

# An Integer Linear Programming Approach to Geometrically Consistent Partial-Partial Shape Matching

## Supplementary Material

### 9. Ablation Studies

In the following, we show ablation studies on the weighting factor  $\lambda$ , which weighs the matching cost against the overlap probabilities in (PP-ILP), and on the neighbourhood size  $N$ , which influences the size of the allowed matching set, see Eq. (4).

#### 9.1. Weighting of Overlap Prediction

We analyse the mean IoU for different weighting factors  $\lambda$  between 0 and 1 for 10 random shape pairs for datasets CP2P, respectively PSMAL. In Table 3, we show that  $\lambda = 0.3$ , respectively  $\lambda = 0.5$ , yields the best results on CP2P, respectively PSMAL.

| $\lambda$ | 0 | 0.1   | 0.3          | 0.5          | 1.0   |
|-----------|---|-------|--------------|--------------|-------|
| CP2P24    | 0 | 72.01 | <b>87.40</b> | 86.53        | 84.65 |
| PSMAL     | 0 | 53.17 | 82.03        | <b>82.35</b> | 80.02 |

Table 3. Ablation study of the mean IoU on **different weighting factors for the overlapping region** on 10 examples of the CP2P/PSMAL train dataset on a combined number of 600 faces for both shapes.

#### 9.2. Neighbourhood Ring Size

We compare different neighbourhood ring sizes  $N$  on 10 random samples of the CP2P train set in terms of optimisation time and mean IoU in Table 4 for an upsampling step from 600 to 800 total triangles. We observe the best results with  $N = 2$ .

| $N$                                  | 0            | 2            | 4            | 6      |
|--------------------------------------|--------------|--------------|--------------|--------|
| mIoU ( $\uparrow$ )                  | 83.65        | <b>88.45</b> | <b>88.45</b> | 87.05  |
| Opt. Time (seconds) ( $\downarrow$ ) | <b>11.27</b> | 141.58       | 340.03       | 351.31 |

Table 4. Ablation study of mIoU and optimisation time in seconds on **upsampling neighbourhood size  $N$** : We observe the best combination of optimisation time and mIoU for  $N = 2$ .