synthetic
datasets with three nodes (i.e., triangle, collider and chain), M-graph and for the semi-synthetic
dataset loan.

SCM CVAE Encoder Arch. Decoder Arch. Latent Dim.

tr
ia

n
g

le
/

c
o

ll
id

e
r

/
c
h

a
in

LI
N

X1 1⇥ 32⇥ 32⇥ 32 5⇥ 5⇥ 1 1
X2|X1 1⇥ 32⇥ 32⇥ 32 5⇥ 5⇥ 1 1
X3|X1, X2 1⇥ 32⇥ 32⇥ 32 32⇥ 32⇥ 32⇥ 1 1

N
LI

N X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 5
X2|X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 5
X3|X1, X2 1⇥ 32⇥ 32⇥ 32 32⇥ 32⇥ 1 1

N
A

D
D X1 1⇥ 32⇥ 32⇥ 32 32⇥ 32⇥ 1 3

X2|X1 1⇥ 32⇥ 32⇥ 32 32⇥ 32⇥ 1 3
X3|X1, X2 1⇥ 32⇥ 32⇥ 32 5⇥ 5⇥ 1 3

M
-
g

r
a

p
h

LI
N

X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1
X2|X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1
X3|X1, X2 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1

N
LI

N X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1
X2|X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1
X3|X1, X2 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1

N
A

D
D X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1

X2|X1 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1
X3|X1, X2 1⇥ 32⇥ 32 32⇥ 32⇥ 1 1

lo
a

n

X1 1⇥ 5⇥ 5 2⇥ 1 2
X2 1⇥ 5⇥ 5 2⇥ 1 2
X3|X1 1⇥ 5⇥ 5 2⇥ 1 2
X4|X1, X2 1⇥ 3⇥ 3 3⇥ 3⇥ 1 1
X5|X1, X2, X4 1⇥ 5⇥ 5 3⇥ 3⇥ 1 2
X6|X1, X2, X4 1⇥ 3⇥ 3⇥ 3 3⇥ 3⇥ 1 1
X7|X6 1⇥ 5⇥ 5 2⇥ 1 2
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multivariate bi-variate case. As this flow architecture is not suited for general graphs, we use their755

framework with Neural Spline Autoregressive Flows. We have cross validated the number of flows756

{2, 4, 5} and the number of hidden units of the neural networks {10, 32}. The objective metric is the757

log evidence. The final configuration is displayed in Table 11.758

Table 11: Hyperparemeter selection for CAREFL [18] training for different SCMs.

SCM Flows Hidden Units

c
h

a
in

LIN 2 10
NLIN 4 10
NADD 5 32

c
o

ll
id

e
r LIN 2 10

NLIN 2 10
NADD 2 32

tr
ia

n
g

le LIN 2 10
NLIN 5 10
NADD 4 32

M
-
g
r
a
p
h LIN 2 10

NLIN 2 10
NADD 2 10

loan - 4 10

D.3 Performance metrics759

In the following we describe the metrics used to evaluate the performance of VCAUSE in Section 5.760

In all experiments we use (semi-)synthetic datasets with access to samples from the ground truth761

distribution {xi}ni=0 ⇠ P as well as from the estimated distribution {x̂i}ni=0 ⇠ Q.762

For the interventional and counterfactual distribution, we perform a set of interventions763

I = {do(XIj
= ↵j)}j , where Ij 2 [d] and ↵j 2 {�1.0,�0.5, 0.0, 0.5, 1.0} ⇥ �Ij

with �Ij
as764

the empirical standard deviation of the intervened variable XIj
prior to intervention (i.e., in the ob-765

servational distribution). Note that we only intervene on one variable at a time. For each intervention766

in I, we are interested in the estimated distribution of variables causally affected by the intervention767

{Xi|i 2 des(Ij)}, i.e., the set of descendants of the variable intervened. Note that des(Ij) refers to768

the set of indexes of the descendants. It follows that we do not intervene on leaf nodes.769

Mean Maximum Discrepancy (MMD). The Mean Maximum Discrepancy (MMD) [13] is a kernel-770

based distance-measure between two distributions P and Q on the basis of samples from both771

distributions. The smaller the MMD, the more likely it is that the sets of samples are drawn from the772

same distributions, i.e. the better distributions match. Without access to underlying distribution, we773

can compute an unbiased empirical squared MMD estimate using a kernel function k as[13]:774

\MMD
2
(X, X̂) =

1

n(n � 1)

0

@
nX

i=1

nX

j=1

k (xi,xj) +
nX

i=1

nX

j=1

k (x̂i, x̂j) � 2
nX

i=1

nX

j=1

k (xi, x̂j)

1

A .

(8)

In our implementation we use as kernel a mixture of RBF (Gaussian) kernels with different bandwidths775

and sample size n = 1000.776

Estimation squared error for the mean (MeanE). For the interventional distribution, we compute777

the estimation squared error for the mean (MeanE) as the average (across interventions) of the squared778

difference between the empirical means of the true and estimated interventional distributions (for the779

descendants of the intervened variables):780

MeanE =
1

|I|
X

Ij2I

1

|des(Ij)|
X

i2des(Ij)

⇣
E[X

Ij

i ] � E[X̂
Ij

i ]
⌘2

(9)
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Estimation squared error for the standard deviation (StdE). For the interventional distribution,781

we compute the estimation squared error for the standard deviation (StdE) as the average (across782

interventions) of the squared difference between the empirical standard deviation of the true �̃(X
Ij

i )783

and estimated �̃(X̂
Ij

i ) interventional distributions (for the descendants of the intervened variables):784

StdE =
1

|I|
X

Ij2I

1

|des(Ij)|
X

i2des(Ij)

⇣
�̃(X

Ij

i ) � �̃(X̂
Ij

i )
⌘2

(10)

Mean squared error (MSE). For the counterfactual distribution, we compute the mean squared785

error (MSE) as the average (across interventions) of the pairwise squared difference between true and786

estimated counterfactual values for the descendants of the intervened variable. More in detail, let us787

define the random variable T
Ij as the Frobenius norm of the difference between true x

CF
des(Ij)

and788

estimated x̂
CF
des(Ij)

counterfactual values for the descendants of the intervened variable, i.e.,789

T
Ij = ||xCF

des(Ij)
� x̂

CF
des(Ij)

||22, (11)

Thus, we can compute the counterfactual MSE as:790

MSE =
1

|I|
X

Ij2I

1

|des(Ij)|
E
⇥
T

Ij

⇤
(12)

Standard deviation of the squared error (SSE). Similarly, we can compute the average (across791

interventions) of the standard deviation of the counterfactual squared error as:792

SSE =
1

|I|
X

Ij2I

1

|des(Ij)|
X

i2des(I)

�̃
�
T

Ij

�
, (13)

where �̃
�
T

Ij

�
denotes the empirical standard deviation of T Ij .793

D.4 Additional results794

In the following we present additional results that empirically show the potential of VCAUSE to795

model interventional and counterfactual queries. In particular, we report the results for the collider,796

M-graph, and chain graphs. We remark that the following results are consistent with the ones reported797

in the main manuscript for the triangle and loan.798

Results for interventional distributions. Table 12 (middle columns) reports the MMD, MeanE, and799

StdE for the interventional distribution. In accordance with the results shown in the main manuscript,800

we can observe that i) VCAUSE consistently outperforms other methods in terms of MMD; ii) the801

three methods provide comparable results in capturing the mean of the interventional distribution802

(MeanE); and iii) CAREFL and MultiCVAE often fail to capture the standard deviation of the803

interventional distribution (StdE), while VCAUSE provides a more accurate estimate of the overall804

interventional distribution (as can be easily seen in the MMD).805

Results for the counterfactuals. Table 12 also reports the results for the counterfactual distribution,806

in terms of MSE and SSE. As reported in the main text, we observe that CAREFL provides more807

accurate estimates than VCAUSE and MultiCVAE in terms of MSE, which may be explained by808

the fact that CAREFL performs exact inference as opposed to the approximated inference of the809

other two approaches. However, CAREFL presents high variance in its results (see SSE). In contrast,810

VCAUSE leads to regularly lower values of SSE, which suggests more consistent counterfactual811

estimations across factual samples and interventions.812
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Table 12: Performance of different methods at estimating the observational, interventional and
counterfactual of different SCMs. All metrics are shown in percentage (%).

Obs. Interventional Counterfactuals

SCM Model MMD (%) MMD (%) MeanE (%) StdE (%) MSE (%) SSE (%)
c
o

ll
id

e
r

LI
N

MultiCVAE 1.83±0.65 2.50±0.73 0.53±0.44 25.75±0.26 5.35±1.72 4.79±3.20
CAREFL 4.58±1.22 2.40±0.27 0.24±0.06 41.97±0.63 4.93±0.50 4.84±0.54
VCAUSE 1.15±0.64 0.91±0.15 0.25±0.13 26.14±0.17 4.42±0.55 3.30±0.55

N
LI

N MultiCVAE 1.55±0.66 1.56±0.54 0.14±0.04 25.87±0.17 4.78±0.61 3.98±0.77
CAREFL 4.14±1.08 2.24±0.42 0.20±0.08 41.60±0.50 4.82±0.40 4.64±0.50
VCAUSE 0.89±0.59 0.75±0.13 0.14±0.07 26.42±0.09 2.73±0.30 2.03±0.27

N
A

D
D MultiCVAE 11.24±10.53 69.13±44.39 16.71±9.89 33.05±2.07 27.52±9.74 25.67±5.97

CAREFL 4.15±0.80 3.75±0.42 0.40±0.13 54.57±0.69 6.24±0.19 16.61±0.26
VCAUSE 1.20±0.33 11.70±1.20 8.71±0.75 40.20±1.23 17.07±0.55 21.60±0.49

M
-
g

r
a

p
h

LI
N

MultiCVAE 17.85±2.02 40.73±3.71 3.70±0.65 22.06±1.49 26.66±1.09 13.98±0.48
CAREFL 6.79±1.21 6.82±0.48 0.28±0.10 25.50±0.75 3.92±0.15 5.78±0.10
VCAUSE 0.93±0.29 1.03±0.11 0.16±0.03 6.39±0.04 2.62±0.06 1.38±0.05

N
LI

N MultiCVAE 14.32±2.57 44.21±7.54 5.22±1.23 22.63±1.41 26.33±0.95 15.72±0.47
CAREFL 7.32±1.59 7.82±0.54 0.60±0.07 27.02±0.86 6.16±0.17 17.76±0.06
VCAUSE 3.27±1.30 2.22±0.53 2.03±0.90 10.59±2.24 4.46±0.75 4.24±0.55

N
A

D
D MultiCVAE 5.26±0.94 10.65±1.16 0.45±0.28 26.02±2.08 23.10±1.41 23.28±0.82

CAREFL 5.76±1.33 7.37±0.44 0.24±0.09 30.36±0.64 17.03±0.22 29.12±0.12
VCAUSE 1.16±0.35 4.08±0.73 0.19±0.04 13.42±0.92 18.49±0.39 24.53±1.11

c
h

a
in

LI
N

MultiCVAE 3.04±2.72 4.85±3.67 1.21±1.00 22.16±0.38 8.19±2.79 6.75±1.96
CAREFL 5.88±0.99 4.50±0.37 0.33±0.09 49.76±0.98 6.95±0.95 8.23±1.19
VCAUSE 1.38±0.83 1.47±0.43 0.46±0.12 22.11±0.15 9.19±0.67 6.04±0.39

N
LI

N MultiCVAE 2.21±0.74 8.38±2.21 4.21±1.06 23.64±0.27 21.33±2.04 14.59±1.37
CAREFL 5.21±0.56 13.27±3.94 7.77±3.08 53.83±0.58 16.68±6.15 18.39±7.24
VCAUSE 2.38±0.73 6.52±0.90 4.24±0.37 24.46±0.23 22.74±2.17 16.65±1.83

N
A

D
D MultiCVAE 2.33±0.73 59.66±9.01 0.33±0.19 15.68±1.93 24.88±1.66 42.08±4.70

CAREFL 7.45±1.21 83.27±15.26 1.50±0.67 125.28±9.54 9.54±0.74 47.36±0.32
VCAUSE 4.62±2.35 40.00±13.21 0.84±1.57 37.18±17.29 14.31±1.80 25.58±1.89

E Further details on the counterfactual fairness use-case813

In this section we provide further details on dataset, training, metrics and additional results for the814

use-case of counterfactual fairness in Section 6.815

E.1 German Credit Dataset816

The German Credit dataset from the UCI repository [10] contains 20 attributes from 1000 loan appli-817

cants. We rely on the causal model proposed by in [6] for the following subset of features as exogenous818

variables X (see Figure 5): sensitive feature S = {sex}, and non-sensitive features C = {age},819

R = {credit amount, repayment history} and H = {checking account, savings, housing}. The820

causal graph in Figure 5 has a diameter � = 1 and longest path � = 1. The goal of a classi-821

fier h is to predict Y = {creditrisk} from X. We load and pre-process the data using the aif360822

library such that the dataset contains binary outcome variable Y (0-bad, 1-good) and a binary sensitive823

attribute S (0-female, 1-male). Note that the dataset contains 700 labels Y = 1 and 300 labels Y = 0,824

i.e., it is imbalanced. It also contains 690 males S = 1 and 310 females Y = 0. Note also that825

the causal model contains heterogeneous causal nodes (R and S), as addressed in Section 4.4. For826

example, [6] assume that the relationship between credit amount and repayment history is unknown,827

or that it may be affected by hidden confounders. This leads to an undirected path between the828

random variables and they are grouped together in one multidimensional causal node R. This applies829

similarly to node S.830

E.2 Training831

In this section we provide further information on training VCAUSE on the German Credit dataset832

[10] and detail the different classifiers in Section 6. We use a 80% training, 10% validation, 10%833

training data split.834
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VCAUSE . Training for VCAUSE was performed on normalized data—performing normalization835

only on the continuous variables, i.e. r.v. C and R in Fig 5. We trained a heterogeneous VCAUSE836

as described in Section with a message passing function f
m with one hidden layer of 16 neurons, a837

decoder with one hidden layer of 16 neurons and a latent variable with dimension 4. We trained the838

model using the PIWAE [41] approach with �KLD = 0.05, specifically, the encoder with the IWAE839

[3] objective with K = 5 and the decoder with a �-ELBO with � = 0.5. We use a parents dropout840

rate (see Appendix D.2) of 0.2, learning rate of 0.005 and batch size 100.841

Classifiers. Classifiers LogisticRegression and SVM are taken from the scikit-learn library and842

trained with default parameters as well as class_weight = balanced due to the class imbalance of843

the dataset.844

E.3 Metrics845

In this section we detail the measures f1-score and unfairness reported in Table 3 as well as accuracy846

in Table 13.847

f1-score. Due to class imbalance, we measure classifier performance with the f1-score. The f1-score848

is the weighted average of the precision and recall and can assume values between 0 and 1; the higher849

the values the better. Our implementation relies on the f1_score from the scikit-learn library. We850

compute in expectation over our training dataset:851

f1-score = E

2 ⇥ precision⇥ recall

precision+ recall

�
. (14)

where precision is the ratio TP
TP+FP with the number of true positives TP and the number of false852

positives FP and recall is the ratio TP
TP+FN with the number of false positives FP .853

Counterfactual (un)fairness. We measure counterfactual unfairness [24] with counterfactual in-854

stances xCF and classifier prediction h(xCF ) = ŷ
CF as expectation over our training dataset:855

unfairness = E
⇥��p(yF ) = 1|xF ) � p(ŷCF = 1|do(S = a

0),xF )
��⇤ (15)

where a
0 = 1 � a as S 2 {0, 1}.856

Accuracy. In Table 13, we report additionally the prediction accuracy as performance measure of857

classifier h with respect to factuals (samples) (xF
, y

F ) and prediction h(xF ) = ŷ
F in expectation858

over our training dataset:859

accuracy = E
⇥
1
�
y
F
i = ŷ

F
i

�⇤
. (16)

Our implementation relies the accuracy_score from the scikit-learn library.860

Table 13: Evaluation of counterfactual (un)fairness and performance. All metrics are shown in %.
Lower/Larger values of unfairness/f1-score are better.

Metric Classifier full unaware fair VCAUSE

" accuracy (%) LR 65.00 62.00 46.00 67.00
SVM 68.00 65.00 52.00 63.00

" f1-score (%) LR 71.07 68.33 50.00 74.81
SVM 74.60 72.44 64.71 70.40

# unfairness (%) LR 5.93 2.25 0.16 0.85
SVM 6.07 2.68 0.20 1.00

861
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