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ABSTRACT

Graph clustering is a widely used technique for partitioning graphs, community
detection, and other tasks. Recent graph clustering algorithms depend on combi-
nations of the features and adjacency matrix, or solely on the adjacency matrix.
However, in order to achieve high-quality clustering, it is necessary to consider
all these components. In this paper, we propose a novel unsupervised learning
framework that incorporates modularity with graph coarsening techniques and
important graph regularization terms that improve the clustering performance. Fur-
thermore, we also take into account Dirichlet energies for smoothness of signals,
spectral similarity, and coarsening reconstructional error. The proposed framework
is solved efficiently by leveraging block majorization-minimization, log det of the
Laplacian, smoothness and modularity, and is readily integrable with deep learning
architectures such as GCNs and VGAEs in the form of losses. Extensive theo-
retical analysis and experiments with benchmark datasets elucidate the proposed
framework’s efficacy in graph clustering over existing state-of-the-art methods on
both attributed and non-attributed graphs.

1 INTRODUCTION

Graph clustering partitions the nodes of a graph into groups based on their specific attributes and
interaction patterns learnt from the adjacency matrix and the features. The major applications of
graph clustering are social network analysis (Tang et al., 2008), genetics and bio-medicine (Cheng &
Ma, 2022) (Buterez et al., 2021), knowledge graphs (Hamaguchi et al., 2017), and computer vision
(Mondal et al., 2021) (Caron et al., 2018), etc. The recent surge in demand for unsupervised graph
learning techniques because of a surge in data collection has made it infeasible to label the majority
of datasets manually. Researchers are bound to resort to unsupervised methods of analysis.

Cut-based and Modularity metrics are the two categories of measures used to determine the quality
of partitioning of a graph. Methods optimizing cut-based metrics are usually based on the fact that
the Fiedler vector (the eigenvector of the second smallest eigenvalue of the Laplacian) produces a
graph cut minimal in the number of edges (Fiedler, 1973; Newman, 2006). However, Leskovec et al.
(2008) show that this does not translate well for real-world graphs as the partitions formed do not
need to balanced in size (nodes) and cluster quality decreases with an increase in cluster size. Some
methods try to normalize these partitions, such as Ratio Cut (Wei & Cheng, 1989) which considers
the number of nodes and Normalized Cut (Shi & Malik, 2000) which considers total edge volume of
the partition. MinCutPool (Bianchi et al., 2020) performs graph pooling using normalized cuts as a
regularizer. A major disadvantage of cut-based metrics is that they assume each node gets mapped to
one cluster, which is not consistent with real graph data.

Modularity has been popularized because it measures how different the edge density of a graph is
compared to a random graph of the same degree sequence. This can also be viewed as a statistical
approach incorporating a null model. A significant edge that modularity offers is that its definition can
be extended to directed graphs with overlapping clusters (Nicosia et al., 2009), making it suitable for
complex networks. In this paper, we study graph clustering through the lens of modularity. However,
it too has drawbacks on small clusters such as its resolution limit (Fortunato & Barthélemy, 2007).

Graph coarsening condenses a large graph into a smaller one while preserving its properties. Feature
Graph Coarsening (FGC) (Kumar et al., 2023) is the first optimization framework that takes into
account node features instead of just the adjacency. More about this is discussed in Section 2.
Recent Graph Neural Network (GNN)-based approaches utilize both node features and graph topol-
ogy. Most state-of-the-art clustering methods use Variational Graph Auto-Encoder (VGAE)-based
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backbone because they offer superior performance and have flexibility to use different task-specific
encoders/decoders. The existing GNN-free approaches, on the other hand, take only graph topology
into account. This is disadvantageous because many real-word graphs have important/meaningful
node features and satisfy important homophily and smoothness assumptions, i.e., if two nodes are
connected, they should be similar.
Motivation. We aim to utilize the feature graph coarsening framework (which does not perform well
on clustering) for clustering. With this in mind, we add a modularity maximization term because
it is a good measure for community detection. This is discussed in 2. This comprises the Q-FGC
method and greatly improves clustering performance. We also utilize various GNN architectures
and integrate our loss function, resulting in Q-GCN, Q-VGAE, and Q-GMM-VGAE and outperform
other methods. An important future work can entail utilizing contrastive learning in our framework to
get the best of both worlds.

Key Contributions:

• We introduce a new approach to clustering by introducing the first optimization-based framework
for attributed graph clustering via coarsening using modularity. Our approach is highly efficient
and theoretically convergent. We also reflect on how our formulation overcomes the disadvantages
of existing methods.

• We show that the proposed clustering objective can be easily integrated with GNN-based architec-
tures. This allows us to leverage the message-passing mechanism of GNNs to further enhance the
performance of our method.

• We conduct extensive experimental validation on real-world and synthetic datasets, showing that
our method outperforms existing state-of-the-art methods.

We show a new approach to clustering, as most methods don’t take into account various important
terms such as the Dirichlet energy (smoothness) of the coarsened graph, modularity maximization, a
term to ensure the coarsened graph is connected, and a regularizer for balanced mapping of nodes to
clusters, preventing collapse. Our method can also directly observe the relationship between clusters,
and also represent each cluster. This is quite important for performing first-hand analysis on large
unlabelled datasets.

Novelty This may seem like an incremental work because our modification to the FGC objective is
one term. However, here are some points to consider:

• A significant increase in performance from baseline models FGC (+153%) and DMoN (+40%),
which shows that our contribution is to allow potentially any coarsening method to work in
a clustering setting, as there are theoretical benefits in coarsening literature that have not been
studied in clustering yet.

• Comprehensive analyses with theoretical guarantees, including supporting proofs of convexity,
proofs of KKT optimality, proofs of convergence, ablation studies on the behavior of the loss terms
and how it differs from FGC, recovery on a DC-SBM, comparison of runtime and complexities,
and also comparison of modularity to make it empirically and theoretically comprehensive.

• Experiments that are not limited to a few small datasets but range from benchmark, to non-attributed,
to very large datasets, even though our method does not specialize for them.

2 RELATED WORKS

The focus is on three types of existing graph clustering approaches: (1) Graph coarsening methods,
(2) VGAE-based clustering (Section 3), and (3) Spectral modularity maximization techniques.

Graph Coarsening and Pooling Methods. DiffPool (Ying et al., 2018)learns soft cluster assignments
at each layer of the GNN and two extra losses, entropy to penalize the soft assignments and a link
prediction based loss. SAGPool (Lee et al., 2019) calculates attention scores and node embeddings
to determine the nodes that need to be preserved or removed. Top-k (Gao & Ji, 2019) also works
by sparsifying the graph with the learned weights. MinCutPool (Bianchi et al., 2020) formulates a
differentiable relaxation of spectral clustering via pooling. However, Tsitsulin et al. (2023) show
that it’s orthogonal regularization dominates over the clustering objective and the objective is not
optimized. Some disadvantages of these methods are stability and computational complexity in the
case of SAGPool and DiffPool and convergence in MinCutPool.
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Modularity Optimization. In theory, a higher value of modularity (Q) is associated with better
quality clusters. However, maximizing modularity over all partitions of a graph is NP-hard (Brandes
et al., 2008). Various heuristic algorithms have been established that solve this problem including
sampling, simulated annealing (sim, 2005) (Guimerà & Amaral, 2005), mathematical programming
(Agarwal, G. & Kempe, D., 2008), and greedy agglomerative algorithms (Newman, 2004; Blondel
et al., 2008a). The usage of these algorithms has plummeted over the years because they rely solely
on the topological information of graphs and ignore node features. Another major drawback is that
they require intensive computation and are thus impractical for large-scale networks. The Louvain
(Blondel et al., 2008b) and Leiden algorithms improve that. With the development of GNNs, this also
improved drastically; however, modularity maximization using GNNs still needs to be studied. To the
best of our knowledge, Deep Modularity Network (DMoN) (Tsitsulin et al., 2023) and Modularity-
Aware GAE (Salha-Galvan et al., 2022) are the only deep learning architectures to use modularity
in training and are crucial baselines for our method. DMoN’s clustering objective optimizes only
for modularity (with a collapse regularization to prevent all nodes being assigned one cluster) but
does not consider smoothness of signals and offers no theoretical guarantees about convergence.
Modularity-Aware GAEs and VGAEs use a prior membership matrix using Louvain algorithm and
optimize for modularity using RBF kernel as a same-community assignment proxy.

Deep Graph Clustering. Previous literature can be classified based on contrastive and non-contrastive
methods. On the non-contrastive side, Pan et al. (2018) proposed ARGA and ARVGA, enforcing the
latent representations to align to a prior using adversarial learning. By utilizing an attention-based
graph encoder and a clustering alignment loss, Wang et al. (2019) propose DAEGC. Subsequently,
SDCN (Bo et al., 2020) propose to learn a “structure-aware” representation by their delivery operator.
Liu et al. (2022) design the DCRN model to alleviate representation collapse by a propagation
regularization term minimizing the JSD between the latent and its product with normalized A.
Contrastive methods include AGE (Cui et al., 2020) which builds a training set by adaptively selecting
node pairs that are highly similar or dissimilar after filtering out high-frequency noises using Laplacian
smoothing. Zhao et al. (2021) propose GDCL to correct the sampling bias by choosing negative
samples based on the clustering label. Liu et al. (2023a) propose SCGC, which uses two MLPs to get
augmented node features, and then find a cross-view similarity matrix to contrast against A.

3 BACKGROUND

In this section, we introduce the concepts that play a foundational role in the formulation of our
method.
Notations. Let G = {V,E,A,X} be a graph with node set V = {v1, v2, ..., vp} (|V | = p), edge set
E ⊂ V × V }(|E| = e), weight (adjacency) matrix A and node feature matrix X ∈ Rp×n. Also, let
d ∈ Zp

+ be the degree vector. Then, the graph Laplacian is Θ = diag(d)−A and the set of all valid
Laplacian matrices is defined as: SΘ = {Θ ∈ Rp×p|Θij = Θji ≤ 0 for i ̸= j,Θii =

∑p
j=1 Θij}

3.1 GRAPH COARSENING

Graph coarsening is a classical method used in large-scale machine learning to construct a smaller
graph Gc from the original graph G = {V,E,A,X} while preserving properties of G. The com-
monly used measures of similarity are hyperbolic error (Bravo Hermsdorff & Gunderson, 2019),
reconstruction error, ϵ- similarity (Loukas, 2019), and spectral similarity. For the coarsened graph
Gc, we denote the new vertex set as Ṽ (|Ṽ | = k) features as X̃ ∈ Rk×n and the Laplacian ΘC . We
define C ∈ [0, 1]p×k to be the soft cluster assignment matrix (i.e. each non-zero entry of matrix C
i.e., Cij indicates probability of i-th node of G mapped to j-th cluster or supernode of Gc). The
coarsening matrix C plays the role of cluster assignment matrix in our study, i.e. k represents the
number of clusters. Moreover, the Laplacian and feature matrix of the coarsened graph and original
graph together satisfy the following properties:

X = CX̃, ΘC = CTΘC where, C ∈ Sc (1)

Sc = {C ∈ Rp×k
+ |⟨Ci,Cj⟩ = 0 ∀ i ̸= j, ⟨Cl, Cl⟩ = di, ||Ci||0 ≥ 1 and ||[CT ]i||0 = 1} (2)

Kumar et al. (2023) proposed the first optimization-based framework FGC to incorporate both graph
topology using the Laplacian matrix and node features. Their method preserves important qualities
of the original graph G in the coarsened graph Gc.
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3.2 VARIATIONAL GRAPH AUTO ENCODERS (VGAES)

VGAEs (Kipf & Welling, 2016a) are an increasingly popular class of GNNs that leverage variational
inference techniques for learning latent representations for graphs in unsupervised settings. A typical
architecture involves using GCN-based encoders to transform a high-dimensional graph to a low-
dimensional space, followed by a decoder to reconstruct the adjacency matrix. Due to its ability
to attain competitive performance on a multitude of tasks, including node classification and link
prediction, it is the preferred backbone for contemporary graph-based architectures.

Many attempts have been made to use VGAEs with k-means on latent embeddings, but it has been
unsuitable for clustering. This is primarily because embedded manifolds obtained from VGAEs are
curved and must be flattened before any clustering algorithms using Euclidean distance are applied.
Refer to supplementary material K for an explanation. VGAEs only use a single Gaussian prior
for the latent space, whereas clustering requires the integration of meta-priors. Additionally, the
inner-product decoder fails to capture locality and cluster information in the formed edges. Several
clustering-oriented variants of VGAEs (Mrabah et al., 2022) (Hui et al., 2020) have been developed
that overcome most of these challenges. GMM-VGAE (Hui et al., 2020) is one such architecture and
is relevant to our paper. GMM-VGAE partitions the latent space using a Gaussian Mixture Model
and assigns a separate prior for each cluster to better model complex data distributions instead of
the single prior in VGAEs. Despite the improvement in performance, it’s inner-product decoder still
suffers from the same problems.

3.3 SPECTRAL MODULARITY MAXIMIZATION

Spectral Clustering is the most direct approach to graph clustering, where we minimize the volume of
inter-cluster edges (i.e. the total number of edges in between clusters and not inside them). Modularity
is the difference the number of edges between nodes in a cluster Ci and the expected number of such
edges in a random graph with identical degree sequence. It is mathematically defined as

Q =
1

2e

∑
i,j

[
Aij −

didj
2e

]
δ(ci, cj) (3)

where δ(ci, cj) is the Kronecker delta. Maximizing this form of modularity is NP-hard (Brandes
et al., 2008). However, we can approximate it with a spectral relaxation, which involves a modularity
matrix B. The modularity matrix B and spectral modularity are defined as:

B = A− ddT

2e
, Q =

1

2e
Tr(CTBC) (4)

Similar to the Graph Laplacian matrix Θ, B is symmetric and is defined to have a row-sum and
column-sum as 0, thereby making 1 as one of it’s eigenvector and 0 as the corresponding eigenvalue.
These spectral properties of the modularity matrix are also seen in the Laplacian, as noted in Newman
(2006), which is of course a crucial element in spectral clustering. Also, modularity is maximized
when uT

1 s is maximized where u are eigenvectors of B and s is the community assignment vector,
i.e., placing the majority of the summation in Q on the first (and largest) eigenvalue of B. Moreover,
modularity is closely associated with community detection. These special spectral properties make B
as the ideal choice for graph clustering.

4 PROPOSED METHOD

In this section, we present our proposed clustering framework that overcomes the aforementioned
drawbacks of existing methods and achieves competitive performance on six benchmark datasets.

4.1 MODULARITY AIDED FEATURE GRAPH COARSENING

Following the success of FGC, we pose the clustering problem as a special case of graph coarsening,
when the number of nodes in the coarsened graph is equal to the number of clusters. FGC performs
excellently for coarsening ratios (k/p) in the range of 0.01-0.1, preserving the eigenvalue distribution
of the original graph. However, for clustering purposes, we usually have p of the order of thousands,
whereas k is usually less than 10, implying a coarsening ratio lower than 0.001. So empirically and
experimentally (Table 2), it is evident that FGC alone is inadequate. We assume that the original
graph is smooth considering that most real world graphs are smooth and homophilic. Note that this
doesn’t mean our method fails on synthetic graphs. We have studied this in the ablation study 5.5,
and is able to recover the community structure completely. We introduce an optimization-based
framework for attributed graph clustering via coarsening with modularity as follows:
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min
X̃,C
LMAGC = tr(X̃TCTΘCX̃)+

α

2

∥∥∥CX̃ −X
∥∥∥2
F
− β

2e
tr(CTBC) (5)

− γ log det(CTΘC + J) +
λ

2

∥∥CT
∥∥2
1,2

subject to C = {C ∈ Rp×k|C ≥ 0,
∥∥CT

i

∥∥2
2
≤ 1} ∀i where, J =

1

k
1k×k

(6)
The significance of each term is term in the optimization objective is:
• tr(X̃TCTΘCX̃) is the Dirichlet energy of the coarsened graph (because ΘC = CTΘC), a measure

of the smoothness of it’s signals. Graph-based modeling is based on the assumption that graph
signal variations are smooth between connected nodes. This term ensures the smoothness property
of the original graph is passed onto the coarsened one.

•
∥∥∥CX̃ −X

∥∥∥2
F

simply enforces the relaxation of the constraint X = CX̃ , i.e., the large graph X

gets coarsened to the the smaller X̃ with the cluster assignment/loading matrix C.
• tr(CTBC) is the modularity term for better cluster quality. The negative of this is added to the loss

as we want to maximize modularity while minimizing the loss. This is discussed in 3.3
• -log det(CTΘC + J) is the log-determinant term to ensure the coarsened graph is connected. This

works because it can be written as −
∑

i log λi where λi’s are the eigenvalues of the ΘC . By
minimizing this, we are ensuring that minimal number of λi’s are 0, since the number of connected
components in a graph is equal to the multiplicity of 0 in it’s laplacian eigenvalues.

•
∥∥CT

∥∥2
1,2

is an ℓ21,2 norm regularizer for a balanced mapping of nodes to clusters (i.e., every cluster
has at least one node and each node is mapped to a cluster) (Kim & Park, 2007).

Update rules. Since the resulting optimization problem is multi-block non-convex and there is no
closed-form solution, we use Block Majorization-Minimization framework similar to FGC (Kumar
et al., 2023). We iteratively solve the problem by updating C and X̃ alternatively while keeping the
other constant. These iterations are performed until convergence or until some stopping criteria is
met.
Lemma 1. The problem equation 6 with respect to X̃ while keeping C constant is a convex optimiza-
tion problem.

Proof. As tr(X̃TCTΘCX̃) and ∥CX̃ −X∥2F are convex functions with respect to X̃ while keeping
C constant and X̃ ∈ Rp×n together makes the problem equation 6 with respect to X̃ as a convex
optimization problem.
Lemma 2. The problem equation 6 with respect to C is convex optimization problem while keeping
X̃ constant.
Proof. All the terms in the objective function of problem 6 with respect to C while keeping X̃
are convex functions and the set C is a closed convex set together makes the problem a convex
optimization problem. More details are in supplementary material.
Considering the objective function with respect to C as f(C), The majorized function of f(C) at Ct

using the first order taylor series expansion is:

g(C|Ct) = f(Ct) + (C − Ct)∇f(Ct) +
L

2

∥∥C − Ct
∥∥2 (7)

min
C∈SC

1

2
CTC − CT

(
Ct − 1

L
∇f(Ct)

)
(8)

Equation 8 is the majorized problem of equation 6. The optimal solution to Eqn. 8, found by
using Karush–Kuhn–Tucker (KKT) optimality conditions is (Proof is deferred to the supplementary
material B):

Ct+1 =
(
Ct − 1

L
∇f
(
Ct
))+

(9)

where, ∇f
(
Ct
)
= −2γΘCt(CtTΘCt + J)−1 + α(CtX̃ −X)X̃T + 2ΘCtX̃X̃T + λCt1k×k

− β

e
BCt (10)

X̃t+1 =
( 2
α
CTΘC + CTC

)−1

CTX (11)
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Algorithm 1 Q-FGC Algorithm

Require: G(X,Θ), α, β, γ, λ
1: t← 0
2: while Stopping Criteria not met do
3: Update Ct+1 as in Eqn. 9 and

Update X̃
t+1

as in Eqn. 11
4: t← t+ 1
5: end while
6: return Ct, X̃

t

Convergence Analysis.
Theorem 1. The sequence {Ct+1, X̃

t+1} generated by
Algorithm 1 converges to the set of Karush–Kuhn–Tucker
(KKT) optimality points for Problem 6
Proof. The detailed proof can be found in the supplemen-
tary material C.

Complexity Analysis. The worst-case time complexity
of a loop in Algorithm 1 is O(p2k + pkn) because of
the matrix multiplication of Θ(p× p) with C(p× k) and
matrix multiplication of C(p × k) with X̃(k × n) in the
update rule of C equation 9. Note that in clustering, k is
much smaller than p. This makes our method much faster
than previous optimization based methods and faster than GCN-based clustering methods which have
complexities around O(p2n+ pn2). We discuss this more in Supplementary Material L.

4.2 INTEGRATING WITH GNNS

Our optimization framework is easily integrable with deep learning methods (GNNs) by adding
equation 6 in the form of a loss function to be minimized using gradient descent. We show this
integration and their results on the most widely-used architectures like Graph Convolutional Networks
(GCNs) (Kipf & Welling, 2016b), VGAEs(Kipf & Welling, 2016a), and a variant of VGAE (GMM-
VGAE) (Hui et al., 2020). The former two are popular because of the relative simplicity.

Note that for clustering, learning C is of more importance to us than learning X̃ , as it tells us about
which nodes belong to which clusters, whereas X̃ tells us about a mean/prototypical element in that
cluster, which can’t be compared directly with the ground truth labels. So, we just learn C instead
of X̃ , and calculate it in each iteration by multiplying X with the pseudo-inverse of C because of
equation 1.
Q-GCN. We integrate our loss function (LMAGC equation 6) into a simple three-layer GCN model.
We learn the soft cluster assignments C by taking it to be the output of the final GCN layer. So, our
input features go from p× n, to p× k. The architecture and loss can be seen in Figure 1.
Q-VGAE. VGAEs operate by reconstructing the adjacency matrix.

We have provided a theoretical summary of VGAE in supplementary material F. The loss can be
written as

LV GAE = λrecon Eq(Z|X,A)[log p(Â|Z)]︸ ︷︷ ︸
Reconstruction Error

−λkl KL[q(Z|X,A) || p(Z)]︸ ︷︷ ︸
Kullback-Leibler divergence

(12)

where, Z represents the latent space of the VGAE.
On top of this architecture, we add a GCN layer taking Z as input and predicting C. So, for a VGAE,
we are minimizing the sum of three losses: the reconstruction loss, the KL-divergence loss and our
loss. LQ−V GAE = LMACG + LV GAE

Q-GMM-VGAE. This variant of VGAE uses a Gaussian Mixture Model (GMM) on the latent
space to more effectively discover data distributions. This works well because it minimizes the
evidence lower bound (ELBO/variational lower bound (Hui et al., 2020; Kingma & Welling, 2014;
Kipf & Welling, 2016a)) using multiple priors instead of a single Gaussian prior in a normal VGAE.
Intuitively, taking as many priors as number of clusters seems like a good idea, which is what Hui
et al. (2020) do.

5 EXPERIMENTS
5.1 BENCHMARK DATASETS AND BASELINES

We evaluate our method on a range of datasets, ranging from small attributed datasets like Cora and
CiteSeer to larger ones like PubMed, and even unattributed datasets like Airports (Brazil, Europe and
USA). We also experiment with very large datasets like CoauthorCS/Physics, AmazonPhoto/PC and
ogbn-arxiv. A summary of all the datasets used in our paper is given in the supplementary material D.

We compare the performance of our method against three types of existing state-of-the-art methods
based on the provided input and type of architecture: a) methods that use only the node attributes; b)
methods that only use graph-structure; c) methods that use both graph-structure and node attributes.
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Figure 1: a) The architecture of Q-GCN. We train the encoder to learn the soft cluster assignment
matrix C. X̃ is obtained using the properties of coarsened graphs X̃

t+1
= Ct+1†X (Eqn 1). Our

proposed MAGC loss is now computed using C and X̃.
b) The architecture of Q-VGAE/Q-GMM-VGAE. The three-layered GCN encoder, which takes X
and A as input, learns the latent representation of the graph Z. Z is then passed through an inner-
product decoder to reconstruct the adjacency matrix Â Reconstruction loss is calculated between Â
and A and KL-Divergence on Z. In Q-VGAE (Q-GMM-VGAE), Z is parallelly passed through a
GCN layer (GMM) to output the soft cluster assignments C. MAGC loss is now computed in the
same way as Q-GCN.

The last category can be further subdivided into three sets: i) graph coarsening methods; ii) GCN-
based architectures; iii) VGAE-based architectures and contrastive methods; iv) largely modified
VGAE architectures.

5.2 METRICS

We analyse the performance of our method using label alignment metrics which relate ground truth
node labels to cluster assignments. We report Normalised Mutual Information (NMI), Adjusted Rand
Index (ARI), and Accuracy (ACC). Higher value for these metrics are desirable. Please refer to
Supplementary Material D for an explanation.

We chose NMI as the primary metric for selecting the most performant models because of these
reasons and because it is considered most important by the majority of graph clustering literature.

Training Details. We have used the same architectures for Q-GCN, Q-VGAE and Q-GMM-VGAE
throughout. Q-GCN is composed of 3 GCN layers with hidden sizes as 128 and 64. Q-VGAE and
Q-GMM-VGAE are composed of 3 GCN layers for the encoder (1 shared with output size 128, and
1 each for µ and σ of output size 64). Q-VGAE has an additional GCN layer after the latent space
to generate C, whereas Q-GMM-VGAE utilises a GMM. More training details are available in the
Supplementary Material E.

5.3 ATTRIBUTED GRAPH CLUSTERING

We highlight our key results on the three classical datasets Cora, CiteSeer, and PubMed (Sen et al.,
2008) in Table 1. Our proposed method surpasses all existing methods in terms of NMI while also
achieving competitive performance in terms of Accuracy and ARI. As mentioned above the best
models were selected based on the NMI scores. The results for very large datasets are present in
the supplementary material I. Note that we perform full-batch training (passing the whole graph)
instead of randomly-sampled batches (which involves cutting the graph into multiple subgraphs,
adding a great degree of bias as the community structure is broken) like in some other works such as
S3GC (Devvrit et al., 2022). For very large graphs such as ogbn-arxiv, we have no choice but to use
batching.

5.4 NON-ATTRIBUTED GRAPH CLUSTERING

For non-attributed graphs, we use a one-hot vector of the degree vector as the features. This is a
primitive way of making features, and there are learning based methods such as DeepWalk (Perozzi
et al., 2014b), node2vec (Grover & Leskovec, 2016) etc. This was done for the sake of fair comparison,
as the other methods also use this as node features. We present our results in Table 2a. Clearly, we
achieve competitive or even higher performance in terms of NMI even for non-attributed datasets.
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Cora CiteSeer PubMed

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

K-means 34.7 16.7 25.4 38.5 17.1 30.5 57.3 29.1 57.4

Spectral Clustering 34.2 19.5 30.2 25.9 11.8 29.5 39.7 3.5 52.0
DeepWalk (Perozzi et al., 2014a) 46.7 31.8 38.1 36.2 9.7 26.7 61.9 16.7 47.1
Louvain (Blondel et al., 2008b) 52.4 42.7 24.0 49.9 24.7 9.2 30.4 20.0 10.3

GAE [NeurIPS’16] (Kipf & Welling, 2016a) 61.3 44.4 38.1 48.2 22.7 19.2 63.2 24.9 24.6
DGI [ICLR’19] (Veličković et al., 2019) 71.3 56.4 51.1 68.8 44.4 45.0 53.3 18.1 16.6
GIC [PAKDD’21] (Mavromatis & Karypis, 2021) 72.5 53.7 50.8 69.6 45.3 46.5 67.3 31.9 29.1
DAEGC [IJCAI’19] (Wang et al., 2019) 70.4 52.8 49.6 67.2 39.7 41.0 67.1 26.6 27.8
GALA [ICCV’19] (Park et al., 2019) 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.7 32.1
AGE [KDD’20] (Cui et al., 2020) 73.5 57.5 50.0 69.7 44.9 34.1 71.1 31.6 33.4
DCRN [AAAI’22] (Liu et al., 2022) 61.9 45.1 33.1 70.8 45.8 47.6 69.8 32.2 31.4
FGC [JMLR’23] (Kumar et al., 2023) 53.8 23.2 20.5 54.2 31.1 28.2 67.1 26.6 27.8
Q-FGC (Ours) 65.8 51.8 42.0 65.9 40.8 40.1 66.7 32.8 27.9
Q-GCN (Ours) 71.6 58.3 53.6 71.5 47.0 49.1 64.1 32.1 26.5

SCGC [IEEE TNNLS’23] (Liu et al., 2023a) 73.8 56.1 51.7 71.0 45.2 46.2 - - -
MVGRL [ICML’20] (Hassani & Khasahmadi, 2020) 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3
VGAE [NeurIPS’16] (Kipf & Welling, 2016a) 64.7 43.4 37.5 51.9 24.9 23.8 69.6 28.6 31.7
ARGA [IJCAI’18] (Pan et al., 2018) 64.0 35.2 61.9 57.3 34.1 54.6 59.1 23.2 29.1
ARVGA [IJCAI’18] (Pan et al., 2018) 63.8 37.4 62.7 54.4 24.5 52.9 58.2 20.6 22.5
R-VGAE [IEEE TKDE’22] (Mrabah et al., 2022) 71.3 49.8 48.0 44.9 19.9 12.5 69.2 30.3 30.9
Q-VGAE (Ours) 72.7 58.6 49.6 66.1 47.4 50.2 64.3 31.6 28.0

VGAECD-OPT [Entropy’20] (Choong et al., 2020) 27.2 37.3 22.0 51.8 25.1 15.5 32.2 25.0 26.1
Mod-Aware VGAE [NN’22] (Salha-Galvan et al., 2022) 67.1 52.4 44.8 51.8 25.1 15.5 - 30.0 29.1
GMM-VGAE [AAAI’20] (Hui et al., 2020) 71.9 53.3 48.2 67.5 40.7 42.4 71.1 29.9 33.0
R-GMM-VGAE [IEEE TKDE’22] (Mrabah et al., 2022) 76.7 57.3 57.9 68.9 42.0 43.9 74.0 33.4 37.9
Q-GMM-VGAE (Ours) 76.2 58.7 56.3 72.7 47.4 48.8 69.0 34.8 34.0

Table 1: Comparison of all methods on attributed datasets.

Brazil Europe USA

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑
GAE [NeurIPS’16] 62.6 37.8 30.8 47.6 19.9 12.7 43.9 13.6 11.8
DGI [ICLR’19] 64.9 31.0 30.4 48.6 16.1 12.3 52.2 22.9 21.7
GIC [PAKDD’21] 40.5 23.5 14.1 40.4 9.4 6.2 49.7 22.1 19.9
DAEGC [AAAI’19] 71.0 47.4 41.2 53.6 30.9 23.3 46.4 27.2 18.4
Q-GCN (Ours) 51.1 31.9 23.7 45.5 30.8 25.1 43.8 19.1 14.8

VGAE [NeurIPS’16] 64.1 38.0 30.7 49.9 23.5 16.7 45.8 23.6 15.7
Q-VGAE (Ours) 50.1 35.0 19.8 46.6 19.5 17.5 46.2 19.5 16.9

GMM-VGAE [AAAI’20] 70.2 46.0 41.9 53.1 31.1 24.4 48.1 21.9 13.2
R-GMM-VGAE [IEEE TKDE’22] 73.3 45.6 42.5 57.4 31.4 25.8 50.8 23.1 15.3
Q-GMM-VGAE (Ours) 68.4 46.0 42.4 47.9 32.2 23.5 46.6 22.5 13.1

(a) Comparison of all methods on non-attributed datasets using
degree.
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(b) Comparison of running times of methods.
Note that the scale for PubMed is in minutes
(right axis), whereas for Cora and CiteSeer is
in seconds.

5.5 ABLATION STUDIES

Visualization of the latent space First, we visualize how the latent space of the Q-VGAE and
Q-GMM-VGAE changes over time for the Cora dataset. Plots for the rest of the datasets can be found
in the supplementary material G. We use UMAP (Uniform Manifold Approximation and Projection)
(McInnes et al., 2018) for dimensionality reduction from the latent space (64) to two dimensions.
Comparison of running times In Fig 2b we compare the running times of our method with other
baselines. Our method take less than half as much time over all datasets. Especially on the largest
dataset we have tested, PubMed, state-of-the-art methods GMM-VGAE and R-GMM-VGAE (un-
modified) take about 60 minutes to complete whereas our Q-GMM-VGAE runs in under 15 minutes,
a 75% reduction in running time, while also performing better. We also want to highlight that Q-FGC
runs even faster, in just 6 minutes (for PubMed) and achieves 90% of the performance.
Modularity Metric Comparison We perform an experiment to see how much we gain in modularity
over other baselines on Cora, CiteSeer and PubMed datasets. We report two types graph-based
metrics, modularity Q and conductance C, which don’t require labels. Conductance measures the
fraction of total edge volume that points outside the cluster. C is the average conductance across all
clusters and a lower value is preferred. From Table 4a, we can see that even though DMoN (Tsitsulin
et al., 2023) has the highest modularity, we achieve much higher NMI. Similarly for CiteSeer, we see
a 40% improvement in NMI with only a 8% drop in the modularity, placing us closer to the ground
truth. Moreover, we can also see that our methods perform better than the ones they were based on,
i.e. Q-FGC > FGC, Q-VGAE > VGAE. Even though modularity is a good metric to optimize for,
maximum modularity labelling of a graph does not always correspond to the ground truth labelling.
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Figure 3: Evolution of the latent space of a) Q-VGAE and b) Q-GMM-VGAE over time for Cora.
Colors represent cluster assignments.

Cora CiteSeer PubMed

C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑ C ↓ Q ↑ NMI ↑
DMoN 12.2 76.5 48.8 5.1 79.3 33.7 17.7 65.4 29.8
FGC 58.4 25 23.1 41.6 41.1 31 21.6 44.1 20.5
Q-FGC 13.3 72.5 51.7 16.8 64.9 40.16 26 40.3 28.1
Q-GCN 13.6 73.3 58.3 5.8 74.5 46.7 8.27 55 31.5
VGAE 17.6 60.8 38.1 12.8 55.8 21 13.5 45.8 26.9
Q-VGAE 9.5 71.5 58.4 4.6 72.4 47.3 9.4 52.12 31.8

(a) Comparison of modularity and conductance at the
best NMI with DMoN. Note that DMoN is optimiz-
ing only modularity, whereas we are optimizing other
important terms as well, as mentioned in Eqn 6, and
thus gain a lot on NMI by giving up a small amount
of modularity, making us closer to the ground truth.
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(b) Impact of active parameters on clustering perfor-
mance. All terms in the loss equation 6 are represented
by their parameters, for example the modularity term
is represented by β. Additionally, ω represents the
non-parameterized term.

For this reason, it is important to have the other terms in our formulation as well. By optimizing
modularity, we can get close to the optimal model parameters (at which NMI would be 1), but will be
slightly off-course. We can think of the other terms as correcting this trajectory.
Stochastic Block Model (SBM) and variants Please refer to supplementary material H.
Importance of and Evolution of different loss terms We analyze the evolution of the different loss
terms during training, and also try to measure the impact of each term separately by removing terms
from the loss one by one, as shown in Supplementary Material M. Also, we found that ||CX̃ −X||2F
is the most sensitive to change in its weight α, followed by the terms related to γ, β and then λ.
This makes sense because if that constraint(relaxation) is not being met, then C would have errors.
Even though some of the terms do the heavy lifting, the other regularization terms do contribute to
performance and more importantly, change the nature of C : The term ω corresponds to smoothness
of signals in the graph being transferred to the coarsened graph; this would affect C by encouraging
local "patches"/groups to belong to the same cluster. The term γ ensures that the coarsened graph
is connected - i.e. preserving inter-cluster relations, which simple contrastive methods destroy; this
affects C by making it so that ΘC has minimal multiplicity of 0-eigenvalues.
6 CONCLUSION
In this paper, we have developed an optimization-based attributed graph clustering framework, Q-FGC,
and its integration with deep learning-based architectures Q-GCN, Q-VGAE and Q-GMM-VGAE.
We have performed graph clustering tasks using the proposed methods on real-world benchmark
datasets and it is evident that incorporating modularity and graph regularizations into the coarsening
framework improves the clustering performance. Also, integrating the proposed method with deep
learning-based architecture improves the clustering performance by a significant amount. The
proposed algorithms are provably convergent and much faster than state-of-the-art algorithms. A
limitation of this method is that if for a graph, the ground truth labelling gives a low modularity, our
method will be slower and not as stable convergence. However, it still manages to reach and surpass
state-of-the-art methods on the Airports dataset, in which all graphs have a low modularity on the
ground truth labels.
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A PROOF OF LEMMA 2

When X̃ is kept constant, the optimization problem 6 gets reduced to:

min
C

f(C) = tr(X̃TCTΘCX̃)+
α

2

∥∥∥CX̃ −X
∥∥∥2
F
− β

2e
tr(CTBC) (13)

− γ log det(CTΘC + J) +
λ

2

∥∥CT
∥∥2
1,2

subject to C ∈ Sc1 where, J =
1

k
1k×k

(14)

The term tr(X̃TCTΘCX̃) is convex function in C. This result can be derived easily using Cholesky
Decomposition on the positive semi-definite matrix Θ (i.e. Θ = LTL):

tr(X̃TCTΘCX̃) = tr(X̃TCTLTLCX̃) = tr((LCX̃)TLCX̃) =
∥∥∥LCX̃

∥∥∥2
F

(15)

Frobenius norm is a convex function, and the simplified expression is linear in C. Hence we can

deduce that the tr(.) term is convex in C. The terms
∥∥∥CX̃ −X

∥∥∥2
F

and
∥∥CT

∥∥2
1,2

are convex because
Frobenius norm and l1,2 norm are convex in C.

Next, for the modularity term we show

tr(CTBC) = tr(CTB
1
2B

1
2C) = tr(CTBT

1
2B

1
2C) =

∥∥∥B 1
2C
∥∥∥2
F

(16)

Hence, this is term is also convex in C.

For proving the convexity of − log det(CTΘC + J) we restrict function to a line. We define a
function g:

g(t) = f(z + tu)where, t ∈ dom(g), z ∈ dom(f), u ∈ Rn. (17)

A function f : Rn → R is convex if g : R→ R is convex.

The graph Laplacian matrix of the coarsened graph (Θc) is symmetric and positive semi-definite
having a rank of k-1. To convert Θc to positive definite matrix, we add a rank 1 matrix J = 1

k1k×k.
(Θc + J = LTL)

f(L) = − log det(CTΘC + J) = − log det(LTL) (18)

Now substituting L = Z + tU in the above equation.

g(t) = − log det((Z + tU)T (Z + tU)) (19)

= − log det(ZTZ + t(ZTU + UTZ)t2UTU) (20)

= − log det(ZT (I + t(UZ−1 + (UZ−1)
T
) + t2(Z−1)

T
UTUZ−1)Z)

(21)

substituting P = V Z−1 (22)

= −(log det(ZTZ) + log det(I + t(P + PT ) + t2PTP )) (23)

Eigenvalue decomposition ofP = QΛQT andQQT = I (24)

= −(log det(ZTZ) + log det(QQT + 2tQΛQT + t2QΛ2QT ))
(25)

= −(log det(ZTZ) + log det(Q(I + 2tΛ + t2Λ2)QT )) (26)

= − log det(ZTZ)−
n∑

i=1

log(1 + 2tλi + t2λ2) (27)
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Finding double derivative of g(t):

g”(t) =

n∑
i=1

2λ2
i (1 + tλi)

2

(1 + 2tλi + t2λ2
i )

2
(28)

Since g”(t) ≥ 0∀ t ∈ R, g(t) is a convex function in t. This implies f(L) is convex in L. We know
that, CTΘC + J = LTL so,

L = Θ
1
2C +

1√
kp

1p×k (29)

Since L is linear in C and f(L) is convex in L, − log det(CTΘC + J) is convex in C.

B OPTIMAL SOLUTION OF OPTIMIZATION OBJECTIVE

We first show that the function f(C) is L − Lipschitz continuous gradient function with
L = max(L1, L2, L3, L4, L5), where L1, L2, L3, L4, andL5 are the Lipschitz constants of

tr(X̃TCTΘCX̃), α
2

∥∥∥CX̃ −X
∥∥∥2
F
,− β

2e tr(CTBC),−γ log det(CTΘC + J), andλ
2

∥∥CT
∥∥2
1,2

.

For the tr(X̃TCTΘCX̃) term, we apply triangle inequality and employ the property of the norm of
the trace operator: ||tr|| = sup

M ̸=0

|tr(M)|
||M ||F .

|tr(X̃TCT
1 ΘC1X̃)− tr(X̃TCT

2 ΘC2X̃)| (30)

= |tr(X̃TCT
1 ΘC1X̃)− tr(X̃TCT

2 ΘC1X̃) + tr(X̃TCT
2 ΘC1X̃)− tr(X̃TCT

2 ΘC2X̃)| (31)

≤ |tr(X̃TCT
1 ΘC1X̃)− tr(X̃TCT

2 ΘC1X̃)|+ |tr(X̃TCT
2 ΘC1X̃)− tr(X̃TCT

2 ΘC2X̃)| (32)

≤ ||tr||||X̃T (C1 − C2)
TΘC1X̃||F + ||tr||||X̃TCT

2 Θ(C1 − C2)X̃||F (33)

≤ ||tr||||X̃||F ||Θ||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (34)

≤ 2
√
p||tr||||X̃||F ||Θ||||C1 − C2||F (||C1||F = ||C2||F =

√
p) (35)

≤ L1||C1 − C2||F (36)

The second term is α
2

∥∥∥CX̃ −X
∥∥∥2
F

can be written as:

α

2
tr((CX̃ −X)T (CX̃ −X)) (37)

=
α

2
tr(X̃TCTCX̃ −XTCX̃ +XTX − X̃TCTX) (38)

=
α

2
(tr(X̃TCTCX̃)− tr(XTCX̃) + tr(XTX)− tr(X̃TCTX)) (39)

All the terms except tr(XTX) (constant with respect to C) in obtained in the expression will follow
similar proofs to tr(X̃TCTΘCX̃).

Next we consider the modularity term:

|tr(CT
1 BC1)− tr(CT

2 BC2)| (40)

= |tr(CT
1 BC1)− tr(CT

2 BC1) + tr(CT
2 BC1)− tr(CT

2 BC2)| (41)

≤ |tr(CT
1 BC1)− tr(CT

2 BC1)|+ |tr(CT
2 BC1)− tr(CT

2 BC2)| (42)

≤ ||tr||||(C1 − C2)
TBC1||F + ||tr||||(C1 − C2)

TBC2||F (43)
≤ ||tr||||B||||C1 − C2||F (||C1||F + ||C2||F ) (Frobenius Norm Property) (44)
≤ L3||C1 − C2||F (45)

The Lipschitz constant for −γ log det(CTΘC + J) is linked to the smallest non-zero eigenvalue of
the coarsened Laplacian matrix (Θc) and is bounded by δ

(k−1)2 (Rajawat & Kumar, 2017), where δ is
the minimum non-zero weight of Gc.

16



Under review as a conference paper at ICLR 2024

Lastly, in the term λ
2

∥∥CT
∥∥2
1,2

we can write |C|ij = Cij ≥ 0 because C ∈ Sc and contains
non-negative numbers.

∥∥CT
∥∥2
1,2

=
∑
i=1

p(
∑
j=1

kCij)
2 (46)

=

p∑
i=1

([CT ]i1)2 (47)

= ||C1||2F = tr(1TCTC1) (48)

tr(1TCTC1) can be proved to be L5 − Lipschitz like the modularity and Dirichlet energy (smooth-
ness) terms. This concludes the proof.

The majorized problem for L-Lipschitz and differentiable functions can now be applied. The
Lagrangian of the majorized problem, 8 is:

L(C, X̃, µ) =
1

2
CTC − CTA− µT

1 C + µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1
]T
(49)

where µ = µ1||µ2 are the dual variables and A =
(
C − 1

L∇f(C)
)+

The corresponding KKT conditions (w.r.t C) are:

C −A− µ1 + 2[µ2oC
T
0 , · · · , µ2iC

T
i , · · · , µ2pC

T
p ] = 0 (50)

µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1,

]T
= 0 (51)

µT
1 C = 0 (52)
µ1 ≥ 0 (53)
µ2 ≥ 0C ≥ 0 (54)∥∥[CT ]i
∥∥2
2
≤ 1 ∀i (55)

The optimal solution to these KKT conditions is:

C =
(A)+∑
i ∥[AT ]i∥ 2

(56)

C PROOF OF CONVERGENCE

In this section, we prove that the sequence {Ct+1, X̃
t+1} generated by Algorithm 1 converges to the

set of Karush–Kuhn–Tucker (KKT) optimality points for Problem 6.

The Lagrangian of Problem 6 comes out to be:

L(C, X̃, µ) = tr(X̃TCTΘCX̃) +
α

2

∥∥∥CX̃ −X
∥∥∥2
F
− β

2e
tr(CTBC) (57)

− γ log det(CTΘC + J) +
λ

2

∥∥CT
∥∥2
1,2
− µT

1 C +
∑
i

µ2i

[ ∥∥CT
i

∥∥2
2
− 1
]

(58)

where µ = µ1||µ2 are the dual variables.
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w.r.t. C, the KKT conditions are

2ΘCX̃X̃T + α(CX̃ −X)X̃T − β

e
BC − 2γΘC(CTΘC + J)−1 (59)

+λC1k×k − µ1 + 2[µ2oC
T
0 , · · · , µ2iC

T
i , · · · , µ2pC

T
p ] = 0

µT
2

[ ∥∥CT
1

∥∥2
2
− 1, · · · ,

∥∥CT
i

∥∥2
2
− 1, · · · ,

∥∥CT
p

∥∥2
2
− 1
]T

= 0 (60)

µT
1 C = 0 (61)
µ1 ≥ 0 (62)
µ2 ≥ 0 (63)
C ≥ 0 (64)∥∥[CT ]i
∥∥2
2
≤ 1 ∀i (65)

Now, C∞ ≡ lim
t→∞

Ct is found from Equation 9 as:

C∞ = C∞ +
1

L

(
2ΘC∞X̃∞X̃∞ + α(C∞X̃ −X)X̃∞ − β

e
BC∞ (66)

− 2γΘC∞(C∞TΘC∞ + J)−1 + λC∞1k×k

)

0 = 2ΘC∞X̃∞X̃∞ + α(C∞X̃ −X)X̃∞ − β

e
BC∞ (67)

− 2γΘC∞(C∞TΘC∞ + J)−1 + λC∞1k×k

So, for µ = 0, C∞ satisfies the KKT conditions.

w.r.t. X̃ , the KKT conditions are:

2CTΘCX̃ + αCT (CX̃ −X) = 0 (68)

So, X∞ ≡ lim
t→∞

Xt found from Equation 11 will satisfy this as that equation is just a rearrangement
of the KKT condition.

D DATASET SUMMARIES AND METRICS

Refer to 2 for the dataset summary.

Metrics. A pair of nodes are said to be in agreement if they belong to the same class and are
assigned to the same cluster, or they belong to different classes and have been assigned different
clusters. For a particular partitioning, ARI is the fraction of agreeable nodes in the graph. Accuracy
is obtained by performing a maximum weight bipartite matching between clusters and labels. NMI
measures the normalized similarity between the clusters and the labels, and is robust to class
imbalances. Mutual Information between two labellings X and Y of the same data is defined as
MI(X,Y ) =

∑|X|
i=1

∑|Y |
j=1

|Xi∩Yi|
N log N |Xi∩Yi|

|Xi||Yi| and it is scaled between 0 to 1.

E TRAINING DETAILS

All experiments were run on an NVIDIA A100 GPU and Intel Xeon 2680 CPUs. We are usually
running 4-16 experiments together to utilize resources (for example, in 40GB GPU memory, we can
run 8 experiments on PubMed simultaneously). Again, the memory costs are more than dominated by
the dataset. All experiments used the same environment running CentOS 7, Python 3.9.12, PyTorch
2.0, PyTorch Geometric 2.2.0.
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F VGAE

Name p (|V|) n (|xi|) e (|E|) k (y)

Cora 2708 1433 5278 7
CiteSeer 3327 3703 4614 6
PubMed 19717 500 44325 3

Coauthor CS 18333 6805 163788 15
Coauthor Physics 34493 8415 495924 5

Amazon Photo 7650 745 238162 8
Amazon PC 13752 767 491722 10
ogbn-arxiv 169343 128 1166243 40

Brazil 131 0 1074 4
Europe 399 0 5995 4
USA 1190 0 13599 4

Table 2: Datasets summary.

In a VGAE, the encoder learns mean (µ) and
variance (σ): µ = GCNµ(X,A)and log σ =
GCNσ(X,A) By using the reparameterization
trick, we get the distribution of the latent
space as: q(Z|X,A) =

∏N
i=1 q(zi|X,A) =∏N

i=1N (zi|µi, diag(σ2
i )) A common

choice for decoder is inner-product of
the latent space with itself which giv-
ing us the reconstructed Â. p(Â|Z) =∏p

i=1

∏p
j=1 p(Âij |zi, zj), with p(Âij =

1|zi, zj) = sigmoid(zTi zj)

G PLOTS OF EVOLUTION OF
LATENT SPACE FOR OTHER DATASETS

Refer to Figure 5. We can see the clusters form-
ing in the latent space of the VGAEs. In the
case of Q-VGAE, since a GCN is used on this
space, it can learn non-linearities and the latent
space shows different structures (like a starfish
in CiteSeer). Moreoever, these structures have
their geometric centres at the origin and grow out from there. In contrast, for Q-GMM-VGAE, since
a GMM is being learnt over the latent space, the samples are encouraged to be normally distributed
in their independent clusters, all of which have different means and comparable standard deviations.
So, we see multiple "blobs", which more or less follow a normal distribution. This plot effectively
shows why a GMM-VGAE is more expressive than a VGAE.

H ATTRIBUTED SBM THEORY AND RESULTS

We validate the robustness and sensitivity of proposed methods to variance in the node features and
graph structure. We are also generating features using a multivariate mixture generative model such
that the node features of each block are sampled from normal distributions where the centers of
clusters are vertices of a hypercube.

SBM. The Stochastic Block Model (SBM)(Nowicki & Snijders, 2001) is a generative model for graphs
that incorporates probabilistic relationships between nodes based on their community assignments. In
the basic SBM, a network with p nodes is divided into k communities or blocks denoted by Ci, where
i = 1, 2, · · · , k. The SBM defines a symmetric block probability matrix B with size (k × k), where
each entry Bij represents the probability of an edge between a node in community Ci and a node
in community Cj . Diagonal entries of this matrix represents the probabilities of intra-cluster edges.
This matrix B captures the intra- and inter-community connections and is assumed to be constant.
P (i↔ j|Ci = a,Cj = b) = Bab denotes the probability of an edge existing between nodes i and j
when node i belongs to community a and node j belongs to community b. Using these probabilities,
the SBM generates a network by independently sampling the presence or absence of an edge for each
pair of nodes based on their community assignments and the block probability matrix B.

Degree Corrected SBM. DC-SBM(Karrer & Newman, 2011) takes an extra set of parameters θi
controlling the expected degree of vertex i. Now, the probability of an edge between two nodes (using
the same notation as above) becomes θiθjBab. This was introduced to handle the heterogeneity of
real-world graphs.

ADC-SBM Generation. We make use of the graph_tool library to generate the DC-SBM
adjacency matrix, with p = 1000, k = 4. To generate the B matrix, we follow the procedure in
(Tsitsulin et al., 2023), by taking expected degree for each node d = 20 and expected sub-degree
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dout = 2. This gives us B as: 18 2 2 2
2 18 2 2
2 2 18 2
2 2 2 18


Also, θ is generated by sampling a power-law distribution with exponent α = 2. We constrain the
generated vector to dmin = 2 and dmax = 4.

To generate features, we use the make_classification function in the sklearn library. We
generate a 128-dimensional feature vector for each node, with no redundant channels. These belong
to kf groups, where kf might not be equal to k. We test three scenarios: a) matched clusters (kf = k)
b) nested features (kf > k) c) grouped features (kf < k) as visualized in Figure 6. Note that for
better visualization, class_sep was increased to 5 (however, the results are given with a value of
1, which is a harder problem).

Results. Our model is able to completely recover the ground truth labels (NMI/ARI/ACC = 1) under
all the specified conditions.

I RESULTS ON VERY LARGE DATASETS

CoauthorCS CoauthorPhysics AmazonPhoto AmazonPC ogbn-arxiv

Method ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑ ACC ↑ NMI ↑ ARI ↑

FGC 69.6 70.4 61.5 69.9 60.9 49.5 44.9 38.3 22.5 46.8 36.2 23.3 24.1 8.5 9.1
Q-FGC (Ours) 70.2 76.4 60.2 75.3 67.2 66.1 70.4 66.6 58.6 62.4 51 31.1 35.8 24.4 15.6
Q-GCN (Ours) 85.4 79.6 79.7 85.2 72 81.6 66.3 57.6 48.3 56.7 42.4 28.8 34.4 27.1 19.7
Q-VGAE (Ours) 85.6 79.9 81.6 86.7 69 77.7 69.0 59.4 49.0 62.3 45.7 47.2 39.5 30.4 24.7
Q-GMM-VGAE (Ours) 70.1 72.5 61.6 83.1 71.5 76.9 76.8 67.1 58.3 55.5 56.4 40 OOM OOM OOM
DMoN 68.8 69.1 57.5 45.4 56.7 50.3 61.0 63.3 55.4 45.4 49.3 47.0 25.0 35.6 12.7

Table 3: Comparison of methods on large attributed datasets.

J IMPLEMENTATION

The implementations for all the experiments can be found at https://anonymous.4open.
science/r/MAGC-8880/.

We have extensively used the PyTorch(Paszke et al., 2019) and PyTorch Geometric(Fey & Lenssen,
2019) libraries in our implementations and would like to thank the authors and developers.

K EXPLANATION ON WHY VAE MANIFOLDS ARE CURVED

The latent space of a VAE is not constrained to be Euclidean. Connor et al. (2021) point out that
the variational posterior is selected to be a multivariate Gaussian, and that the prior is modeled as a
zero-mean isotropic normal distribution which encourages grouping of latent points around the origin.
Works such as (Chen et al., 2020; Bogdanov & Shchur, 2021; Arvanitidis et al., 2018) make the VAE
latent space to be Euclidean/Hyperbolic/Riemannian, and show good visuals. Moreover, it can be
observed in our own work (Figure 3a and Appendix Figure 5a) that the latent manifolds are curved
and so, are not suitable for conventional methods such as k-means clustering, which need Euclidean
distance (3.2).

L COMPLEXITIES OF SOME GRAPH CLUSTERING METHODS

GCN*-based* clustering methods. Such as AGC(Zhang et al., 2019) - O(p2nt + ent2), R-
VGAE(Mrabah et al., 2022) - O(pk2n + (p(n + k) + e(p + k)), S3GC(Devvrit et al., 2022) -
O(pn2s) [s is average degree], HSAN(Liu et al., 2023b) - O(pBn) [they state it as O(B2d) but
it is only for 1 batch of size B and not the whole epoch], VGAECD-OPT(Choong et al., 2020) -
O(p2nDL) [where D is the size of graph filter, l is the number of linear layers] etc.
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M EVOLUTION OF DIFFERENT LOSS TERMS THROUGHOUT TRAINING

Each separate series has been normalized by its absolute minimum value to see convergence behavior
on the same graph easily. Every series is decreasing/converging (except gamma, which represents
sparsity regularization and remains almost constant). Thus, we can be assured that no terms are
counteracting and hurting the performance. The legend is provided in the graph itself. This plot is on
the Cora dataset. 7
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Figure 5: Plots of evolution of latent space for Q-VGAE and Q-GMM-VGAE methods for CiteSeer,
PubMed, Brazil (Air Traffic) and Europe (Air Traffic) datasets.

22



Under review as a conference paper at ICLR 2024

0 200 400 600 800

800

600

400

200

0

Adjacency Matrix

Node Index

N
od

e 
In

de
x

(a) Adjacency Matrix

0 200 400 600 800

800

600

400

200

0

Feature Covariance

Node Index

N
od

e 
In

de
x

(b) Feature Covariance
Matrix
kf = k

0 200 400 600 800

800

600

400

200

0

Feature Covariance

Node Index

N
od

e 
In

de
x

(c) Feature Covariance
Matrix
kf > k

0 200 400 600 800

800

600

400

200

0

Feature Covariance

Node Index

N
od

e 
In

de
x

(d) Feature Covariance
Matrix
kf < k

Figure 6: Visualization of the generated adjacency and feature covariance matrices for the ADC-SBM

Figure 7
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