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ABSTRACT

Large language models (LLMs) have shown remarkable performance in various
natural language processing tasks. However, a primary constraint they face is
the context limit, i.e., the maximum number of tokens they can process. Previ-
ous works have explored architectural changes and modifications in positional
encoding to relax the constraint, but they often require expensive training or
do not address the computational demands of self-attention. In this paper, we
present Hierarchical cOntext MERging (HOMER), a new training-free scheme
designed to overcome the limitations. HOMER uses a divide-and-conquer al-
gorithm, dividing long inputs into manageable chunks. Each chunk is then
processed collectively, employing a hierarchical strategy that merges adjacent
chunks at progressive transformer layers. A token reduction technique pre-
cedes each merging, ensuring memory usage efficiency. We also propose an
optimized computational order reducing the memory requirement to logarithmi-
cally scale with respect to input length, making it especially favorable for en-
vironments with tight memory restrictions. Our experiments demonstrate the
proposed method’s superior performance and memory efficiency, enabling the
broader use of LLMs in contexts requiring extended context. Code is available
athttps://github.com/alinlab/HOMER.

1 INTRODUCTION

In recent years, large language models (LLMs) have performed exceptionally in various natural
language processing tasks (OpenAl, 2023; Touvron et al., 2023). Using this capability, multiple
emerging applications are using LLMs as a central component. However, LLMs have a fundamental
constraint in their context limit, which means the maximum number of input tokens they can process.
The ability to handle long contexts is important for real-world applications: chatbots might need to
interpret extensive chat histories, while the user could task code comprehension models to process
extensive codebases.

A significant challenge in overcoming the context limit is addressing the quadratic computational
burden of the self-attention mechanism. Prior works have attempted to reduce the computational cost
by altering the model architecture, such as introducing sparse attention (Child et al., 2019; Beltagy
et al., 2020) or linearized attention (Kitaev et al., 2020; Katharopoulos et al., 2020). Yet, such
methods are often not scalable (Tay et al., 2022), and more importantly, they often require extensive
model training, making them difficult to use for large-scale models that are prevalent today.

To overcome this issue, recent works have focused on strategies to extend the context limit of pre-
trained state-of-the-art LLMs. However, their major focus has been modifying the positional encod-
ing (Chen et al., 2023; Peng et al., 2023), which does not address the quadratic computational cost of
self-attention, leaving the efficiency concern unaddressed. Reducing the complexity of pre-trained
LLMs remains an important yet underexplored research question.
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(a) Passkey retrieval accuracy. (b) Peak memory usage. (c) Average inference time.

Figure 1: (a) Passkey retrieval accuracy on various context lengths, measured with Llama-2-7b-chat.
HOMER maintains reasonable performance for context lengths up to 32K tokens. Detailed compar-
isons with more baselines are provided in Table 1. (b) The memory requirement for processing long
inputs. (c) Average inference time required for generating 100 tokens conditioned on various con-
text lengths. All efficiency measurements are done with a single A100 GPU. The baselines include
plain Llama, PI, NTK, and YaRN. Peak memory usage of the baselines at 64k is an estimated value,
as they do not fit in a single A100 GPU. Detailed results are provided in Table 5 and Appendix E.

In this paper, we introduce HOMER (Hierarchical cOntext MERging), a novel technique designed
to extend the context limit while ensuring computational efficiency. HOMER employs a divide-and-
conquer approach, dividing the long input into manageable chunks. Unlike previous methodologies
(Wang et al., 2023; Bertsch et al., 2023), HOMER does not process these chunks independently.
Instead, it employs a hierarchical merging strategy, progressively merging adjacent chunks as they
are processed along the transformer layers (see Figure 2 for its illustration). To ensure computational
efficiency, apply token reduction before each merging stage.

Furthermore, HOMER can be applied to pre-trained LLMs without any further finetuning. This
can be beneficial for practical use scenarios where model finetuning is infeasible, such as in envi-
ronments with limited computing resources. Also, data preparation may present another challenge
for finetuning due to the scarcity of coherent texts with tens of thousands of tokens. For instance,
specialized text data should be prepared to finetune an instruction-finetuned or chat-finetuned model
without severely losing its desired properties.

Through extensive evaluation on downstream tasks and perplexity measurements, we demonstrate
that HOMER can effectively extend pre-trained LLMs to handle long inputs beyond their con-
text limits. We first verify the effectiveness of our method on various downstream tasks, includ-
ing passkey retrieval and question answering. We further demonstrate the fluency of HOMER by
measuring perplexity on long documents. Finally, we highlight the computational efficiency of
HOMER as presented in Figure 1b and Figure Ic. In all experiments, we illustrate that HOMER can
be used with conventional positional encoding scaling techniques (Chen et al., 2023; bloc97, 2023;
Peng et al., 2023), and shows improved performance when used on top of these approaches.

In summary, our contributions are as follows:

* We present hierarchical context merging: a memory-efficient context limit extension technique,
that can be used with pre-trained LLMs without additional training.

* We assess the effectiveness of HOMER through experiments on long inputs. In passkey re-
trieval experiments, HOMER shows 80.4% retrieval accuracy for 32k inputs, whereas even the
best-performing baseline shows only 22.4% accuracy. HOMER also improves the prediction
accuracy on question answering by 3% (32.7% — 35.7%), presenting its capability to perform
complex reasoning about the content in the extended context length. In language modeling ex-
periments, HOMER is the only method showing low perplexity on inputs up to 64k tokens, while
the baselines exhibit severe performance degradation for inputs over 32k tokens.
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* We demonstrate the efficiency of our approach and analyze the source of computational sav-
ings. Utilizing an optimized computation order, memory requirement scales logarithmically with
respect to the input sequence length, reducing the memory requirement by over 70%.

* We show that our method is compatible with the conventional RoPE-scaling methods in a plug-in
manner, and using them together achieves an additional performance gain.

2 RELATED WORK

Long-range transformers. Classical methods for long-range transformers primarily focus on re-
ducing the quadratic computational cost of self-attention, such as sparse attention (Dai et al., 2019;
Child et al., 2019; Rae et al., 2019; Qiu et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020), or
linearized attention (Kitaev et al., 2020; Katharopoulos et al., 2020; Wang et al., 2020; Choromanski
et al., 2021). However, these approaches fundamentally change the underlying architecture, and it
has not been proven to be scalable for large models (Tay et al., 2022).

Extension of LLM context lengths. As the context limit of LLMs has become a critical problem,
a line of concurrent works emerged, focusing on efficiently extending the context length of LLMs,
with most works focusing on Llama (Touvron et al., 2023). Most works focus on scaling the Rotary
Position Embedding (RoPE) (Su et al., 2021). Chen et al. (2023) and kaiokendev (2023) concur-
rently discovered the Position Interpolation method (PI), which involves linearly interpolating the
position ids. bloc97 (2023) suggested an NTK-aware scaling method (NTK) which further alters
the base of RoPE. Peng et al. (2023) further extended NTK-aware scaling, suggesting another RoPE
scaling method, YaRN. Several works additionally alter the attention mechanism by either applying
a mask (Han et al., 2023) or setting an upper bound on the distance between tokens (Su, 2023).

While all methods are known to work without further training, we consider PI, NTK, and YaRN
as our main baselines as they are directly compatible with Flash Attention 2 (Dao, 2023), easily
enabling memory-efficient inference on long inputs. We also emphasize that our work is orthogonal
to these work, and can be further applied on top of these methods to further improve performance.

Divide-and-conquer approaches. Approaches to overcome the quadratic computation problem in
long context modeling while using the same quadratic self-attention mechanism are to divide the
long input into multiple chunks, and most methods process the chunks independently. Inspired by
Fusion-in-Decoder (Izacard & Grave, 2020), SLED (Ivgi et al., 2023) independently encodes mul-
tiple chunks and feeds all of them to the decoder. Similarly, Unlimiformer (Bertsch et al., 2023)
introduces a k-NN search on the encoder outputs, reducing the number of visible tokens at infer-
ence time. Retrieval-augmented LLMs including Memorizing transformers (Wu et al., 2022) and
LongMem (Wang et al., 2023) take a similar approach of individually forwarding each chunk, and
retrieve the cached hidden states for further use. Most of these methods, except for Unlimiformer,
require method-specific finetuning.

Token reduction. Token reduction methods have been widely studied in the field of efficient vision
transformers. The key idea of these methods is to progressively reduce the number of tokens in order
to reduce computation, resulting in more efficient training and inference. Two main approaches in
this direction are either pruning the redundant tokens (Liang et al., 2022) or merging them (Bolya
et al., 2022). To the best of our knowledge, this is the first work to apply token reduction to extend
the context limit of large language models.

3 HIERARCHICAL CONTEXT MERGING

In this section, we illustrate the detailed procedure of our proposed method, Hierarchical cOntext
MERging (HOMER); a novel and efficient method for extending the context limit of large language
models (LLMs). As visualized in Figure 2, HOMER consists of two steps: (i) hierarchical merging
of the intermediate hidden states, which we call context embeddings, and (ii) further refinement of
the lower-layer embeddings by propagative refinement to produce a compact, fixed-length embed-
ding for each layer, which can be seamlessly integrated as a typical kv-cache (Chen, 2022). We
first introduce the key idea of hierarchical merging in Section 3.1. Then, we explain propagative
refinement in Section 3.2. Finally in Section 3.3, we introduce an optimized computation order to
further reduce the memory requirement to scale logarithmically with the input length.
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Figure 2: An overview of the proposed hierarchical context merging. We first divide a long
context into multiple chunks and independently forward them through the early transformer layers.
In the intermediate layers, we merge multiple chunks by concatenation, forming a new, merged
chunk. To keep the chunk length bounded, we apply token reduction on the original chunks to make
them shorter, prior to merging. This process is repeated until all chunks are merged into a single
chunk. Finally, we further refine the lower-layer embeddings to get a compact fixed-length, layer-
wise embedding. The embedding can then be used like a standard kv-cache (Chen, 2022).

3.1 HIERARCHICAL MERGING OF CONTEXT EMBEDDINGS

We propose a divide-and-conquer approach to handle the quadratic computation of self-attention
more efficiently. We divide the long input into multiple chunks and process the local chunks with
the usual self-attention. Although some previous studies have adopted a similar approach (Ivgi et al.,
2023; Bertsch et al., 2023), they independently handle each chunk, possibly restricting the richness
of the intermediate embeddings as they only have access to local information. In contrast, we pro-
gressively merge adjacent chunks as they move through the transformer layers, enabling the chunks
to see each other. However, naively concatenating the adjacent chunks lengthens the resulting chunk
and adds a significant computational burden. Thus we propose to use a token reduction technique to
shorten each chunk before merging.

By hierarchically reducing and merging the context embeddings, our method bypasses the quadratic
computations required by the self-attention mechanism. This approach not only aims at computa-
tional efficiency but also preserves the richness of the context. The detailed process of hierarchical
context merging is carried out as follows.

Division of long context into multiple chunks. The first step of our method is to divide the long
context into uniform chunks. However, simply slicing the input into chunks encounters issues in the
network’s initial layers where each chunk cannot see each other. This approach restricts most tokens
from accessing the starting instructions, harming the resulting embeddings’ quality. Moreover, the
tokens at the end miss the global context, which is essential for generating subsequent tokens. We
address this by attaching the initial and concluding parts of the prompt to every segment (i.e., treating
them as shared prefixes and suffixes), ensuring each chunk contains the instruction and the ending
tokens.

Token reduction on individual chunks. To keep the resulting chunk’s length short after merging,
we adopt token reduction techniques, which have been widely studied in the field of efficient vision
transformers. For vision transformers (Dosovitskiy et al., 2021), dropping the tokens that receive
minimal attention from the [CLS] token (i.e. the classification token) is known to be a simple and
effective token pruning method (Haurum et al., 2023). Inspired by this, we propose to prune the
tokens receiving minimal attention from the final token in each chunk. If the chunks contain affixes,
we do not prune the tokens corresponding to the affixes.

In practice, we identified a position bias in simple attention-based pruning where tokens near the
end often receive higher attention weights. To rectify this, We incorporate a calibration technique
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Algorithm 1 Memory-efficient computation ordering

procedure HIERARCHICALMERGE(node)
if node is a leaf then

emb_list <— ForwardLayers(node) > Get layer-wise hidden states

emb_list <— Refine(emb_list) > Propagative refinement
else

l_embs <+ HierarchicalMerge(node.left) > Recursively merge children

r_embs < HierarchicalMerge(node.right)

emb_merged < concatenate(l_embs, r_embs) > Merge chunks

emb_list <— ForwardLayers(emb_merged) > Get layer-wise hidden states

emb_list <— Refine(emb_list) > Propagative refinement
end if

return emb_list
end procedure

inspired by (Zhao et al., 2021). By averaging the attention weights of the last token with respect to
the tokens at each position ahead, we derive the bias logits. These bias logits are subtracted from
the attention logits during the token reduction to refine token pruning. In summary, the final token
pruning is performed by pruning a fixed number of tokens according to the significance score s,
defined as follows:

i i dist(i)

S;ig T l;tt - lbias ’ (D
where siig denotes the significance score of a token at position i, IZ,, denotes the token’s attention
logit, and lgii::(i) denotes the bias logit corresponding to the token’s distance from the final token,
dist(i).

Merging chunk embeddings. After shortening, adjacent chunks are concatenated to form a unified
chunk. This iterative process of reduction and merging across layers ensures individual chunks
converge into a single chunk at the final layers. If the chunks include affixes, direct concatenation
might lead to redundancy; we address this by simply averaging the duplicates.

Handling position ids. Management of position ids is an important design choice for our approach.
While dynamically scaling the position ids through conventional methods like PI, NTK, and YaRN
is viable, these techniques tend to underperform with increased scale factors, being less effective for
extended contexts. To circumvent this issue, we reuse the same position ids across different chunks.
For affixes, we ensure that corresponding tokens in different chunks are assigned the same ids for
consistency across the chunks.

3.2 PROPAGATIVE REFINEMENT OF LOWER-LAYER EMBEDDINGS

As depicted in Figure 2, the hierarchical context merging produces embeddings characterized by
a trapezoidal shape. The higher-layer embeddings are concise, while the lower-layer ones remain
extended. To further reduce the computational burden for lower layers, we introduce an additional
refinement step after token reduction, called propagative refinement.

The process is straightforward: when a token is pruned in the upper layers, the corresponding tokens
are also pruned in the lower-layer embeddings. Therefore, the pruning decision of the upper layers
propagates back to the lower layers. The synchronized pruning across layers results in shorter,
uniform embeddings for each layer. For better understanding, we have added a detailed illustration
in Appendix D demonstrating the process step-by-step. The rationale behind this is an intuition that
the upper layers have a better ability to identify the important tokens. Thus, we apply pruning in
the upper layers and reflect them in the lower layers. After performing hierarchical merging and
propagative refinement, we end up with standardized, fixed-length embeddings for every layer.

Using the refined embeddings for further generation. Conventional implementation of autore-
gressive language models often cache the key and value embeddings in order to avoid redundant
computation. This technique is commonly known as kv-caching (Chen, 2022). As the refined em-
beddings have the same length for every layer, they can easily be integrated with the kv-cache
implementation by simply replacing it for the generation process.
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3.3 COMPUTATION ORDER OPTIMIZATION FOR MEMORY-LIMITED ENVIRONMENTS

In typical Transformer models, all tokens at a given layer are computed in parallel. Following this
paradigm, a direct implementation of HOMER would also process multiple chunks concurrently.
While such implementation of HOMER inherently requires linear memory with respect to the input
length, we propose a more optimized computation order that allows the memory requirement to
scale logarithmically. This efficiency is achieved by strategically reordering the processing steps
during the hierarchical merging.

While representing each chunk as a node, the hierarchical context merging process can be concep-
tualized as a traversal on the binary tree from leaves to the root. By adopting the depth-first search
(DES) algorithm to the computation sequence while executing the propagative refinement, we can
achieve a computation cost of a logarithmic scale with respect to the length of the input sequence.
For clarity, a pseudo-code representation is provided in Algorithm 1 and Figure 3. A comprehensive
proof of the memory requirement can be found in Appendix A. Through this approach, extensive
inputs can be processed even in resource-constrained setups.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method, HOMER through exten-
sive experiments. Section 4.1 contains the passkey retrieval experiments, originally suggested by
Mohtashami & Jaggi (2023). This shows our method’s ability to utilize the long context to handle
downstream tasks. Section 4.2 contains experiments on question answering. This shows the model’s
capability to handle more complex and challenging tasks. Section 4.3 demonstrates that HOMER re-
mains fluent, even when conditioned on very long contexts. This is done by measuring perplexity
on long documents from PG-19 dataset (Rae et al., 2019). Section 4.4 contains ablation study on
the key components that make HOMER effective. Finally in Section 4.5, we analyze the memory
efficiency of our method.

Common setup and baselines. We select Llama-2 as our base model, as it is the most widely
used and the strongest open-source large language model. We use the pretrained models for lan-
guage modeling experiments, and the chat model for evaluation on downstream tasks, which include
passkey retrieval and question answering.

Recent works on positional encoding interpolation have shown their ability to extend Llama’s con-
text limit without training. We set Position Interpolation (PI) (kaiokendev, 2023), NTK-aware scal-
ing (bloc97, 2023), and YaRN (Peng et al., 2023) as our main baselines. As these models scale the
positional encoding by a constant factor, we define their context limit as the original context limit
(4k tokens for Llama-2) multiplied by the scaling factor. In practice, NTK and YaRN are known to
be able to process slightly shorter context than the defined context limit (Peng et al., 2023).

For each task, we report the performance of HOMER applied on plain Llama. To further emphasize
that our method is orthogonal to the positional encoding scaling methods, and can be applied on
top of them, we additionally show the performance of HOMER combined with the best-performing
baseline for each task.

4.1 PASSKEY RETRIEVAL

In this section, we investigate if HOMER can effectively leverage the long context to handle down-
stream tasks. We evaluate this on the passkey retrieval task, originally proposed by Mohtashami &
Jaggi (2023). In this task, the model is asked to retrieve a random number (called passkey) hidden
inside distracting texts. The task is widely used to evaluate the maximum context length that the
model can effectively handle.

To evaluate the performance at different input lengths, we evaluate the models with inputs of lengths
4k, 8k, 16k, and 32k tokens. We report the retrieval accuracy in Table 1. The result demonstrates that
HOMER successfully maintains a high accuracy of around 80% for context length up to 32k tokens
which is 8 times longer than the pre-trained context length, while significantly outperforming every
baseline. Furthermore, it is also evident that the performance can be further improved by applying
HOMER on top of YaRN, the best-performing baseline.
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Table 1: Retrieval accuracy on passkey retrieval. Average accuracy on 500 samples are reported.
The best values are in bold, and the second-best values are underlined. Empty values indicate NaN.

Context Llama-2-7b-chat Llama-2-13b-chat
Method limit 4K 8K 16K 32K 4K 8K 16K 32K
Plain 4k 1.000 0.000 - - 1.000 0.000 0.000 0.000
Plain + HOMER None | 0.990 0.924 0.890 0.776 | 1.000 0.944 0.882 0.804
PI 8k 0.432 0.356 0.000 0.600 0.544 0.000 0.000

16k 0.006 0.006 0.006 0.000 | 0.022 0.028 0.018 0.000
NTK 8k 0.812 0.000 0.000 0.000 | 0.866 0.000 0.000 0.000
16k 0.516 0.652 0.000 0.000 | 0.626 0.692 0.000 0.000
32k 0.106 0.194 0.162 0.000 | 0.286 0.570 0.442 0.000
YaRN 8k 0.996 0.002 0.000 - 1.000 0.464 0.000 0.000
16k 0.844 0.756 0.000 0.000 | 0.980 0.952 0.214 0.000
32k 0.702 0.654 0.696 0.002 | 0.926 0.888 0.836 0.026
64k 0.678 0.358 0.148 0.026 | 0.902 0.826 0.364 0.224
YaRN + HOMER | None | 0.996 0.984 0.876 0.802 | 1.000 1.000 0.974 0.860

4.2 QUESTION ANSWERING

In this section, we push HOMER further and eval-

uate its performance on a more challenging task: Table 2: Accuracy in question answering, as

question answering based on long documents. To  eyaluated on the QUALITY validation set. The
this end, we measure the model’s performance on  pegt results are highlighted in bold.

the validation set of QUALITY (Pang et al., 2021).

For baselines with limited context length, the input Method Context limit ~ Accuracy
documents are clipped to fit in the context limit. pjaip 4k 0.327
For NTK and YaRN, we further clip the documents  pj4in + HOMER None 0.358

to be 3/4 of their context limit, as they are only ca-

pable of handling inputs slightly shorter than the FI 8k 0.366
claimed context limit. This observation can also NIK 8k 0.379
be found in Section 4.1, as NTK and YaRN mod- YaRN 8k 0.310
els could not handle inputs that are as long as their N1K+ HOMER None 0.388

context limit. For HOMER experiments, we feed
the full context into the model as HOMER has no
hard limit on the maximum context length.

We report the prediction accuracy in Table 2. As evident from the table, HOMER effectively ex-
tends the context limit, enjoying over 3% of accuracy gain compared to plain Llama. The perfor-
mance is further improved when applied on top of the best-performing positional encoding scaling
method (NTK), achieving 38.8% accuracy. This demonstrates that language models extended with
HOMER could potentially perform more sophisticated reasoning based on the extended context.

4.3 LANGUAGE MODELING

In this section, we investigate the language modeling fluency of HOMER using the perplexity metric.
To this end, we sample 25 long documents from the PG-19 dataset (Rae et al., 2019) and measure
the perplexity on documents truncated to specified evaluation lengths.

The core of our methodology is the compression of long context into short embeddings. Aligned
with this premise, perplexity is measured iteratively: preceding contexts are condensed with
HOMER, and the perplexity of the subsequent segment is deduced based on these compressed con-
texts. Throughout this procedure, the initial 4k tokens were evaluated using unmodified models,
with subsequent tokens assessed in 2k token increments. In every experiment, the last 100 tokens of
the input are treated as a suffix.

As illustrated in Table 3, HOMER maintains minimal perplexity values across long documents span-
ning up to 64k tokens. A more fine-grained perplexity plot is provided in Appendix F. While all
other methods either suffer from significant degradation beyond certain thresholds (attributed to
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Table 3: Perplexity of 25 long documents from PG-19 truncated to the evaluation length. The best
values are in bold, and the second-best values are underlined. Empty values indicate NaN.

Context Llama-2-7b Llama-2-13b
Method limit 4K 8K 16K 32K 64K 4K 8K 16K 32K 64K
Plain 4k 6.72 6.14 >102 >10°® >10® >10°

Plain + HOMER None 6.72 7.29 7.78 8.43 9.64 6.13 6.60 6.87 7.13 7.59

PI 8k 791 8.19 - - - 696 719 >10*> >10° > 103
16k >10 >10 >10 - - >10 >10 >10 >10*2 >10°
NTK 8k 697 >10 > 102 - - 626 962 >102 >10° >10°
16k 759 795 >10 >10*> >10®| 676 705 >10 >10® > 103
32k 842 897 976 >10 >10%2| 742 790 845 >10 >10°

YaRN 8k 6.79  7.40 - - - 619 659 >102 >10° > 103
16k 7.00 732 898 - - 636 665 783 >102 >10°
32k 750 805 878 >10 - 6.65 705 740 885 > 102

64k 849 >10 > 10 > 10 > 10 7.17 832 >10 > 10 > 10
YaRN + HOMER | None 6.79 7.09 7.52 7.95 8.83 6.19 6.51 6.78 7.02 7.44

lower scaling factors) or show heightened perplexity even within shorter contexts, HOMER steadily
maintains minimal perplexity across extended contexts. This suggests that HOMER is the only
method that maintains reasonable fluency even when conditioned on very long contexts. Moreover,
HOMER can be seamlessly integrated with conventional positional encoding scaling techniques to
further improve performance. As evident from Table 3, applying HOMER on top of YaRN yields
lower perplexity.

4.4 ABLATION STUDIES

Table 4: Ablation on different components. We report the passkey retrieval accuracy for 500 sam-
ples, evaluated on 16k contexts. The best values are highlighted in bold.

(a) Token pruning criteria. (b) Lower-layer embedding refinement.
Method Accuracy Method Accuracy
Random 0.006 No refinement 0.002
Attention-based top-K 0.056 Random 0.116

+ calibration 0.890 Layer-wise top-K 0.040

Propagative refinement 0.890

In this section, we demonstrate the effectiveness of the design choices made for our method. Specif-
ically, we focus on (1) the proposed token pruning criteria and (2) the method for refining the lower-
layer embeddings after applying hierarchical merging. Following the settings of Section 4.1, we
compared the retrieval accuracy of each candidate.

Effectiveness of our token pruning method. To reduce redundant tokens in the intermediate Trans-
former layers, we define a calibrated significance score based on the attention weights each token
receives from the last token in the chunk. In the pruning procedure, K tokens with the lowest sig-
nificance scores are dropped. We demonstrate the effectiveness of this criteria by comparing it to
a simple baseline, which randomly selects which token to drop. We additionally report the per-
formance with uncalibrated pruning criteria to further emphasize the effectiveness of significance
weight calibration. As illustrated in Table 4a, the use of attention-based significance scores and
calibration provide an effective proxy for determining the importance of given tokens.

Effectiveness of propagative refinement. Another key component of our method is the refinement
of the lower-layer embeddings, described as propagative refinement. To evaluate its effectiveness,
we compare its performance with three alternative approaches (i) not refining the lower-layer embed-
dings, (ii) gathering random tokens, and (iii) gathering tokens according to their significance score
at each layer. As illustrated in Table 4b, propagative refinement achieves the best performance.
We credit this to the ability of upper transformer layers to understand high-level information, with
their attention weights successfully representing token significance. By selectively providing more
significant tokens, propagative pruning reduces computation while improving performance.
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Table 5: Peak memory usage for long inputs. All measurements are taken on a single A100 GPU,
with Flash Attention 2 (Dao, 2023) applied. The baselines include plain Llama, PI, NTK, and YaRN.
We report a single value for all baselines as they share the same memory requirement.

Peak GPU memory (GB)

Setup 4k 8k 16k 32k 64k
Baselines 18.2 23.6 344 56.7 > 80
HOMER 16.3 (-10.8%) 16.5(-30.1%) 16.7 (-51.4%) 17.6 (-68.9%) 21.3 (at least -73.4%)

+ Baselines  19.2 (+45.5%) 20.1 (-14.6%) 20.3 (-41.1%) 20.8 (-63.4%) 22.5 (at least -71.8%)

4.5 COMPUTATIONAL EFFICIENCY

In this section, we discuss the computational efficiency offered by our methodology, with a primary
focus on memory efficiency. We first demonstrate the computational efficiency of our method by
measuring the peak GPU memory usage while processing long inputs. In the following part of the
section, we discuss the four key mechanisms that bring efficiency gains.

The peak memory usage for HOMER and baselines is illustrated in Table 5. Note that we report a
single number for all baselines (Plain Llama, PI, NTK, YaRN) because the baselines only modify
the positional encoding, making no difference in the peak GPU memory usage. For a fair com-
parison, all methods are tested with Flash Attention 2 (Dao, 2023) enabled. As shown in the table,
HOMER significantly reduces memory requirements, reducing the peak memory usage by over 70%
when running inference on 64k inputs.

The first source of our efficiency gains is the chunking mechanism. We circumvent the quadratic
computation associated with self-attention by processing each chunk separately at the earlier layers.
Token reduction is our second source of computation reduction. As our algorithm progressively
reduces the number of tokens, fewer tokens have to be processed in the upper layers, reducing
the computational overhead. The third source of computation saving is that HOMER outputs con-
cise embeddings, optimizing the subsequent self-attention computation during the generation phase.
Compared to naive forwarding of the complete input, our compact embeddings significantly mini-
mize the size of kv-cache, thus optimizing the computation process. Finally, the memory require-
ment is further reduced from linear to logarithmic with respect to the input length, thanks to the
optimized computation ordering described in Section 3.3. Additional discussion on the inference
speed is provided in Appendix E.

5 CONCLUSION

In this paper, we introduced Hierarchical cOntext MERging (HOMER), a novel method that effi-
ciently addresses the context limit issue inherent in large language models (LLMs). By employing
a strategic divide-and-conquer technique, HOMER prunes redundant tokens, creating compact em-
beddings while maintaining the richness of information. This approach, validated by our experi-
ments, has proven to be memory-efficient and effective, enabling the handling of extended contexts
up to 64k tokens with significantly reduced memory requirements.

Limitations and future work. Although our work focuses on training-free extension of context
limit, there is no fundamental limit on our method making finetuning impossible. We believe that
further improving our method with small-data finetuning can additionally boost performance, and
the resulting model would enjoy both the extended context limit and reduced memory requirements.
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A MEMORY-EFFICIENT COMPUTATION ORDER

In this section, we outline the proof for the logarithmic memory requirement of the proposed
memory-efficient computation ordering suggested in Section 3.3.

7
Transformer Layers I
L2 layers
_—» DTITTTTT] «

€Frrrren CFrrrrrh
L1 layers

EI:EEEEEEI I:EEED]:EI

o Y o i Y I I I I

C tokens C tokens C tokens C tokens

Figure 3: Hierarchical context merging process conceptualized as a binary tree. The top-left num-
bers of each node denote the memory-efficient computation order. Note that propagative refinement
must be applied after processing each node to enjoy the optimized memory usage.

A.1 PRELIMINARIES
Problem setup. We conceptualize the hierarchical context merging process as a binary tree. For
example, Figure 3 illustrates a merging process with 4 input chunks.

Constants. L, refers to the number of layers used for processing a chunk at binary tree height <.
L := 3" L, is the total number of network layers. C' is the maximum chunk size. M is the memory
required for storing a key-value pair for a single token in a single layer.

Remarks. As the chunk size is bounded, the memory required for forwarding a single chunk through
a single layer can be treated as constant. Therefore, it suffices to consider the memory required for
storing the key-value pairs at each layer.

Let FinalMem(h) be the memory occupied after processing a binary tree of height h. As prop-
agative refinement reduces the intermediate hidden states to be C'/2 tokens long, FinalMem(h) is
bounded as follows.

h
C 1
FinalMem(h) = 5 X E LixM< §LC’M
=0

A.2 PROOF

Proposition. Let PeakMem(h) be the peak memory usage for processing a binary tree of height h.
Then,

PeakMem(h) < (;h + 1) LCM.

We prove the proposition using induction. First, consider the leaf node where h = 0. As C' tokens
are passed through L layers, the peak memory usage is given as follows, proving the base case.

PeakMem(0) = LyCM < LCM
Now consider a non-leaf node with 2 > 0. Processing of a non-leaf node consists of three steps: (1)

sequentially processing two child nodes, (2) obtaining a merged chunk and forwarding it through
Ly, layers, (3) applying propagative refinement on the 2?:1 L; lower-layer hidden states. As step

14
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(3) is a memory reduction step, PeakMem(h) is the maximum of peak memories of steps (1) and

(2).
In step (1) the two child nodes are sequentially processed, resulting in the peak memory of

FinalMem(h — 1) + PeakMem(h — 1).

In step (2) hidden states of length C' must be held for E?:o L; layers, so the peak memory is

h
C’xZLixM.

=0

By applying the induction hypothesis, we get

h
PeakMem(h) = max {FinalMem(h — 1)+ PeakMem(h — 1),C x ZLi X M}
=0

IN

max {;LC’M + (;(h —1)+ 1> LCM, LCM}

max { (;h + 1) LCM, LC’M}
1
= (2h + 1) LCM.

As the peak memory grows linearly with the tree height, it grows logarithmic with the input sequence
length.

B IMPLEMENTATION DETAILS

Context merging schedule. Following the formulation in Figure 3, we detail how many layers are
assigned to each level of the binary tree. The basic principle is to assign an equal number of layers
to each node. In practice, we noticed that additionally assigning more layers to the leaf nodes helps
improve the overall performance. We assign 12 additional layers for 7b models and 20 layers for
13b models.

Calibration. For all models (HOMER and HOMER+baselines), calibration is performed using 100
text corpora segments from the validation set and the test set of WikiText-103 (Merity et al., 2016).

Maximum chunk length. In all experiments involving HOMER, the maximum chunk length was
set to be half of the context limit.

15
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C PROMPTS FOR DOWNSTREAM TASKS

The detailed prompt format for each downstream task are provided in Table 6 and Table 7.

Table 6: Prompt for passkey retrieval task. Slight modifications are made from the original prompt
to turn it into a chat prompt (Touvron et al., 2023).

Prefix [INST] <<SYS>>
There is an important info hidden inside a lot of irrelevant text.
Find it and memorize them. I will quiz you about the important information there.
<</SYS>>

Context The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. (repeat x times)
The pass key is 12323. Remember it. 12323 is the pass key.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. (repeat y times)

Suffix What is the pass key? The pass key is
[/INST]

Table 7: Prompt for question answering task. Basic prompt format follows Shaham et al. (2023).
Slight modifications are made to turn it into a chat prompt (Touvron et al., 2023).

Prefix [INST] <<SYS>>
You are provided a story and a multiple-choice question with 4 possible answers
(marked by A, B, C, D). Choose the best answer by writing its corresponding
letter (either A, B, C, or D). Do not provide any explanation.
<</SYS>>

Context (The actual document)

Suffix Question and Possible Answers:

{question}

(a) {choice 1}

(b) {choice 2}

(c) {choice 3}

(d) {choice 4}

Answer:

[/INST]
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D ILLUSTRATION OF PROPAGATIVE REFINEMENT

In this section, we provide a comprehensive explanation of propagative refinement suggested in
Section 3.2. Figure 4 illustrates the process, where 3 out of 6 tokens are pruned at layer N.

Layer N [2]2]3]4]5]6] [1]2]3]4]5]6] [1]4]6]
LayerN-1|1|2|3|4|5|6|»|1|2|3|4|5|6| |

layer 1 [1]2f3]a]s]6] [1]2fs]a]s]6] [1]4]6]
(@) (b) ()

Figure 4: Illustration of the propagative refinement process.

Initially, as shown in part (a), the three least significant tokens (2, 3, and 5) are marked for pruning
in layer N. Subsequently, in part (b), the corresponding tokens in the lower-layer embeddings are
also marked for pruning. Finally, part (c) demonstrates the outcome after pruning, where all marked
tokens are eliminated across every layer, resulting in a uniform, compressed embedding structure
composed of just three tokens.

E INFERENCE SPEED ANALYSIS

In this section, we discuss the inference speed of HOMER. Besides reducing memory requirements,
HOMER also provides a significant speedup due to the extensive reduction in computation. Table 8
illustrates the average inference time for HOMER and other baselines. Specifically, we compare the
time required to generate 20, 50, and 100 tokens, conditioned on 8k, 16k, and 32k contexts.

Table 8: Inference time for long inputs. All measurements are taken on a single A100 GPU, with
Flash Attention 2 (Dao, 2023) applied. We also report the percentage of the speedup. We report a
single value for all baselines* following the setup in Section 4.5. The baselines include plain Llama,
PI, NTK, and YaRN. The inference time is averaged over 25 runs.

Average run time (seconds)

Setup 8k 16k 32k
20 tokens

Baselines* 1.879 3.224 6.546

HOMER 1.673 (12.3% speedup)  2.270 (42.0% speedup)  3.513 (86.3% speedup)
50 tokens

Baselines* 3.842 6.028 11.143

HOMER 3.026 (27.0% speedup)  3.639 (65.6% speedup)  4.873 (128.7% speedup)
100 tokens

Baselines™ 7.149 10.733 18.828

HOMER 5.355 (33.5% speedup)  5.930 (81.0% speedup)  7.169 (162.6% speedup)

The main source of performance gain in HOMER, as described in Section 4.5, is the computation
reduction. The following points highlight these improvements:

* The divide-and-conquer approach circumvents the quadratic computation associated with self-
attention.

» Token pruning significantly reduces the number of tokens to process, especially in the upper
layers.

* HOMER compresses long contexts into short embeddings, substantially reducing the size of the
kv-cache. This step lowers the computational demand during the decoding stage.
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As evident from the results, HOMER provides a significant speedup (up to 162.6%) compared to the
baseline methods. It’s important to note that our method is even more beneficial when generating
longer outputs conditioned on longer inputs, underscoring its effectiveness in handling long contexts.

We also emphasize that the additional computation introduced by HOMER is minimal. The hier-
archical context merging process involves relatively cheap operations, including matrix subtraction
(calibration), gathering by index (calibration, token pruning, and propagative refinement), top-k se-
lection (token pruning), and tensor concatenation (merging). Conversely, it reduces more costly
operations such as matrix multiplication for computing self-attention.

F PERPLEXITY PLOT FOR LANGUAGE MODELING EXPERIMENT

In this section, we provide a fine-grained perplexity plot for the fluency experiment in Section 4.3.

20 { —— Plain -+« YaRN (8K) YaRN (64K)
: PI (8K) .-+ YaRN(16K) —— HOMER (Ours)
i —— NTK(8K) ---- YaRN (32K) HOMER (Ours) + YaRN (8K)
8l iror T
HH
16 H
I
2z 1
= 14 1t
() a1
Sl |
& 12 ', |
1

10

4k 8k 16k 32k 64k
Evaluation length (Tokens)

Figure 5: Perplexity plot on 25 long documents from PG-19 dataset (Rae et al., 2019), measured
with Llama-2-7b. HOMER consistently achieves low perplexity across long documents up to 64K
tokens, demonstrating its ability to remain fluent while conditioned on very long inputs. Detailed

comparison with more baselines are provided in Table 3.
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G PERPLEXITY EVALUATION ON DOWNSTREAM TASKS

—— Plain “=++ YaRN (16K) - YaRN (64K)
YaRN (8K)  --=+ YaRN (32K) —— HOMER (Ours)
3
10
2>
s 2
s 10
=
(0]
o
1
10
0
10

HOMER (Ours) + YaRN (8K)

2k4k 8k 16k

Evaluation length (Tokens)

32k

48k

64k

Figure 6: Perplexity plot on 100 long samples from passkey retrieval, measured with Llama-2-
7b-chat. HOMER achieves lower perplexity when conditioned on longer inputs, demonstrating its
ability to effectively handle the long inputs. Perplexity values on landmark lengths are provided in

Table 9.
Table 9: Perplexity values for passkey retrieval. Empty values indicate NaN.
Context Limit 2k 4k 8k 16k 32k 64k
Plain 4k 23.12  13.013 > 103 - - -
Plain + HOMER None 2322 29.882 23932 20.897 7.119 4.085
YaRN 8k 23414 17338 23394 > 10* - -
16k 28.183 19.07 15.366 >102 > 103 -
32k 19.248 20.491 28.034 17.187 31.017 > 10°
64k 22.031 16963 15481 36.760 38.786 > 102
YaRN + HOMER None 23.414 17.232 22263 11.317 7.618 2412

In this section, we provide additional perplexity experiments on a more challenging benchmark
where accessing previous long contexts is essential. To achieve this, we reformulated the passkey
retrieval task in Section 4.1 and measured the perplexity of ground-truth answer phrases (e.g., "The
passkey is 12321.”). The results are demonstrated in Figure 6 and Table 9.

As the results show, HOMER exhibits lower perplexity when conditioned on longer contexts, achiev-
ing its best performance with 64k inputs. Furthermore, HOMER outperforms the long-context com-
petitors with context lengths of 16k and beyond. These experiments emphasize the efficacy of
HOMER in utilizing long contexts, particularly in scenarios where accessing such context is neces-

sary.
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