
Under review as a conference paper at ICLR 2023

Time-Series Generation via Deep Latent State
Space Models

Part I

Table of Contents
A Derivations 13

A.1 Computational Complexity of Vanilla Recurrent Representation 13

B Proof 13

C Architecture 14
C.1 Prior Model . 14
C.2 Generative Model . 15
C.3 Inference Model . 16

D Experiments 16
D.1 MONASH Forecasting Repository . 16
D.2 Physionet & USHCN . 18
D.3 Runtime . 19

E Generation Results 19

A DERIVATIONS

A.1 COMPUTATIONAL COMPLEXITY OF VANILLA RECURRENT REPRESENTATION

Assuming recurrence of the simplest form in Equation 2, fulling computing matrix multiplication
Āh̄tk requires O(N2). Fully computing all hidden states sequentially requires O(N2L). In space,
saving each hidden state requires O(N) and in total requires O(NL).

B PROOF

To prove this result in Proposition 4.1, we first prove the following proposition.

Proposition B.1. (Expressivity.) Given any deep autoregressive S4 model r : (x<tn , tn) 7→
ytn evaluated at time tn given input sequence x<tn , there exists a choice of θ such that
µx,n(x<tn , 0, θ) = r(x<tn , tn).

Proof sketch. Consider SSM of the form in Equation 6 as a building block to our generative model
with parameter θ. We can choose E = F = 0 for all layers, which exactly reduces it to the SSM
of an S4 model. Keeping all other hyperparameters (e.g. non-linearities, number of stacking layers)
the same, the final model is exactly the same as a deep autoregressive S4 model.

Now we give a proof sketch to Proposition 4.1,

Proposition 4.1. (LS4 subsumes S4.) Given any autoregressive model r(x) with conditionals
r(xn|x<n) parameterized via deep S4 models, there exists a choice of θ, λ, ϕ such that pθ,λ(x) =
r(x) and pθ,λ(z|x) = qϕ(z|x), i.e. the variational lower bound (ELBO) is tight.

13

Under review as a conference paper at ICLR 2023

Proof sketch. From Proposition B.1 we know that we can choose θ so that pθ(x|z) = pθ(x) = r(x)
for all z, i.e., choose a decoder that ignores the latent variables z and uses the same autoregressive
structure over the observed variables as r(x). This implies the posterior pθ,λ(z|x) is equal to the
prior pλ(z). We can then choose λ and ϕ so that pλ(z) = N (0, I) and qϕ(z|x) = N (0, I) for all
x.

Proposition 4.2. (Efficiency.) For a SSM with H heads, an observation sequence of length L and
hidden dimensionN can be calculated in O(H(L+N) log(L+N)) time and O(H(L+N)) space.

Proof. Recall SISO SSM of the form

d

dt
ht = Aht +Bxt

yt = Cht +Dxt

(17)

The calculation of (yt0 , . . . , ytL) involves materializing the convolution filter, which can be calcu-
lated in O((L + N) log(L+N)) time and O(L + N) space for diagonal-plus-low-rank matrices
(Gu et al., 2021). Since the convolution is constant time in frequency domain, another computa-
tion cost comes from Fast Fourier Transform (FFT) and its inverse, which is O(L logL) in time.
The computation scales linearly with heads, Thus, a multi-input-multi-output (MIMO) SSM with H
heads can be processed in O(H(L+N) log(L+N)) time and O(H(L+N)) space.

C ARCHITECTURE

We parametrize our models using a similar architecture as in Goel et al. (2022), but there is no
pooling operation because for general time-series the time length is hardly divisible by a reasonable
factor. Before we present the full structure, we present how a multi-channel inputs are parametrized
(in the case of LS4 prior layer (10):

def LS4_prior_layer_multi(z, psi):
z: (B, L, C)
for c in range(C):

z[:,:,c] = LS4_prior_layer(z[:,:,c], *psi.LS4_params)
z = linear(z) # (B, L, C) channel-wise mixing
return z

The for loop is presented for demonstration purposes. In practice, the channels can be processed in
parallel.

C.1 PRIOR MODEL

We specify the parametrization of µz,n and σz,n in pseudo-code as the outputs of the following
functions

def prior_model(z, lambda):
z: (B, L, z_dim) this is for time [t_0, t_{n-1}]
z = linear(z) # (B,L,H) encoding to H

outputs = []
outputs.append(z)
for i in range(lambda.num_layers1):

z = linear(z) # (B, L, H) -> (B, L, 2H)
outputs.append(z)

for i in range(lambda.num_layers2):
z = LS4_prior_block_multi(z, *lambda.LS4_params)

(B, L, H) -> (B, L, H) multi-channel SSMs
z = ResBlock(z) # this is a general 1 layer residual block

z = z + outputs.pop()

14

Under review as a conference paper at ICLR 2023

for i in range(lambda.num_layers1):
z = z + outputs.pop()
outputs.append(z)
z = linear(z) # (B, L, 2H) -> (B, L, H)
for i in range(lambda.num_layers2):

z = LS4_prior_block_multi(z, *lambda.LS4_params)
(B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

z = z + outputs.pop()
z = layernorm(z)
z = linear(z) # (B,L,z_dim)
mu_z = LS4_prior_block_multi(z, *lambda.LS4_params) # (B,L,z_dim)
sigma_z = LS4_prior_block_multi(z, *lambda.LS4_params)

(B,L,z_dim)
return mu_z, sigma_z

C.2 GENERATIVE MODEL

def prior_model(x, z, theta):
z: (B, L, z_dim) this is for time [t_0, t_{n-1}]
z = linear(z) # (B,L,H) encoding to H
x = linear(x) # (B,L,H) encoding to H

outputs_x, outputs_z = [], []
outputs_z.append(z)
outputs_x.append(x)
for i in range(lambda.num_layers1):

z = linear(z) # (B, L, H) -> (B, L, 2H)
x = linear(x) # (B, L, H) -> (B, L, 2H)
outputs_z.append(z)
outputs_x.append(x)

for i in range(lambda.num_layers2):
z, x = LS4_gen_block_multi(z, *lambda.LS4_params)

(B, L, H) -> (B, L, H) multi-channel SSMs
zx = ResBlock(concat(z, x))

this is a general 1 layer residual block
z, x = split(z, x)

z = z + outputs_z.pop()
x = x + outputs_x.pop()

for i in range(lambda.num_layers1):
z = z + outputs_z.pop()
x = x + outputs_x.pop()
outputs_z.append(z)
outputs_x.append(z)
z = linear(z) # (B, L, 2H) -> (B, L, H)
x = linear(x) # (B, L, 2H) -> (B, L, H)
for i in range(lambda.num_layers2):

x, z = LS4_gen_block_multi(x, z, *lambda.LS4_params)
(B, L, H) -> (B, L, H) multi-channel SSMs

zx = ResBlock(concat(z, x))
this is a general 1 layer residual block

z, x = split(z, x)

z = z + outputs_z.pop()
x = x + outputs_x.pop()

x = layernorm(x)
z = layernorm(z)

15

Under review as a conference paper at ICLR 2023

x = linear(concat(x, z)) # (B,L,2H) -> (B,L,x_dim)
return mu_x

In practice, we find that only using z input for the entire generative model produces better generation
better than including x. We hypothesize that x presents too strong of a signal for the model to
reconstruct, and so the model learns to ignore signals from z in that case.

C.3 INFERENCE MODEL

def inference_model(x, phi):
x: (B, L, x_dim) this is for time [t_0, t_{n-1}]
x = linear(x) # (B,L,H) encoding to H

outputs = []
outputs.append(x)
for i in range(phi.num_layers1):

x = linear(x) # (B, L, H) -> (B, L, 2H)
outputs.append(x)

for i in range(phi.num_layers2):
x = LS4_inf_block_multi(x, *phi.LS4_params)

(B, L, H) -> (B, L, H) multi-channel SSMs
z = ResBlock(z) # this is a general 1 layer residual block

x = x + outputs.pop()

for i in range(phi.num_layers1):
x = x + outputs.pop()
outputs.append(x)
x = linear(x) # (B, L, 2H) -> (B, L, H)
for i in range(phi.num_layers2):

x = LS4_inf_block_multi(x, *phi.LS4_params)
(B, L, H) -> (B, L, H) multi-channel SSMs

z = ResBlock(z) # this is a general 1 layer residual block

x = x + outputs.pop()
x = layernorm(x)
x = linear(x) # (B,L,x_dim)
mu_z = LS4_inf_block_multi(x, *phi.LS4_params) # (B,L,x_dim)
sigma_z = LS4_inf_block_multi(x, *phi.LS4_params)

(B,L,x_dim)
return mu_z, sigma_z

D EXPERIMENTS

For all experiments we use AdamW optimizer with learning rate 0.001. We use batch size 64 and
train for 7000 epochs for FRED-MD, NN5 Daily, and Solar Weekly, 1000 epochs for Temperature
Rain, and 500 epochs for Physionet and USHCN. The datasets are split into 80% training data and
20% testing data.

D.1 MONASH FORECASTING REPOSITORY

Data. For all selected MONASH data, FRED-MD, NN5 Daily, and Solar Weekly are normalized per
sequence such that each trajectory is centered at its own mean and normally distributed. We make
this choice from the observation that for some datasets such as NN5 Daily the min and max can vary
significantly across different data points such that normalizing sequences with dataset-wise statistics
makes it difficult to learn the temporal dynamics, which would be on a widely different range. For
Temperature Rain we squash each sequence into [0, 1]. This is due to the fact that the dataset is

16

Under review as a conference paper at ICLR 2023

always positive and lands mostly around x-axis with sharp spikes in between. For the former 3
datasets, we do not use output activation while for the last, we use sigmoid as our activation.

Hyperparameters. For all MONASH experiments, we use AdamW optimizer with learning rate
0.001 and no weight decay. For each of prior/generative/inference model, we use 4 stacks for each
for loop in the pseudocode. For each LS4 block, we use 64 as the dimension of ht and 64 SSM
channels in parallel, same as used in S4 and SaShiMi. Each residual block consists of 2 linear
layers with skip connection at the output level where the first linear layer has 2 times output size
as the input size and the second layer squeezes it back to the input size of the residual block. We
generally find 5-dimensional latent space gives better performance than 1, and so uses this setting
throughout. We also employ EMA for model weights and use 0.999 as the lambda value, but we
do not find this choice crucial. We also use 0.1 as the standard deviation for the observation as this
gives better ELBO than other choices we experimented with such as 1, 0.5, 0.01. For baselines, we
reuse the code from official repo and follow their suggestions for training. To keep representation
power similar, we use the same size for the latent space (for latent variable models) and the same
output standard deviation for ELBO evaluation.

Evaluation. For generation evaluation. The classification model and the prediction model uses a
linear encoder and linear decoder with a single S4 layer in between. The S4 layer uses 16 hidden
state dimensions. For classification model, encoder maps data dimension to 16 hidden state dimen-
sion, and averages over the sequence output from S4 layer before feeding into decoder that outputs
logit for binary classification. We use cross entropy loss. For prediction model, we use the same
linear encoder and a decoder that maps 16 hidden dimension to data dimension. We predict k = 10
steps into the future. The evaluation models are trained using AdamW with 0.01 learning rate for
100 epochs with batch size 128. We generate samples equal to the number of testing data, which
together are used to train the two models.

Additional discussion. We also briefly discuss the surprising result that SaShiMi does not perform
as well on general time-series generation. We speculate that not using a quantization scheme to
define discrete output conditionals, as standard in autoregressive models for e.g., audio and images,
is the cause behind this drop in performance. LS4 does not requires quantization and sets best
performance with a simple Gaussian conditional on the data space.

Additional comparisons. We additionally compare with two more relevant baselines (Fabius &
Van Amersfoort, 2014) and (Li et al., 2020) present result in Table 3. We note that Latent SDE has
an abnormally high classification score for Temperature Rain data, and demonstrate that this is when
the classification score is not reliable. Upon visually examining generated results for Latent SDE
(Figure 4) compared to ground-truths (Figure 7), one can observe that the variation is extremely
noisy around the x-axis and that the selected classifier is not powerful enough to capture the distinc-
tion from real data due to the considerable noise that exists in both generated and real data, resulting
in high classification score. Marginal and predictive scores are much worse in comparison and are
more indicative of generation quality.

Data Metric VRNN Latent SDE LS4 (Ours)

FRED-MD Marginal ↓ 0.165 0.122 0.0221
Class. ↑ 0.000970 0.687 0.544
Prediction ↓ 0.371 1.62 0.0373

NN5 Daily Marginal ↓ 0.151 0.125 0.00671
Class. ↑ 0.00176 0.601 0.636
Prediction ↓ 1.22 0.957 0.241

Temp Rain Marginal ↓ 1.20 0.999 0.0834
Class. ↑ 0.479 14.534 0.976
Prediction ↓ 0.864 1.798 0.521

Solar Weekly Marginal ↓ 0.297 0.234 0.0459
Class. ↑ 0.00164 0.764 0.683
Prediction ↓ 0.964 1.01 0.141

Table 3: Additional generation results on FRED-MD, NN5 Daily, Temperature Rain, and Solar Weekly.

17

Under review as a conference paper at ICLR 2023

Figure 4: Latent SDE generation on Temperature Rain.

Task Data RNN-VAE Latent ODE LS4 (Ours) LS4IWAE (Ours)

Interp. Physionet -412.8 -410.3 -669.0 -684.3
USHCN -244.9 -251.0 -312.2 -315.6

Extrap. Physionet -220.2 -168.5 -250.2 -288.7
USHCN -113.3 -110.3 -194.4 -211.8

Table 4: ELBO comparisons with VAE-based models.

D.2 PHYSIONET & USHCN

We follow the code provided by Rubanova et al. (2019) to process Physionet and follow the code
provided by De Brouwer et al. (2019) for USHCN. For Physionet we do not use any activation to
constrain the output space, and for USHCN, we use sigmoid activation for output.

We present the variational lowerbound results in Table 4.

Hyperparameters. In general we keep the hyperparameter choices the same as in MONASH, and
we describe a few differences for these 2 datasets. For USHCN, we use 10 as the dimension for latent
space, same as in Rubanova et al. (2019) and we use Sigmoid as the output activation with output
standard deviation 0.01. For Physionet, we use no output activation and 0.05 standard deviation, and
use 20-dimensional latent space, same as in baselines.

Additional Metric We also present CRPS (continuous ranked probability score) as a more appro-
priate metric for time-series forecasting. With the same baselines, we show CRPS result in Table 5.

Task Data RNN RNN-VAE ODE-RNN GRU-D Latent ODE LS4 (Ours)

Interp. Physionet 2.09 5.59 2.40 2.71 6.16 1.25
USHCN 3.33 4.68 3.18 4.69 4.68 0.438

Extrap. Physionet 3.30 2.17 2.16 13.9 2.43 2.36
USHCN 72.1 5.01 5.09 5.01 5.04 2.76

Table 5: Interpolation and extrapolation CRPS (×10−2) scores. Lower scores are better.

18

Under review as a conference paper at ICLR 2023

D.3 RUNTIME

We test all models on a single RTX A5000 GPU. To set up the dataset, we need to fully pop-
ulate the GPU for each dataset during training for our benchmarking. For sequence lengths
{80, 320, 1280, 5120, 20480}, we build dataset of length {102400, 25600, 6400, 1600, 400} each
with batch size {1024, 256, 64, 16, 4} so that for each dataset the models are trained with 100 itera-
tions.

E GENERATION RESULTS

We present ground-truths and generations on the two hardest selected datasets, NN5 Daily and
Temperature Rain because these are the hardest to model.

Figure 5: Normalized NN5 Daily data.

Figure 6: NN5 Daily generation.

19

Under review as a conference paper at ICLR 2023

Figure 7: Normalized Temperature Rain data.

Figure 8: Temperature Rain generation.

20

	I
	Derivations
	Computational Complexity of Vanilla Recurrent Representation

	Proof
	Architecture
	Prior Model
	Generative Model
	Inference Model

	Experiments
	MONASH Forecasting Repository
	Physionet & USHCN
	Runtime

	Generation Results

