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ABSTRACT

Surgical phase recognition has drawn great attention most recently thanks to its
potential downstream applications closely related to human life and health. De-
spite deep network-based models have made significant advancement in capturing
discriminative long-term dependency of surgical videos to achieve improved recog-
nition, they seldom account for exploring and modeling uncertainty of surgical
videos, which should be crucial for reliable surgical phase recognition. we catego-
rize the sources of uncertainty into two types, imbalanced phase distribution and
low-quality image acquisition, which are inevitable in surgical videos. To address
this pivot issue, we introduce a meta-weighted diffusion model (MetaDiff) to take
full advantages of meta-learning and deep generative model in tackling uncertainty.
For uncertainty caused by image quality, we present a classifier-guided diffusion
model to produce countable denoised recognition results, making it possible to
measure uncertainty using statistical tools for each video frame. For uncertainty
caused by phase distribution, we propose a meta-weighted objective function to
optimize the classifier-guided diffusion model, making the classification boundary
robust against surgical video uncertainty. We demonstrate outstanding ability of our
model through comprehensive benchmarks on Cholec80, AutoLaparo, M2Cai16,
and CATARACTS. Experimental results reveal that MetaDiff significantly outper-
forms state-of-the-art methods, separately achieving accuracies of 95.3%, 85.8%,
92.2%, and 85.1% on Cholec80, AutoLaparo, M2Cai16, and CATARACTS.

1 INTRODUCTION

Surgical phases recognition aims to identify the representation of high-level surgical stages depicted
in surgical videos Jin et al. (2017). This capability holds potential applications for fruitful downstream
tasks, such as automatic indexing of surgical video databases Twinanda et al. (2016b), real-time
monitoring of surgical procedures Bricon-Souf & Newman (2007), optimizing surgeons schedules
Neumuth (2017), evaluating surgeons’ proficiency Liu et al. (2021), etc. The primary objective
of surgical phase recognition is to predict the category variable y ∈ RL×C given a video frame
x ∈ RL×I . The process is characterized by the deterministic function f(x) ∈ RL×C that transforms
the video frame x into the category variable y.To help alert surgeons and support decision-making in
real-time during surgery, we do not use the future information within the video frame of x, which
is also known as online phase recognition Quellec et al. (2014); Dergachyova et al. (2016), which
requires us to design the mapping function f(·) carefully without the information leakage.

In recent years, deep neural network-based models He et al. (2016); Vaswani et al. (2017) has shown
promising performance in automated surgical phase recognition via designing complex deterministic
functions f(·) Jin et al. (2021); Liu et al. (2023b); Ding & Li (2022); Zhao & Krähenbühl (2022);
Rivoir et al. (2024). To capture and discover long-term spatial information in surgical videos,
Transformer-based methods are proposed Tao et al. (2023); Yue et al. (2023). To enhance the
efficiency and effectiveness of Transformer-based methods while avoiding future information leakage
, SKiT Liu et al. (2023b) introduces a key pooling operation with a time complexity of O(1). Most
recently, convolution neural network-based models have regained attention due to their awareness of
the pitfalls of batch normalization for effective end-to-end learning Rivoir et al. (2024). Recognizing
the labor-intensive and time-consuming nature of video annotation in surgical phase recognition,
UATD Ding & Li (2022) and VTDC Shi et al. (2021) have been separately proposed to use timestamp
annotation and semi-supervised information to alleviate the burden of manual labeling.
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Figure 1: Visualizations are presented on M2Cai16 (left) and AutoLaparo (right) datasets, where the left blue
box per dataset indicates the target organ and tool that should be focused on while the right peer represents
the incorrectly focused area. Surgical phases are best viewed in color of ribbon diagrams, such as P0 to P7

in M2Cai16. Phase names can be found in Appendix A.3. We find that imbalanced phase distribution and
low-quality image acquisition are inevitable in surgical videos, which may cause unexpected errors. To address
this, we propose an uncertainty-aware model, called MetaDiff, for reliable online surgical phase recognition.

However, the previous methods neglect the uncertainty nature consisted of phase distribution and
image quality in surgical videos as shown in Fig. 1. In laparoscopic rectal cancer surgery, free rectal
movements are much more frequent than other movements because they are central to the procedure.
Conversely, digestive tract reconstruction action occurs infrequently due to their fixed process,
resulting in imbalanced phase distribution. Additionally, irregular changes in camera perspective
caused by some emergencies during the surgery process will affect the quality of the surgical video
frames. Therefore, overlooking the uncertainty in surgical videos may lead to unforeseen suboptimal
outcomes and significantly misguide downstream surgical tasks and pose risks to human health.

To address this pivot issue, in this paper, we propose a novel meta-weighted diffusion model (MetaD-
iff) for reliable online surgical phase recognition by accurately describing and solving the joint
distribution of phase variable y and video frame x in an uncertainty-aware manner. To achieve
this, we take full advantages of the deep diffusion model Ho et al. (2020); Song et al. (2020) and
meta-learning Guo et al. (2022); Shu et al. (2019) to address the challenges of uncertainty modeling
and optimization. On one hand, we introduce a Classifier-guided Diffusion Model (CDM) to quan-
titatively describe the behaviour of uncertainty caused by video frame quality thanks to stochastic
nature of generative models. On the other hand, we present a Meta-weighted Optimization Algorithm
(MOA) to model the behavior of uncertainty caused by phase distribution. Notably, the MOA makes
optimization via collecting the outputs of CDM, providing an effective approach for making the
classification boundary tight even given some low quality video frames. We summarize the main
contributions as follows: 1) We are the first one to bring attention to uncertainty nature in surgical
videos for reliable online surgical phase recognition. 2) We propose a novel MetaDiff model to
implement uncertainty-aware phase recognition by modeling and solving uncertainty with CDM and
MOA, respectively. 3) Experiments on four popular benchmarks including Cholec80, AutoLaparo,
M2Cai16, and CATARACTS demonstrate that MetaDiff outperforms recently developed competitive
baselines across various evaluation metrics, establishing new state-of-the-art (SOTA) performance.

2 BACKGROUND

2.1 DIFFUSION PROBABILISTIC MODEL

Diffusion Probabilistic models Song et al. (2020) belong to a family of generative models that learn
the data distribution based on the Gaussian, typically expressed as pθ(y0) =

∫
pθ(y0:T )dy1:T , where

{yt}Tt=1 are latent variables, θ is the set of learnable parameters. Denoising Diffusion Probabilistic
Model (DDPM) Ho et al. (2020) is one prominent example, which comprises a forward diffusion
process alongside a reverse denoising process. During forward diffusion, noise is incrementally
introduced, ultimately converting the initial variable y0 into Gaussian noise yT across T steps:

q(y1:T |y0) =

T∏
t=1

q(yt|yt−1), q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI) (1)
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where βt is the noise level that typically set to a small constant. A notable characteristic of the forward
process is that q(yt|y0) = N (yt;

√
αty0, (1−αt)I), αt =

∏T
t=1(1− βt). Utilizing a Markov chain

with trainable Gaussian transitions, the denoising process from yt back to y0 unfolds as:

pθ(y0:T ) = pθ(yT )

T∏
t=1

pθ(yt−1|yt), pθ(yt−1|yt) = N (yt−1;µθ(yt, t), σ
2
t I) (2)

where µθ(yt, t) =
1√
αt
(yt − βt√

1−αt
ϵθ(yt, t)). Besides, a noise prediction network ϵθ(·) is adopted

to minimize the regression loss denoted as minθ Et,y0,ϵ∼N (0,I)∥ϵ− ϵθ(yt, t)∥22. With a well trained
ϵθ(·), representative latent variables can be systematically generated from random Gaussian noise.
Previous researches have substantiated the efficacy of diffusion models across various forms of latent
variables, encompassing images Rombach et al. (2022) and multi-time series Shen & Kwok (2023).

2.2 LEARNING TO RE-WEIGHT EXAMPLES IN IMBALANCED CLASSIFICATION

Re-weighting the loss function is a widely employed tactic for addressing imbalanced data issue Guo
et al. (2022). It treats the weight assigned to each instance as a trainable parameter, enabling the
learning of a balanced model for both minority and majority categories through optimization of the
weighted loss function. Typically, the optimal weight is optimized on a balanced meta dataset.

ϕ∗(w) = argmin
ϕ

N∑
i=1

wiLi
train(ϕ), w∗ = argmin

w

1

M

M∑
j=1

Lj
meta(ϕ

∗(w)) (3)

where w ∈ RN is the weight vector of all training instances, ϕ is the set of classifier parameters,
Li
train and Lj

meta are separately the loss functions of pairs (xi,yi) and (x̃j , ỹj) from the imbalanced
training dataset and the balanced meta dataset, which is downsampled from the training dataset.

2.3 PIW AND PAIRED TWO SAMPLE T-TEST FOR ASSESSING UNCERTAINTY

Prediction Interval Width (PIW) is a statistical measure to assess the uncertainty of prediction results.
PIW indicates the width of a certain τ · 100 per cent PI, for any value of τ ∈ (0, 1):

PIW(τ) =
1

n

n∑
i=1

(ui − li), ui = qi(1+τ)/2, li = qi(1−τ)/2 (4)

where li and ui are the lower and the upper bounding quantiles that together define a τ · 100 per cent
PI, qi(1−τ)/2 and qi(1+τ)/2 are the (1− τ)/2 and (1 + τ)/2 quantiles of the predictive distribution of
yi. Lower PIW values imply higher sharpness with less uncertainty, which are preferred in practice.

For single-label classification model, the probabilities are dependent between two classes due to
the softmax layer, therefore, we use the Paired Two-Sample t-Test (PTST) Fan et al. (2021), which
is an inferential statistical test, to determine whether there is a statistically significant difference
between the means of two groups. To obtain the PTST, we calculate the difference between paired
observations, often referred to as the t-statistic T = Y

s/
√
N

, where Y is the mean difference between
paired observations, s stands for the standard deviation of the differences, and N is the number of
observations. We use this t-statistic and the t-distribution to determine the corresponding p-value.

3 PROPOSED METHOD

In this section, we introduce the Meta-weighted Diffusion model (MetaDiff) for reliable online
surgical phase recognition. We begin with a brief overview of MetaDiff, followed by a discussion
of its two critical components: Classifier-guided Diffusion Model in Sec. 3.1 and Meta-weighted
Optimization Algorithm (MOA) in Sec. 3.2. As shown in Fig. 2, CDM consists of a Spatial-temporal
Feature Extractor (SFE), a diffusion process, and a reversed diffusion process. Given surgical videos,
the SFE provides rough predictions serving as conditional information to guide the followup reversed
diffusion to denoise for obtaining reliable predictions. Notably, each video frame may produce
multiple prediction trajectories after denoising, which are modestly collected by the MOA used to
learn parameters of CDM for phase recognition in an uncertainty-aware manner.

3
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Figure 2: The overview of our proposed MetaDiff, which consists of a Classifier-guided Diffusion Model
(CDM) and a Meta-weighted Optimization Algorithm (MOA). Maintaining generality, we employ a simple yet
effective backbone fϕ, ConvNext + LSTM, to deliver rough predictions. The upper part illustrates the data
flow of obtaining rough predictions, while the lower part shows how CDM obtains clean prediction yi

0 from
rough prediction fϕ(x

i) for the i-th frame. The MOA is designed to train the CDM so that the surgical phase
recognition could be robust against uncertainty.

3.1 CLASSIFIER-GUIDED DIFFUSION MODEL

Spatial-Temporal Feature Extractor for coarsed predictions. Existing online surgical phase
recognition models Jin et al. (2021); Liu et al. (2023b); Ding & Li (2022); Zhao & Krähenbühl (2022);
Rivoir et al. (2024) have primarily focused on learning powerful spatial-temporal representations to
achieve robust phase recognition in surgical videos, which can last for several hours and exhibit strong
dependencies among different phases. In contrast, we advocate utilizing representations captured
by any well-established SFEs rather than designing new SFE architectures. This approach has two
distinct advantages: i) we argue that using predictions from well-designed and widely accepted SFEs
as conditions for the follow-up diffusion process of CDM is more effective than relying on self-made
conditions, as extensive research into the properties of surgical videos has led to the development of
specialized SFEs for this purpose; ii) these SFEs demonstrate a strong ability to estimate surgical
phase predictions, and using them as conditions for the diffusion may enhance the flexibility of
uncertainty estimation, thereby further simplifying the generative process. Given the input video
frame x ∈ RL×I and a SFE fϕ(·), the j-th generated prediction zi,j ∈ RC can be expressed as:

zi,j ∼ N (zi;µzi , σI), µzi = g(fϕ(x
i)), i = 1, ..., L (5)

where we model g(·) as a nonlinear mapping function using a neural network. For simplicity while
maintaining generality, we employ a ConvNeXt Liu et al. (2022) cascaded with a LSTM to compute
rough predictions from video frames. Importantly, using LSTM for extracting spatial-temporal
features is safe for online surgical phase recognition because it avoids utilizing future frames during
prediction. To summarize the information captured by the SFE, we define a conditional distribution.
The conditional embedding zi,j sampled from this distribution is used for the subsequent diffusion
process of CDM. Given the ground truth yi

0 ∈ RC and the conditional embedding zi,j , we ensure the
representativeness by minimizing a cross entropy loss Li

CE(ϕ) = −
∑C

c=1 y
i,c
0 logzi,j,c.

Forward and Backward Diffusion Process. Different from the vanilla diffusion models that assume
the endpoint of diffusion process to be N (0, I), in this work, we model the diffusion process endpoint
through the incorporation of the conditional embedding zi,j as p(yi

T |zi,j) = N (yi
T ; z

i,j , I). With a
diffusion schedule βt ∈ (0, 1) for t = 1, ..., T , the forward process is:

q(yi
t|yi

t−1, z
i,j) = N (yi

t;
√

1− βty
i
t−1 + (1−

√
1− βt)z

i,j , βtI) (6)

Inspired by the DDPM Ho et al. (2020), we can sample yi
t from yi

0 with an arbitrary timestep t as:

q(yi
t|yi

0, z
i,j) = N (yi

t;
√
αty

i
0 + (1−

√
αt)z

i,j , (1− αt)I) (7)

where αt = 1− βt and αt =
∏

t αt. The mean term in Eq. 7 is an interpolation between the ground
truth label encoding yi

0 and the conditional embedding zi,j . We gradually add noise to a clean
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one-hot encoded label and transform it into a rough prediction vector throughout the forward process.
For model training purpose and to facilitate sampling at test time, we derive a tractable backward
process posterior corresponding to the forward process in Eq. 6 and Eq. 7 and express it as:

q(yi
t−1|yi

t,y
i
0, z

i,j) = N (yi
t−1; γ0y

i
0 + γ1y

i
t + γ2z

i,j , γ3βtI)

γ0 =
βt
√
αt−1

1− αt
, γ1 =

1− αt−1

√
αt

1− αt
,

γ2 = 1 +
(
√
αt − 1)(

√
αt +

√
αt−1)

1− αt
, γ3 =

1− αt−1

1− αt

(8)

The derivation can be found in Appendix A.1. Notably, given a specific conditional embedding zi,j ,
we can employ statistic tools such as PIW and PTST as described in Sec. 2.3 to measure the strength
of uncertainty based on multiple trajectories generated through the backward diffusion process. Now
the question is how to learn the CDM so that the trajectory regions can be as close as the true label.

3.2 META-WEIGHTED OPTIMIZATION ALGORITHM

So far, we have described the behavior of uncertainty caused by surgical video quality. When it
comes to train the CDM, uncertainty caused by phase distribution raises, such as imbalanced phase
distribution due to the frequency of surgical phases varies greatly. To address these issues, we propose
MOA to train CDM for reliable surgical phase recognition. Given a ground truth encoding yi

0 and
its conditional embedding zi,j derived from the video frame xi, and intermediate variables yi

1:T
generated by the CDM, our goal is to maximize the Evidence Lower BOund (ELBO) written as:

logpΘ(yi
0|zi,j) ≥ Li

ELBO(Θ) = Eq(yi
1:T |yi

0,z
i,j)[log

pΘ(yi
0:T |zi,j)

q(yi
1:T |yi

0, z
i,j)

]

= Eq[−logpΘ(yi
0|yi

1, z
i,j)] + Eq[KL(q(yi

T |yi
0, z

i,j)||p(yi
T |zi,j))]

+

T∑
t=2

Eq[KL(q(yi
t−1|yi

t,y
i
0, z

i,j)||pΘ(yi
t−1|yi

t, z
i,j))]

(9)

where Θ = {ϕ,θ} denotes the learnable parameters of CDM, KL(q||p) is Kullback-Leibler (KL)
divergence from distribution p to q. The intermediate objective function can be expressed as:

L(Θ) =
1

N

N∑
i=1

Li(Θ), Li = Li
CE(ϕ) + Li

ELBO(Θ) (10)

where N is the total number of video frames at training time. However, directly employing L to
optimize Θ can easily lead to sub-optimal solutions due to the uncertainty caused by imbalanced
nature of surgical videos. In other words, the model would be biased towards phases with a majority
of video frames and might rise potential risks in human health.

To address this issue, we introduce a meta-learning method for reforming the intermediate loss through
reweighting. Inspired by Guo et al. (2022), we firstly construct a meta dataset Dmeta = {x̃i, ỹi}Mi=1
comprising M video frames uniformly downsampled from the original imbalanced training dataset.
The remaining video frames excluded from Dmeta are defined as new training dataset Dtrain =
{xi,yi}N−M

i=1 . For simplicities of understanding and notation, we set each video frame only includes
a single frame image. Inspired by Shu et al. (2019), we then employ a meta-weight net h(·;w)
parameterized by w to compute the weight for each video frame from training dataset. After that,
the optimization is conducted using the weighted intermediate loss function. It is important to note
that the meta-weight net is initially optimized on the meta dataset, thereby guiding the overall model
parameter Θ optimization in a meta-learning manner. The meta-weight net takes the intermediate
loss L on the training dataset as input and outputs an adaptive vector to reweight L as:

Θ∗(w) = argmin
Θ

Ltrain(Θ;w) =
1

N

N−M∑
i=1

h(Li
train(Θ);w)Li

train(Θ) (11)

The parameters w in meta-weight net can be optimized using meta-learning strategy and we have:

w∗ = argmin
w

Lmeta(Θ
∗(w)) =

1

M

M∑
i=1

Li
meta(Θ

∗(w)) (12)
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where Li
train = Li(xi,yi;Θ) is calculated on training dataset, and the similar for Li

meta. Obviously,
the optimal Θ∗ and w∗ is calculated using two nested optimization loops. In practice, we adopt an
online method to update Θ and w efficiently through a single optimization loop, detailed as follows:

Meta training phase: Since the optimal parameters Θ∗, which should be robust to imbalanced data
distribution, depend on the meta-weight net updates, we firstly update the meta-weight net parameters
w in a meta training process. Specifically, given a mini-batch of {xi,yi}ni=1 and {x̃i, ỹi}mi=1
separately sampled from the training and meta datasets. Meta-weight net can be updated using:

Θ̂t(w) = Θt − α

n

n∑
i=1

h(Li
train(Θ

t);w)∇ΘLi
train(Θ)

∣∣∣∣
Θt

wt+1 = wt − β

m

m∑
i=1

∇wLi
meta(Θ̂

t(w))

∣∣∣∣
wt

(13)

where α and β now are the step sizes.

Meta testing phase: After obtaining the updated wt+1, the meta-weight net should be capable
of directing attention to rarely observed video frames. Consequently, we use the updated wt+1 to
improve the parameters in Θ of our model, which can be expressed as:

Θt+1 = Θt − α

n

n∑
i=1

h(Li
train(Θ

t);wt+1)∇ΘLi
train(Θ)

∣∣∣∣
Θt

(14)

The MetaDiff is trained through iterative parameter updates across two meta-learning phases on di-
verse mini-batch video frames. MetaDiff exhibits robustness in modeling uncertainties of imbalanced
phase distribution and low-quality image acquisition, thereby facilitating reliable online surgical
phase recognition. We present the pseudocodes in Appendix A.2 of Algorithms 1 and 2

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets: Four surgical phase recognition
datasets are utilized to extensively evalu-
ate our model, including Cholec80Twinanda
et al. (2016b), M2Cai16Twinanda et al.
(2016a), AutoLaparoWang et al. (2022), and
CATARACTSAl Hajj et al. (2019). Table 1 is
basic statistical information of these datasets.
Details are depicted in Appendix A.3.

Table 1: Summary of dataset statistics. Tr No. and
Te No. separately represent the number of training and
testing videos. C No. is phase number.

Dataset Duration fps(f/s) Tr/Val/Te No. C No.

Cholec80 38min26s 25 40/-/40 7
MeCai16 38min25s 25 27/-/14 8

AutoLaparo 66min07s 25 10/4/7 7
CATARACTS 10min56s 30 25/-/25 19

Evaluation metrics: We use four widely used metrics including accuracy (Acc), precision (Pr), recall
(Re), and Jaccard (Ja) to evaluate the online surgical phase recognition performance. We leverage
Prediction Interval Width (PIW) and Paired Two Samples t-Test (PTST) to quantify the model’s
uncertainty, please refer to Sec. 2.3 for more details. Due to the subjective nature of manual labeling
in surgical videos and the ambiguous boundaries between adjacent surgical stages which are noted by
Gao et al. (2021); Jin et al. (2021); Yi et al. (2022), Cholec80 and M2Cai16 datasets adopt lenient
boundary metrics to access model performance. Specifically, frames predicted belonging to adjacent
stages within a 10 seconds window before and after a phase transition are also deemed correct.

Baselines: We compare our model, MetaDiff, with most recently proposed state-of-the-art competi-
tors such as PitBN Rivoir et al. (2024), SKiTLiu et al. (2023b), CMTNet Yue et al. (2023), LAST
Tao et al. (2023), TMRNet Jin et al. (2021), Trans-SVNet Gao et al. (2021), TeCNO Czempiel et al.
(2020), SV-RCNet Jin et al. (2017) and so on, using the metrics introduced above. The results are
derived from their respective papers or reproduced using their available official codes.

Implementation details: We utilize ConvNeXt Liu et al. (2022) pretrained on ImageNet-1K
Krizhevsky et al. (2017) to extract spatial features from videos, followed by LSTM for tempo-
ral feature fusion. During training, we freeze the earlier blocks of ConvNeXt and updated only the
parameters of its last block. To generate meaningful conditional embeddings for opimizing CDM, we
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Table 2: The results (%) of MetaDiff V.S. other com-
petitors on Cholec80 and CATARACTS datasets. The
best results are marked in bold.

Dataset Methods R Acc Pr Re Ja
C

A
TA

R
A

C
T

S TransSVNet 77.8 61.3 55.0 43.8
3DCNN 80.1 66.2 55.7 45.9

SV-RCNet 81.3 66.0 57.0 47.2
PitBN 83.3 66.8 61.8 50.3

DualPyramid 84.2 69.3 66.4 53.7
MetaDiff (Ours) 85.1 72.1 66.6 54.2

C
ho

le
c8

0

Trans-SVNet ✓ 90.3 ±7.1 90.7 88.8 79.3
TeSTra 90.1 ±6.6 82.8 83.8 71.6

Dual Pyramid 91.4 85.4 86.3 75.4
OperA ✓ 90.2 ±6.1 84.2 85.5 73.0

CMTNet ✓ 92.9 ±5.9 90.1 92.0 81.5
LAST ✓ 93.1 ±4.7 89.3 90.1 81.1
LoViT ✓ 92.4 ±6.3 89.9 90.6 81.2
SKiT ✓ 93.4 ±5.2 90.9 91.8 82.6
PitBN ✓ 93.5 ±6.5 90.0 91.9 82.9

MetaDiff (Ours) 94.2 ±4.3 89.6 90.0 81.7
MetaDiff (Ours) ✓ 95.3 ±4.1 92.9 93.1 86.0

Table 3: The results (%) of MetaDiff V.S. other com-
petitors on AutoLaparo and M2Cai16 datasets. The
best results are marked in bold.

Dataset Methods R Acc Pr Re Ja

A
ut

oL
ap

ar
o

SV-RCNet 75.6 64.0 59.7 47.2
TeCNO 77.3 66.9 64.6 50.7

TMRNet 78.2 66.0 61.5 49.6
Trans-SVNet 78.3 64.2 62.1 50.7

LoViT 81.4±7.6 85.1 65.9 56.0
SKiT 82.9 ±6.8 81.8 70.1 59.9
PitBN 83.7 ±6.6 79.5 67.7 58.8

MetaDiff (Ours) 85.8 ±6.0 82.3 71.1 61.2

M
2C

ai
16

SV-RCNet ✓ 81.7 ±8.1 81.0 81.6 65.4
OHFM ✓ 85.2 ±7.5 – – 68.8

TMRNet ✓ 87.0 ±8.6 87.8 88.4 75.1
Not-E2E ✓ 84.1 ±9.6 – 88.3 69.8

Trans-SVNet ✓ 87.2 ±9.3 88.0 87.5 74.7
CMTNet ✓ 88.2 ±9.2 88.3 88.7 76.1

LAST ✓ 91.5 ±5.6 86.3 88.7 77.8
PitBN ✓ 91.1 ±7.2 90.0 92.5 81.4

MetaDiff (Ours) ✓ 92.2 ±5.1 91.5 92.7 82.9

initially pretrain the SFE, comprising ConvNeXt and LSTM, using standard cross-entropy loss on an
imbalanced training dataset. The feature vectors extracted by ConvNeXt have a dimensionality of
768. Both the LSTM output dimension and the CDM input dimension are set to 512. We employ
AdamW Kingma & Ba (2014) to optimize our model, with separate learning rates of 1e-5 for Θ and
1e-3 for w, without weight decay. To ensure fair comparisons, we maintain batch size of 1 and the
time window length of 256, consistent with other competitors. All experiments are conducted on a
single NVIDIA A100 80GB PCIe GPU. More details can be found in Appendix A.4.

4.2 MAIN RESULTS

4.2.1 QUANTITATIVE RESULTS AND ANALYSIS

Online surgical phase recognition: We conduct comprehensive studies comparing MetaDiff with
other state-of-the-art methods for surgical phase recognition on Cholec80, AutoLaparo, M2Cai16,
and CATARACTS datasets. Quantitative results for these datasets are separately reported in Table 2
and Table 3. MetaDiff significantly outperforms most of competitors, such as SKiT and LAST, across
various metrics including accuracy (Acc), precision (Pr), recall (Re), and Jaccard (Ja). For example,
MetaDiff shows improvements on Cholec80 with increase of 1.8% in Acc, 2% in Pr, 1.2% in Re,
and 3.1% in Ja compared to the second-best method. Additionally, MetaDiff delivers superior results
in Pr, Re, and Ja, effectively addressing imbalanced effects. MetaDiff also achieves lower standard
deviations of Acc, with reductions of 0.6%, 0.8%, and 0.5% on Cholec80, AutoLaparo, and M2Cai16
datasets, respectively, compared to the second-best method. Unlike complex architectures such as
Transformer-based models used in LoViT and SKiT, MetaDiff employs the simple ConvNeXt+LSTM
architecture. We attribute these notable improvements to effectiveness of MetaDiff in addressing the
challenges posed by imbalanced and uncertain problems in surgical videos.

Uncertainty estimation: We present the results of MetaDiff on uncertainty estimation for evaluating
the instance-level prediction confidence under the scope of the entire Cholec80 test dataset in Table 4.
Specifically, for each test frame, we generate 100 predictions through the reverse diffusion process,
resulting in a 100× 7 matrix. We then compute PIW and PTST based on this matrix. After obtaining
the PIW and the PTST from each test frame, we divide the test dataset into two groups by the
correctness of majority-vote predictions. We calculate the average PIW of the true phase within each
group. We also split the test instances by t-test rejection status, and compute the mean accuracy in
each group. For details, please refer to Appendix A.5. As we can see that the mean PIW of the ground
truth label among the correct predictions is (10×) narrower than that of the incorrect predictions,
indicating that MetaDiff can make correct predictions with much smaller variations. Furthermore,
when comparing the mean PIWs across different phases, we observe that the phase indexed as 0 has
the lowest accuracy at 39.0% and its incorrect prediction interval is much smaller than other phases.
All these evidences suggest that the uncertainties of phase 0 could be especially significant. Moreover,
we observe that the accuracy of test instances rejected by the t-Test is significantly higher than that
of the not-rejected ones, both across the entire test dataset and within each phase. We point out that
these metrics reflect confidence of MetaDiff in the correctness of predictions and have the potential
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Table 4: PIW (× 100) and t-test on Cholec80 dataset.

Class Accuracy PIW Acc by t-Test

Correct Incorrect Reject Not-Reject (count)

all 81.3% 0.65 13.40 91.2% 50.8%(134)
0 39.0% 0.43 1.45 39.0% 20.0%(5)
1 97.4% 0.13 10.69 97.4% 60.0%(10)
2 83.4% 0.51 8.12 83.5% 37.5%(8)
3 96.5% 0.39 17.10 96.5% 52.4%(21)
4 88.8% 0.97 27.31 88.9% 50.0%(8)
5 78.9% 3.07 23.99 79.2% 43.8%(48)
6 84.6% 3.24 45.89 84.8% 64.7%(34)

Table 5: Complexity and running time analysis on
Cholec80 dataset.

Methods Params (M) time (ms) GFLOPs Acc (%)

TeCNO 24.69 19 4.11 88.6 ±7.8
TMRNet 63.02 26 8.29 90.1 ±7.6

TransSVNet 24.72 19 4.15 90.3 ±7.1
NotE2E 22.73 49 5.72 91.5 ±7.1
CMTNet 26.63 33 5.56 92.9 ±5.9

LAST 117.26 86 15.49 93.1 ±4.7

MetaDiff-10 21.44 9 5.81 95.0 ±4.3
MetaDiff-100 21.44 76 11.96 95.3 ±4.1
MetaDiff-500 21.44 367 39.27 95.5 ±4.1

Table 6: The results (%) V.S. different components of
MetaDiff on Cholec80 dataset.

CDM Meta Acc Pr Re Ja

93.5 ±6.5 90.0 91.9 82.9
✓ 94.2 ±5.2 91.1 92.1 83.4

✓ 94.5 ±4.8 92.3 92.7 85.2
✓ ✓ 95.3 ±4.1 92.9 93.1 86.0

Table 7: The results (%) on the scope of optimized
parameters under Cholec80 dataset.

Range Acc Pr Re Ja

C 93.4 ±5.2 90.7 90.7 82.7
LSTM+C 94.2 ±4.5 92.0 91.0 83.0

ConvNeXt#+LSTM+C 95.3 ±4.1 92.9 93.1 86.0
ConvNeXt+LSTM+C 90.6 ±5.6 88.7 89.6 81.9

(a) (c)(b) (d)

Figure 3: The results (%) of effects on the scale of meta dataset including number of videos and frames when
constructing the meta dataset on Cholec80 dataset.

to be applied in mitigating risks during surgical evaluation. Such uncertainty estimation can be used
to decide whether to accept the prediction or to refer the instance to experts for further evaluation.

Ablation study: We verify the effects of different components on our proposed MetaDiff, results
are reported in Table 6. CDM represents whether using conditional diffusion model to denoise from
rough predictions. Meta refers to whether employing meta-weight net to reweight the intermediate
loss function. On one hand, either equipping CDM or Meta can consistently improve recognition
performances across all metrics. On the other hand, combining both CDM and Meta altogether can
further boost recognition performances. We are surprised to observe that equipping CDM can improve
metrics that reflect imbalance issue (Pr,Re,Ja). It implies that CDM has capability to ameliorate
robustness on imbalanced surgical videos thanks to its by-products brought by uncertainty estimation.

Analysis on hyper-parameters: (1) As mentioned in the implementation details of Sec. 4.1 that
we initially pretrain MetaDiff using standard cross-entropy loss function to obtain meaningful
conditional embeddings. Therefore, we investigate the performances V.S. the scope of optimized
parameters during fine-tuning and report results in Table 7, where C represents we only fine-tune
the classifier parameters. LSTM+C refers to that we fine-tune parameters of both the LSTM and
classifier. ConvNeXt#+LSTM+C denotes that we fine-tune the parameters of the last block in
ConvNeXt, LSTM, and classifier. ConvNeXt+LSTM+C is that we fine-tune the whole parameters
of ConvNeXt, LSTM, and classifier. We find that fine-tuning parameters with proper amount is
beneficial for accelerating performances, which might be able to attribute to the fact that basic and
general representations of ConvNeXt is essential for robust predictions of MetaDiff. (2) We study
performances V.S. the scale of meta dataset and report results in Fig. 3. We observe that our model
achieves consistent recognition performances even with a small scale meta dataset, demonstrating its
significance and suitability for practical online surgical phase recognition applications.

Confusion matrices: We visualize the confusion matrices of baseline model (ConvNeXt+LSTM)
optimized with standard cross entropy loss and MetaDIff, results are shown in Fig. 5 (b) and (c). Our
model ameliorates the performances on minority phases, P5 (phase of Cleaning Coagulation) for
instance, the stochastic of which can be found in Table 8.
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(a) (b) (c)

Figure 4: (a) and (b) are ribbon diagrams of ground truth labels, baseline method, and MetaDiff from the top
to the bottom under Cholec80 and M2Cai16 datasets. (c) Learned weight vectors on Cholec80 dataset, where
x-axis is samples from the current mini-batch and we only mark their labels for clarity.

(a) (b) (c)

Figure 5: (a) Recognition performances change with the number of training frames in Cholec80. Top (a) are
results of ignoring training labels. Bottom (a) are results of ignoring training frames. (b) and (c) are confusion
matrices of base model (ConvNext+LSTM) and MetaDiff on AutoLaparo.

Complexity analysis: During evaluation, we select the diffusion timestep to T = 1000. To accelerate
prediction speed, we employ the DDIM Song et al. (2021) sampling strategy, reducing the total
sampling requirement effectively to T = 100. On one hand, we conduct comparative experiments
using different diffusion timesteps and depict results in Table 5. On the other hand, we also compare
the complexity of MetaDiff with other competitors. Overall, MetaDiff achieves a satisfactory balance
between performance and real-time efficiency.

Surgical phase recognition in low-data regime: In practice, annotating surgical videos is labor-
intensive and time-consuming, therefore, verifying the effectiveness of our model under low data
regime is also crucial. We conduct experiments under two data-limited scenarios, and report the
results in Fig. 5(a). Our model also achieves robust performance when the training frames are limited.

4.2.2 QUALITATIVE RESULTS AND ANALYSIS

(1) We employ ConvNeXt + LSTM optimized with standard cross entropy loss function as baseline
model. And we compare ribbon diagrams among ground truth labels, baseline model, and MetaDiff
to show the capability of our model in reliable online surgical phase recognition, as shown in Fig. 4
(a) and (b). Taking predicted ribbon diagram on Cholec80 dataset for example, the baseline model
easily misclassifies P1 (CalotTriangleDissection) into P2 (framepingCutting) at middle of the video.
In contrast, our model effectively avoid such errors. (2) We visualize the learned weight vectors of
100 training frames uniformly sampled from each phase and show result in Fig. 4 (c). We find that
the learned frame weights for minority phases are typically more prominent than those for majority
phases, prompting the model to focus more on frames from minority phases and thereby reducing the
risk of overfitting to majority phases. This observation is also consistent with human intuition.

5 CONCLUSION

We propose MetaDiff to address a crucial issue that have long been overlooked in reliable online
surgical phase recognition, namely uncertainty caused by phase distribution and video quality.
MetaDiff employs the CDM to deliver clean predictions, being less disturbed by uncertainty, from
rough ones provided by a pre-trained SFE. Additionally, we employ the MOA to train the model so
that enabling the CDM to have such uncertainty-aware capability. Our empirical results demonstrate
that the proposed model outperforms other specially designed competitors in complex online surgical
phase recognition task.
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A APPENDIX

A.1 DERIVATION FOR FORWARD PROCESS POSTERIOR

We derive the forward process posterior in Eq. 8 as follows:
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According to properties of Gaussian distribution in Eq. 10.100 and Eq. 10.101 of Bishop (2006),
the variance of posterior can be expressed as 1−αt−1

1−αt
βt, and we have γ3 = 1−αt−1

1−αt
. Meanwhile, the

mean of posterior can be written as:
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For the sake of simplicity, we define µ̃ = γ0y
i
0 + γ1y

i
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i,j and have:
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A.2 PSEUDO CODES FOR TRAINING AND INFERENCE

Algorithm 1 Training of MetaDiff

1: Initialize parameters Θ
2: repeat
3: Draw mini-batch from Dtrain and Dmeta

4: Draw t ∼ Uniform(1, T )
5: Draw ϵ ∈ N (0, I)
6: Draw z·,· from Eq. 5
7: Compute the loss in Eq. 10
8: Update parameters using Eq. 13 and 14
9: until convergence

Algorithm 2 Inference of MetaDiff

1: Draw xi from test dataset
2: Draw zi,j from Eq. 5
3: for t = T to 1 do
4: Calculate: ŷi

0 = 1
αt
(yi

t − (1 − √
αt)z

i,j −√
1− αtϵθ(y

i
t, z

i,j , t))
5: if t ≥ 1: Draw ϵ ∼ N (0, I)
6: yi

t−1 = γ0ŷ
i
0 + γ1y

i
t + γ2z

i,j +
√
γ3βtϵ

7: else: yi
t−1 = ŷi

0
8: end for

A.3 MORE DETAILS ON DATASETS

Cholec80 Twinanda et al. (2016b) comprises 80 laparoscopic surgical videos, with 7 defined phases
annotated by experienced surgeons and an average duration of 39 minutes at 25 fps with resolution
either 1920 ×1080 or 854 × 480. We split the dataset into the 40 videos for training and the rest
for testing follow Jin et al. (2017). M2Cai16 Twinanda et al. (2016a) consists of 41 laparoscopic
surgical videos with resolution 1920×1080 that are segmented into 8 phases by expert physicians.
Following Yi & Jiang (2019), we split the dataset into the 27 videos for training and the 14 for
testing. AutoLaparo Wang et al. (2022) includes 21 laparoscopic hysterectomy videos, with 7 phases
annotated by experienced surgeons and an average video duration of 66 minutes recorded at 25
fps with resolution 1920 ×1080. FollowingLiu et al. (2023a), we split the dataset into 10 videos
for training, and 7 videos for testing. CATARACTS Al Hajj et al. (2019) comprises 50 videos of
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Table 8: Phase names of Cholec80 dataset.

Phase P0 P1 P2 P3 P4 P5 P6

Name Preparation CalotTriangle
Dissection framepingCutting Gallbladder

Dissection
Gallbladder
Packaging

Cleaning
Coagulation

Gallbladder
Retraction

Num 3727 36877 7329 24119 5716 5222 3314

Table 9: Phase names of M2Cai16 dataset.

Phase P0 P1 P2 P3 P4 P5 P6 P7

Name TrocarPlacement Preparation CalotTriangle
Dissection framepingCutting Gallbladder

Dissection
Gallbladder
Packaging

Cleaning
Coagulation

Gallbladder
Retraction

Num 4913 2763 17062 7607 16850 1847 8524 7989

Table 10: Phase names of AutoLaparo dataset.

Phase P0 P1 P2 P3 P4 P5 P6

Name Preparation Dividing Ligament
and Peritoneum

Dividing Uterine
Vessels and Ligament

Transecting
the Vagina

Specimen
Removal Suturing Washing

Num 739 12957 9841 5814 296 6808 3756

Table 11: Selected phase number of CATARACTS dataset.

Phase P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Num 22338 150 473 3074 2055 5026 1736 5270 8173 2310 8179 2039 1844 1595 4522 5184

cataract surgeries, with an average duration of 10 minutes and 56 seconds per video. Each video
has a frame rate of 30 FPS and a resolution of 1920 ×1080 pixels. The dataset includes 19 stages
to be identified and is split into 25 training sets and 25 test sets following Al Hajj et al. (2019). All
videos are subsampled to 1 fps following Twinanda et al. (2016b), and frames are resized into 250
× 250. We separately illustrate phase names of the four surgical video datasets in Table 8, Table 9,
Table 10and Table 11, the stage name of the CATARACTS is not explicitly given, only the number
of corresponding stage frames is displayed. Due to limited space, in Table 11, we only give part of
phase number in CATARACTS dataset. In addition, we briefly illustrate the differences between the
four surgical video datasets using video frames in Fig. 6.

A.4 MORE DETAILS ON ARCHITECTURES

In our experiments, we set the number of timesteps as T = 100 and employed a linear noise schedule
with β1 =1e-4 and βt = 0.02. The conditional embedding z·,· are configured to be 512 dimension.
For LSTM in SFE, we use a two layers LSTM, each layer has 512 hidden units. For architecture
of CDM, we initially use a linear embedding for the timestep. We then concatenate yi

t and yi
0 and

feed them into a three layers MLP, each with an output dimension of 512. We conduct Hadamard
product between the output vector and the corresponding timestep embedding, followed by a Softplus
non-linear function. Finally, we use another fully-connected layer activated with Softmax function to
map the vector to the rough predictions, also known as conditional embeddings in our work.

A.5 MORE DETAILS ON PIW AND PTST

Prediction Interval Width (PIW) and Paired Two-Sample t-Test (PTST) are used to assess the
predictive uncertainty of our proposed MetaDiff. We provide the mean PIW among correct and
incorrect predictions, and the mean accuracy among instances rejected and not-rejected by the PTST
for all test instances. And we describe details of their calculation process as follows.
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Figure 6: Showcases of surgical video frame for the four datasets.

For ease of representation, we set ntest as the number of instances in the test dataset and nsample

as the number of samples taken for uncertainty assessment for each instance. The data for all
instances in the test dataset is represented as x ∈ Rntest×I , where I is feature dimension. Their
corresponding ground-truth label with one-hot encoding is denoted as y ∈ Rntest×C , where C is
phase number. When using MetaDiff for inference on the test dataset, each input instance is used to
generated nsample denoised outputs (predicted vectors) ŷ ∈ Rntest×nsample×C by reverse diffusion.
By taking the maximum predicted probability among the nsample predictions for each instance, we
obtain the predicted recognition results y ∈ Rntest×C for all instances. Additionally, extracting
the top two maximum probabilities from the nsample predictions yields two data distributions, each
containing nsample values for each instance. These two distributions serve as the two input samples
for PTST statistical testing, denoted collectively as t ∈ Rntest×nsample×2. Comparing the predicted
results y with the ground-truth label y allows us to determine the number of correctly classified and
misclassified samples, thereby the recognition accuracy is obtained. Subsequently, we compute the
PIW values between the 2.5th and 97.5th percentiles of the predicted probabilities separately for
correct and incorrect samples, averaging these values to derive the PIW for correct and incorrect
samples. Besides, we conduct hypothesis tests on the obtained dual-sample distribution t, yielding a
p-value for each instance, which is compared against the given significance level ρ = 0.05 to classify
instances as ’reject’ or ’no-reject’ groups. It’s noteworthy that these hypothesis tests are based on the
largest and second largest predicted probabilities for each instance. Therefore, the hypothesis is that
"the top two maximum predicted values are the same". Larger differences between these probabilities
indicate higher accuracy in the maximum predicted probability, identifying ’reject’ samples as those
with better predictive performance. Finally, we tally the number of correctly predicted samples in the
’reject’ and ’no-reject’ groups, calculating the corresponding accuracy for each group.

A.6 REBUTTAL RESULTS
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Figure 7: Visualizations presented on M2Cai16 (left) and AutoLaparo (right) datasets, where the blue box in
the black box per dataset indicates the target organ and tool that should be focused on while the blue box outside
the black box represents incorrectly focused area. Surgical phases are best viewed in color of ribbon diagrams,
such as P0 to P7 in M2Cai16. Phase names can be found in Appendix A.3. We observe that imbalanced
phase distribution occurs in the ribbon diagrams. Additionally, we find that low-quality frame image with high
semantic similarity across different categories may raise ambiguity for precise recognition.
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Diffusion 

process
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Figure 8: Overview of our MetaDiff consisting of a Classifier-guided Diffusion Model (CDM) and a Meta-
weighted Optimization Algorithm (MOA). We employ a simple yet effective backbone fϕ, ConvNext + LSTM,
to deliver rough predictions. The upper part illustrates the data flow of obtaining rough predictions, while the
lower part shows how CDM obtains clean prediction yi

0 from rough prediction fϕ(x
i) for the i-th frame. The

MOA is designed to train the CDM so that the surgical phase recognition could be robust against uncertainty.

Table 12: Results on the Cholec80 dataset. R denotes relaxed metric. The best results are marked in
bold.

Method R Cholec80

ACC Precision Recall Jaccard

Online SurgPLAN++ 92.7 91.1 89.8 81.4
Offline SurgPLAN++ 94.1 93.3 92.9 83.5

SR-Mamba ✓ 92.6 90.3 90.6 81.5
SPR-Mamba ✓ 93.1 89.3 90.1 81.4

MetaDiff+ConvNext 94.2 89.6 90.0 81.7
MetaDiff+ConvNext ✓ 95.3 92.9 93.1 86.0

Table 13: Results on the OphNet dataset using metrics following OphNet. The best results are marked
in bold.

Method Acc-top1 Acc-top5 Params inference time

X-CLIP16 64.8 89.3 194.9M 216ms
X-CLIP32 71.2 91.6 194.9M 243ms

Ours 69.7 91.4 32.8M 170ms
Ours+X-CLIP32 72.1 92.4 194.9M 256ms

Table 14: Results on the Cholec80 dataset using differ-
ent backbones. The best results are marked in bold.

Method R Cholec80

ACC Precision Recall Jaccard

MetaDiff+ResNet ✓ 94.8 90.7 92.8 84.5
MetaDiff+ViT ✓ 95.0 91.7 93.2 85.4

MetaDiff+ConvNext ✓ 95.3 92.9 93.1 86.0

Table 15: Results on the OphNet dataset re-
garding the effect of background frames.

Method Acc Precision Recall Jaccard

ignore bg 73.0 63.2 56.3 55.6
ignore bgl 76.3 64.3 58.4 59.3
use 1 bgl 70.0 56.2 51.7 52.5

Table 16: Ablation studies on Train Time, CPU
and GPU Memories during training.

MOA CDM Train Time CPU Mem GPU Mem

× × 19:34:52 4.93G 7.99G
✓ × 30:12:21 6.72G 9.44G
× ✓ 25:58:19 8.18G 9.37G
✓ ✓ 34:35:16 10.22G 10.82G

Table 17: Results on the NurViD dataset using
the metrics following NurViD. The best results
are marked in bold.

Method Many(9) Medium(66) Few(87) All(162)

SlowFast 29.8 15.5 7.9 21.1
C3D 28.1 14.6 7.3 22.8
I3D 31.3 14.8 8.2 21.5
Ours 34.2 22.5 19.3 26.0
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