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ABSTRACT

We study the problem of building an agent that can follow open-ended instructions
in open-world environments. We propose to follow reference videos as instructions,
which offer expressive goal specifications while eliminating the need for expensive
text-gameplay annotations. We implement our agent GROOT in a simple yet
effective encoder-decoder architecture based on causal transformers. We evalu-
ate GROOT against open-world counterparts and human players on a proposed
Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is
closing the human-machine gap as well as exhibiting a 70% winning rate over the
best generalist agent baseline. Qualitative analysis of the induced goal space further
demonstrates some interesting emergent properties, including the goal composition
and complex gameplay behavior synthesis.

Figure 1: Through the cultivation of extensive gameplay videos, GROOT has grown a rich set of skill fruits
(number denotes success rate; skills shown above do not mean to be exhaustive; kudos to our artist Haowei Lin).

1 INTRODUCTION

Developing human-level embodied agents that can solve endless tasks in open-world environments,
such as Minecraft (Johnson et al., 2016; Fan et al., 2022), has always been a long-term goal pursued
in AI. Recent works have explored using Large Language Models (LLMs) to generate high-level
plans, which guide the agent to accomplish challenging long-horizon tasks (Wang et al., 2023b;a; Zhu
et al., 2023). However, a major gap between these LLM-based agents and generalist agents that can
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complete endless amounts of tasks is the capability of their low-level controllers, which map the plans
to motor commands. Recently developed controllers are only capable of completing a predefined
and narrow set of programmatic tasks (Lin et al., 2021; Baker et al., 2022; Cai et al., 2023), which
hinders LLM-based planning agents from unleashing their full potential. We attribute the limitation
of these low-level controllers to how the goal is specified. Specifically, existing controllers use task
indicator (Yu et al., 2019), future outcome (Chen et al., 2021; Lifshitz et al., 2023), and language
(Brohan et al., 2022) to represent the goal. While it is easy to learn a controller with some of these
goal specifications, they may not be expressive enough for diverse tasks. Taking future outcome
goals as an example, an image of a desired house clearly lacks procedural information on how the
house was built. One exception is language, but learning a controller that can receive language
goals is prohibitively expensive as it requires a huge number of trajectory-text pairs with text that
precisely depicts the full details of the gameplay, therefore preventing them from scaling up to more
open-ended tasks.

Having observed the limitations of goal specification in the prior works, this paper seeks to find a
balance between the capacity of goal specification and the cost of controller learning. Concretely,
we propose to specify the goal as a reference gameplay video clip. While such video instruction is
indeed expressive, there are two challenges: 1) How can the controller understand the actual goal
being specified as the video itself can be ambiguous, i.e., a goal space or video instruction encoder
has to be learned; 2) How to ultimately map such goal to actual motor commands? To this end, we
introduce a learning framework that simultaneously produces a goal space and a video instruction
following controller from gameplay videos. The fundamental idea is casting the problem as future
state prediction based on past observations:

• The predicting model needs to identify which goal is being pursued from the past observations,
which requires a good goal space (induced by a video instruction encoder);

• Since the transition dynamics model is fixed, a policy that maps both the state and the recognized
goal to action is also needed by the predicting model when rolling the future state predictions.

Effectively, this results in the goal space and control policy we need. We introduce a variational
learning objective for this problem, which leads to a combination of a cloning loss and a KL
regularization loss. Based on this framework, we implement GROOT, an agent with an encoder-
decoder architecture to solve open-ended Minecraft tasks by following video instructions. The video
encoder is a non-causal transformer that extracts the semantic information expressed in the video and
maps it to the latent goal space. The controller policy is a decoder module implemented by a causal
transformer, which decodes the goal information in the latent space and translates it into a sequence
of actions in the given environment states in an autoregressive manner.

To comprehensively evaluate an agent’s mastery of skills, we designed a benchmark called Minecraft
SkillForge. The benchmark covers six common Minecraft task groups: collect, build,
survive, explore, tool, and craft, testing the agent’s abilities in resource collection, struc-
ture building, environmental understanding, and tool usage, in a total of 30 tasks. We calculate
Elo ratings among GROOT, several counterparts, and human players based on human evaluations.
Our experiments showed that GROOT is closing the human-machine gap and outperforms the best
baseline by 150 points (or 70% winning rate) in an Elo tournament system. Our qualitative analysis
of the induced goal space further demonstrates some interesting emergent properties, including the
goal composition and complex gameplay behavior synthesis.

To sum up, our main contributions are as follows:

• Start by maximizing the log-likelihood of future states given past ones, we have discovered the
learning objectives that lead to a good goal space and ultimately the instruction-following controller
from gameplay videos. It provides theoretical guidance for the agent architecture design and model
optimization.

• Based on our proposed learning framework, we implemented a simple yet efficient encoder-
decoder agent based on causal transformers. The encoder is responsible for understanding the goal
information in the video instruction while the decoder as the policy emits motor commands.

• On our newly introduced benchmark, Minecraft SkillForge, GROOT is closing the human-machine
gap and surpassing the state-of-the-art baselines by a large margin in the overall Elo rating compar-
ison. GROOT also exhibits several interesting emergent properties, including goal composition
and complex gameplay behavior synthesis.
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2 PRELIMINARIES AND PROBLEM FORMULATION

Reinforcement Learning (RL) concerns the problem in which an agent interacts with an environment at
discrete time steps, aiming to maximize its expected cumulative reward (Mnih et al., 2015; Schulman
et al., 2017; Espeholt et al., 2018). Specifically, the environment is defined as a Markov Decision
Process (MDP) ⟨S,A,R,P, d0⟩, where S is the state space,A is the action space,R : S×A → R is
the reward function, P : S ×A → S is the transition dynamics, and d0 is the initial state distribution.
Our goal is to learn a policy π(a|s) that maximizes the expected cumulative reward E[

∑∞
t=0 γ

trt],
where γ ∈ (0, 1] is a discount factor.

In goal-conditioned RL (GCRL) tasks, we are additionally provided with a goal g ∈ G (Andrychowicz
et al., 2017; Ding et al., 2019; Liu et al., 2022; Cai et al., 2023; Jing et al., 2021; 2020; Yang et al.,
2019). And the task becomes learning a goal-conditioned policy π(a|s, g) that maximizes the
expected return E[

∑∞
t=0 γ

trgt ], where rgt is the goal-specific reward achieved at time step t. Apart
from being a new type of RL task, GCRL has been widely studied as a pre-training stage toward
conquering more challenging environments/tasks (Aytar et al., 2018b; Baker et al., 2022; Zhang et al.,
2022). Specifically, suppose we are provided with a good goal-condition policy, the goal can be
viewed as a meta-action that drives the agent to accomplish various sub-tasks, which significantly
simplifies tasks that require an extended horizon to accomplish. Further, when equipped with goal
planners, we can achieve zero- or few-shot learning on compositional tasks that are beyond the reach
of RL algorithms (Huang et al., 2022; Wang et al., 2023b;a; Zhu et al., 2023; Gong et al., 2023).

At the heart of leveraging such benefits, a key requirement is to have a properly-defined goal space
that (i) has a wide coverage of common tasks/behaviors, and (ii) succinctly describes the task without
including unnecessary information about the state. Many prior works establish goal spaces using
guidance from other modalities such as language (Hong et al., 2020; Stone et al., 2023; Cai et al.,
2023) or code (Wang et al., 2023a; Huang et al., 2023). While effective, the requirement on large-scale
trajectory data paired with this auxiliary information could be hard to fulfill in practice. Instead,
this paper studies the problem of simultaneously learning a rich and coherent goal space and the
corresponding goal-conditioned policy, given a pre-trained inverse dynamic model and raw gameplay
videos, i.e., sequences of states {s(i)1:T }i collected using unknown policies.

3 GOAL SPACE DISCOVERY VIA FUTURE STATE PREDICTION

This section explains our learning framework: discovering a “good” goal space as well as a video
instruction following the controller through the task of predicting future states given previous ones.
We start with an illustrative example in Minecraft (Johnson et al., 2016). Imagine that an agent is
standing inside a grassland holding an axe that can be used to chop the tree in front of them. Suppose
in the gameplay video, players either go straight to chop the tree or bypass it to explore the territory.
In order to predict future frames, it is sufficient to know (i) which goal (chop tree or bypass tree) is
being pursued by the agent, and (ii) what will happen if the agent chooses a particular option (i.e.,
transition dynamics). Apart from the latter information that is irrelevant to the past observations, we
only need to capture the goal information, i.e., whether the agent decides to chop the tree or bypass the
tree. Therefore, the task of establishing a comprehensive yet succinct goal space can be interpreted as
predicting future states while conditioning on the transition dynamics of the environment.

Formally, our learning objective is to maximize the log-likelihood of future states given past ones:
log pθ(st+1:T |s1:t). Define g as a latent variable conditioned on past states (think of it as the potential
goals the agent is pursuing given past states), the evidence lower-bound of the objective given
variational posterior qϕ(g|s1:T ) is the following (see Appendix A for derivations):

log pθ(st+1:T |s1:t) = log
∑
g

pθ(st+1:T , g|s1:t)

≥ Eg∼qϕ(·|s1:T ) [log pθ(st+1:T |s1:t, g)]−DKL (qϕ(g|s1:T ) ∥ pθ(g|s1:t)) ,

where DKL(·∥·) denotes the KL-divergence. Next, we break down the first term (i.e.,
pθ(st+1:T |s1:t, g)) into components contributed by the (unknown) goal-conditioned policy πθ(a|s, g)
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Figure 2: GROOT agent architecture. Left: In the training stage, a video encoder (non-causal transformer)
learns to extract the semantic meaning and transfer the video (state sequence) into the goal embedding space. A
goal-conditioned policy (causal transformer) is learned to predict actions following the given instructions. We
learn the agent using behavior cloning under a KL constraint. Right: During inference, a reference video is
passed into the encoder to generate the goal embeddings that drive the policy to interact with the environment.

and the transition dynamics pθ(st+1|s1:t, at) :

log pθ(st+1:T |s1:t, g) =
T∑

τ=t

log
∑
aτ

πθ(aτ |s1:τ , g) · pθ(sτ+1|s1:τ , aτ )

≥
T∑

τ=t

Eaτ∼pθ(aτ |s1:τ+1)

[
log πθ(aτ |s1:τ , g) + C

]
,

where the constant C contains terms that depend solely on the environment dynamics and are
irrelevant to what we want to learn (i.e., the goal space and the goal-conditioned policy). Bring it
back to the original objective, we have

log p(st+1:T |s1:t) ≥
T−1∑
τ=t

Eg∼qϕ(·|s1:T ),aτ∼pθ(·|s1:τ+1) [log πθ(aτ |s1:τ , g)]︸ ︷︷ ︸
behaviour cloning

−DKL (qϕ(g|s1:T ) ∥ pθ(g|s1:t))︸ ︷︷ ︸
goal space constraint (KL regularization)

,

where qϕ(·|s1:T ) is implemented as a video encoder that maps the whole state sequence into the
latent goal space. pθ(·|s1:τ+1) is the inverse dynamic model (IDM) that predicts actions required to
achieve a desired change in the states, which is usually a pre-trained model, details are in Appendix C.
Thus, the objective can be explained as jointly learning a video encoder and a goal-controller policy
through behavior cloning under succinct goal space constraints.

4 GROOT ARCHITECTURE DESIGN AND TRAINING STRATEGY

This section illustrates how to create an agent (we call it GROOT) that can understand the semantic
meaning of a reference video and interact with the environment based on the aforementioned learning
framework. According to the discussion in Section 3, the learnable parts of GROOT include the
video encoder and the goal-conditioned policy. Recently, Transformer (Vaswani et al., 2017) has
demonstrated effectiveness in solving sequential decision-making problems (Parisotto et al., 2019;
Chen et al., 2021; Brohan et al., 2022). Motivated by this, we implement GROOT with transformer-
based encoder-decoder architecture, as shown in Figure 2.

4.1 VIDEO ENCODER

The video encoder includes a Convolutional Neural Network (CNN) to extract spatial information
from image states s1:T and a non-causal transformer to capture temporal information from videos.
Specifically, we use a CNN backbone to extract visual embeddings {x1:T } for all frames. Additionally,
motivated by Devlin et al. (2019); Dosovitskiy et al. (2020), we construct a set of learnable embeddings
(or summary tokens), represented as {c1:N}, to capture the semantic information present in the video.
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The visual embeddings and summary tokens are passed to a non-causal transformer, resulting in the
output corresponding to the summary tokens as {ĉ1:N}

x1:T ← Backbone(s1:T ),

ĉ1:N ← Transformer([x1:T , c1:N ]).
(1)

Similar to VAE (Kingma & Welling, 2013), we assume that the latent goal space follows a Gaussian
distribution, hence we use two fully connected layers, µ(·) and σ(·), to generate the mean and
standard deviation of the distribution, respectively. During training, we use the reparameterization
trick to sample a set of embeddings {g1:N} from the distribution, where gt ∼ N (µ(ĉt), σ(ĉt)).
During inference, we use the mean of the distribution as the goal embeddings, i.e. gt ← µ(ĉt).

4.2 DECODER AS POLICY

To introduce our policy module, we start with VPT (Baker et al., 2022), a Minecraft foundation
model trained with standard behavioral cloning. It is built on Transformer-XL (Dai et al., 2019) that
can leverage long-horizon historical states and predict the next action seeing the current observation.
However, the vanilla VPT architecture does not support instruction input. To condition the policy
on goal embeddings, we draw the inspiration from Flamingo (Alayrac et al., 2022), that is, to insert
gated cross-attention dense layers into every Transformer-XL block. The keys and values in these
layers are obtained from goal embeddings, while the queries are derived from the environment states

x̂
(l)
1:t ← GatedXATTN(kv = g1:N , q = x

(l−1)
1:t ; θl),

x
(l)
1:t ← TransformerXL(qkv = x̂

(l)
1:t; θl),

ât ← FeedForward(x(M)
t ),

(2)

where the policy reuses the visual embeddings extracted by the video encoder, i.e., x(0)
1:t = x1:t, the

policy consists of M transformer blocks, θl is the parameter of l-th block, ât is the predicted action.
Since our goal space contains information about how to complete a task that is richer than previous
language-conditioned policy (Cai et al., 2023; Lifshitz et al., 2023), the cross-attention mechanism is
necessary. It allows the GROOT to query the task progress from instruction information based on
past states, and then perform corresponding behaviors to complete the remaining progress.

4.3 TRAINING AND INFERENCE

The training dataset can be a mixture of Minecraft gameplay videos and offline trajectories. For
those videos without actions, an inverse dynamic model (Baker et al., 2022) can be used to generate
approximate actions. Limited by the computation resources, we truncated all the trajectories into
segments with a fixed length of T without using any prior. We denote the final dataset as D =
{(x1:T , a1:T )}M , where M is the number of trajectories. We train GROOT in a fully self-supervised
manner while the training process can be viewed as self-imitating, that is, training GROOT jointly
using behavioral cloning and KL divergence loss

L(θ, ϕ) = E(s1:T ,a1:T )∼D
g∼qϕ(·|s1:T )

[
T−1∑
τ=t

− log πθ(aτ |s1:τ , g) + λKLDKL (qϕ(g|s1:T ) ∥ pθ(g|s1:t))

]
, (3)

where λKL is the tradeoff coefficient, qϕ is a posterior visual encoder, pθ is a prior video encoder
with the same architecture. More details are in the Appendix D.

5 RESULT

5.1 PERFORMANCE ON MASTERING MINECRAFT SKILLS

Minecraft SkillForge Benchmark. In order to comprehensively evaluate the mastery of tasks by
agents in Minecraft, we created a diverse benchmark called Minecraft SkillForge. It covers 30
tasks from 6 major categories of representative skills in Minecraft, including collect, explore,
craft, tool, survive, and build. For example, the task “dig three down and fill one up” in
the build category asks the agent to first dig three blocks of dirt, then use the dirt to fill the space
above; The task of “building a snow golem” ( ) requires the agent to sequentially stack 2 snow
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(a) Elo Rating Comparison (b) Winning Rate of GROOT vs. Baselines (c) Success Rate Comparison

Figure 3: Results on Minecraft SkillForge benchmark. Left: Tournament evaluation of GROOT assessed
by human players. GROOT performs better than state-of-the-art Minecraft agent STEVE-1. A 150-score gap
corresponds to a 70% probability of winning. Middle: Winning rate of GROOT v.s. other agents on specific task
categories. Colors from red to blue denote a decrease in the winning rate. Apart from the human player, GROOT
surpasses all other baselines. Right: Success rate on 9 representative tasks. GROOT champions process-oriented
tasks, such as dig three down and fill one up ( ) and build snow golems ( ).

blocks ( ) and 1 carved pumpkin ( ). We put the details of this benchmark in the Appendix H.
Apart from some relatively simple or common tasks such as “collect wood” and “hunt animals”, other
tasks require the agent to have the ability to perform multiple steps in succession.

We compare GROOT with the following baselines: (a) VPT (Baker et al., 2022), a foundation model
pre-trained on large-scale YouTube data, with three variants: VPT (fd), VPT(bc), and VPT(rl),
indicating vanilla foundation model, behavior cloning finetuned model, and RL finetuned model;
(b) STEVE-1 (Lifshitz et al., 2023), an instruction-following agent finetuned from VPT, with two
variants: STEVE-1 (visual) and STEVE-1 (text) that receives visual and test instructions. More
details are in Appendix F.1. It is worth noting that GROOT was trained from scratch.

Human Evaluation with Elo Rating. We evaluated the relative strength of agents by running an
internal tournament and reporting their Elo ratings, as in Mnih et al. (2015). Before the tournament,
each agent is required to generate 10 videos of length 600 on each task. Note that, all the reference
videos used by GROOT are generated from another biome to ensure generalization. Additionally,
we also invited 3 experienced players to do these tasks following the same settings. After the video
collection, we asked 10 players to judge the quality of each pair of sampled videos from different
agents. Considering the diversity of tasks, we designed specific evaluation criteria for every task to
measure the quality of rollout trajectories. After 1500 comparisons, the Elo rating converged as in
Figure 3 (left). Although there is a large performance gap compared with human players, GROOT
has significantly surpassed the current state-of-the-art STEVE-1 series and condition-free VPT series
on the overall tasks. Additional details are in Appendix G.

In Figure 3 (middle), we compare GROOT with other baselines in winning rate on six task groups.
We found that except for the performance on craft tasks, where STEVE-1 (visual) outperforms our
model, GROOT achieves state-of-the-art results. In particular, GROOT greatly outperforms other
baselines by a large margin on build and tool. For build, the goal space needs to contain more
detailed procedural information, which is the disadvantage of methods that use future outcomes as
the goal. Moreover, such tasks are distributed sparsely in the dataset, or even absent in the dataset,
which requires the agent to have strong generalization ability. As for craft group, GROOT is not
superior enough, especially on the “crafting table” task. We attribute this to the wide task distribution
in the dataset. Thus the future outcomes can prompt STEVE-1 to achieve a high success rate.

Programmatic Evaluation. To quantitatively compare the performance of the agents, we selected
9 representative tasks out of 30 and reported the success rate of GROOT, STEVE-1 (visual), and
VPT (bc) on these tasks in Figure 3 (right). We found that, based on the success rate on tasks
such as dye and shear sheep( ), enchat sword ( ), smelt food ( ), use bow
( ), sleep ( ), and lead animals ( ), GROOT has already reached a level comparable
to that of human players (100%). However, the success rates for build snow golems ( ) and
build obsidian ( ) tasks are only 60% and 50%. By observing the generated videos, we
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(a)	Random	Initialized (b)	GROOT	w/o	KL (c)	GROOT	w/	KL (d)	Synthesized	Videos

Figure 4: t-SNE visualization of the goal space. Each color corresponds to a specific video category. (Left):
Space of randomly initialized video encoder. All the videos are entangled together. Middle: Space of GROOT
trained with self-supervised learning w/ and w/o KL regularization, respectively. The videos are clustered based
on their semantics. Visualization shows the subtle differences between the two. Right: Synthesized videos using
concatenation manner. The concatenated videos lay on the position between the source videos.

found that GROOT cannot precisely identify the items in Hotbar (such as buckets, lava buckets,
snow blocks, and pumpkin heads), resulting in a low probability of switching to the correct item.
STEVE-1 also has the same problem. This may be due to the current training paradigm lacking
strong supervisory signals at the image level. Future work may introduce auxiliary tasks such as
vision-question answering (VQA) to help alleviate this phenomenon. Details are in Appendix F.3.

5.2 PROPERTIES OF LEARNED GOAL SPACE

This section studies the properties of learned goal space. We used the t-SNE algorithm (van der
Maaten & Hinton, 2008) to visualize the clustering effect of reference videos encoded in goal
space, as in Figure 4. We select 7 kinds of videos, including craft items, combat enemies,
harvest crops, hunt animals, chop trees, trade with villagers, and mine
ores. These videos are sampled from the contractor data (Baker et al., 2022) according to the
meta information (details are in Appendix F.2). Each category contains 1k video segments. As
a control group, in Figure 4 (left), we showed the initial goal space of the video encoder (with a
pre-trained EfficientNet-B0 (Tan & Le, 2019) as the backbone) before training. We found that the
points are entangled together. After being trained on offline trajectories, as in Figure 4 (middle),
it well understands reference videos and clusters them according to their semantics. This proves
that it is efficient to learn behavior-relevant task representations using our self-supervised training
strategy. The clustering effect is slightly better with KL regularization, though the difference is not
very significant. Inevitably, there are still some videos from different categories entangled together.
We attribute this to the possibility of overlap in the performed behaviors of these videos. For example,
chop trees and harvest crops both rely on a sequential of “attack” actions.

Condition on Concatenated Videos. We also study the possibility of conditioning the policy on
concatenated videos. First, we collect 3 kinds of source videos, including chop trees, hunt
animals, and trade with villagers. We randomly sampled two videos from sources
of chop trees and hunt animals, downsampled and concatenated them into a synthetic
video, denoted as [chop trees, hunt animals]. By the same token, we can obtain [hunt
animals, trade with villagers]. We visualize these videos together with the source
videos in Figure 4 (right). We found that the source videos lie far away from each other while the
concatenated videos are distributed between their source videos. Based on this intriguing phenomenon,
we infer that concatenated videos may prompt GROOT to solve both tasks simultaneously. To verify
this, we evaluate GROOT on three kinds of reference videos, i.e., chop trees, hunt animals,
and [chop trees, hunt animals]. We launched GROOT in the forest and in the animal
plains, respectively. The collected wood and killed mobs are reported in Figure 5. We found that
although the concatenated video may not be as effective as raw video in driving an agent to complete
a single task (60% of the performance of raw video), it does possess the ability to drive the agent to
perform multiple tasks. This is an important ability. As discussed in Wang et al. (2023b), sometimes
the high-level planner will propose multiple candidate goals, it will be efficient if the low-level
controller can automatically determine which to accomplish based on the current observation.

Ablation on KL Divergence Loss. To investigate the role of KL loss in training, we evaluated
GROOT (w/ KL) and its variant (w/o KL) on three tasks: collect seagrass ( ), collect
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Figure 7: Results on solving challenging obtain diamond task. The vertical dashed lines represent the
time when a certain item is first obtained. Left: GROOT first dug down to the depth of 12 and then mined
horizontally to obtain diamonds with an average success rate of 16%. Right: STEVE-1 quickly dug down to the
specific depth but struggled to maintain its height.

wood ( ), and use bow ( ). As shown in Figure 6, we found that introducing the constraint of
KL loss improved agent performance by 2× and 1.5× in the first two tasks, whereas there was no
significant effect in the use bow task. This may be because the first two tasks require the agent to
generalize the corresponding skills to different terrains (e.g. locating trees in the environment for
collecting wood and sinking to specific locations for collecting seagrass). Therefore, it puts higher
demands on the agent’s ability to generalize in the goal space, and this is exactly the role played by
the KL loss. The use bow task is relatively simple in comparison because it only requires charging
and shooting the arrow, without considering environmental factors.

5.3 COMBINING SKILLS FOR LONG-HORIZON TASKS

In this section, we explore whether GROOT can combine skills to solve long-horizon tasks, which is
key to its integration with a high-level planner. Taking the task of mining diamonds as an example,
prior knowledge is that diamond ores are generally distributed between the 7th and 14th floors
underground, and the probability of appearing in other depths is almost zero. Therefore, the agent
needs to first dig down to the specified depth (12) and then maintain horizontal mining. To achieve
this, we designed two reference videos, each 128 frames long. One describes the policy of starting
from the surface and digging down, and the other demonstrates the behaviors of horizontal mining.
We show an example in Figure 7 (left). In the beginning, GROOT quickly digs down to the specified
depth and then switches to horizontal mining mode. It maintains the same height for a long time and
found diamonds at 11k steps. In addition, we compared STEVE-1 (visual) under the same setting in
Figure 7 (right). After switching to the horizontal mining prompt, STEVE-1 maintains its height for
a short time before it stuck in the bedrock layer (unbreakable in survival mode), greatly reducing the
probability of finding diamonds. This indicates that our goal space is expressive enough to instruct
the way of mining, and the policy can follow the instructions persistently and reliably. In contrast,
STEVE-1, which relies on future outcomes as a condition, was unable to maintain its depth, despite
attempts at various visual prompts. We conducted 25 experiments each on GROOT and STEVE-1,
with success rates of 16% and 0% for finding diamonds. Additional details are in the Appendix F.4.
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6 RELATED WORKS

Pre-train Policy on Offline Data. Pre-training neural networks on web-scale data has been demon-
strated as an effective training paradigm in Nature Language Processing (Brown et al., 2020) and
Computer Vision (Kirillov et al., 2023). Inspired by this, researchers tried to transfer the success
to the field of decision-making from pre-training visual representations and directly distilling the
policy from offline data. As the former, Aytar et al. (2018a); Bruce et al. (2023) leveraged temporal
information present in videos as the supervision signal to learn visual representations. The representa-
tions are then used to generate intrinsic rewards for boosting downstream policy learning, which still
requires expensive online interactions with the environment. Schmidhuber (2019); Chen et al. (2021)
leveraged scalable offline trajectories to train optimal policy by conditioning it on cumulated rewards.
Laskin et al. (2022) proposed to learn an in-context policy improvement operator that can distill an
RL algorithm in high data efficiency. Reed et al. (2022) learned a multi-task agent Gato by doing
behavior cloning on a large-scale expert dataset. By serializing task data into a flat of sequence, they
use the powerful transformer architecture to model the behavior distribution. However, these methods
either require elaborated reward functions or explicit task definitions. This makes it hard to be applied
to open worlds, where tasks are infinite while rewards are lacking. Another interesting direction is
to use pre-trained language models for reasoning and vision language models for discrimination, to
guide the policy in life-long learning in the environment (Di Palo et al., 2023).

Condition Policy on Goal Space. Researchers have explored many goal modalities, such as language
(Khandelwal et al., 2021), image (Du et al., 2021), and future video (Xie et al., 2023), to build a
controllable policy. Brohan et al. (2022) collected a large-scale dataset of trajectory-text pairs and
trained a transformer policy to follow language instructions. Despite the language being a natural
instruction interface, the cost of collecting paired training data is expensive. As a solution, Majumdar
et al. (2022) sorted to use hindsight relabeling to first train a policy conditioned on the target image,
then aligned text to latent image space, which greatly improves training efficiency. Lifshitz et al.
(2023) moved a big step on this paradigm by replacing the target image with a 16-frame future video
and reformulating the modality alignment problem into training a prior of latent goal given text.

Build Agents in Minecraft. As a challenging open-world environment, Minecraft is attracting an
increasing number of researchers to develop AI agents on it, which can be divided into plan-oriented
(Wang et al., 2023b;a) and control-oriented methods (Baker et al., 2022; Cai et al., 2023; Lifshitz
et al., 2023) based on their emphasis. Plan-oriented agents aim to reason with Minecraft knowledge
and decompose the long-horizon task into sub-tasks followed by calling a low-level controller.
Control-oriented works follow the given instructions and directly interact with the environments
using low-level actions (mouse and keyboard). Baker et al. (2022) pre-trained the first foundation
model VPT in Minecraft using internet-scale videos. Although it achieves the first obtaining diamond
milestone by fine-tuning with RL, it does not support instruction input. Lifshitz et al. (2023) created
the first agent that can solve open-ended tasks by bridging VPT and MineCLIP (Fan et al., 2022).
However, its goal space is not expressive enough and prevents it from solving multi-step tasks.

7 LIMITATIONS AND CONCLUSION

Although GROOT has demonstrated powerful capabilities in expressing open-ended tasks in the
form of video instructions, training such a goal space remains highly challenging. We found that
GROOT is quite sensitive to the selection of reference videos, which we attribute to the fact that
the goal space trained from an unsupervised perspective may not be fully aligned with the human
intention for understanding the semantics of the reference video. Therefore, it would be a promising
research direction in the future to use SFT (supervised fine-tuning, Sanh et al. (2021)) and RLHF
(Ziegler et al., 2019) to align the pre-trained goal space with human preference.

We propose a paradigm for learning to follow instructions by watching gameplay videos. We prove
that video instruction is a good form of goal space that not only expresses open-ended tasks but can
be trained through self-imitation (once the IDM is available to label pseudo actions for raw gameplay
videos). Based on this, we built an encoder-decoder transformer architecture agent named GROOT in
Minecraft. Without collecting any text-video data, GROOT demonstrated extraordinary instruction-
following ability and crowned the Minecraft SkillForge benchmark. Additionally, we also demonstrate
its potential as a planner downstream controller in the challenging obtain diamond task. We
believe that this training paradigm can be generalized in other complex open-world environments.
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APPENDIX

A DERIVATION

In this section, we detail how we derive the final objective. Recall that the goal is to maximize the
log-likelihood of future states given past ones: log p(st+1:T |s1:t). Using Bayes’ theorem and the
Jensen’s inequality, we have:

log p(st+1:T |s1:t) = log
∑
z

p(st+1:T , z|s1:t), (4)

= log
∑
z

p(st+1:T , z|s0:t) q(z|s1:T )
q(z|s1:T )

, (5)

≥ Ez∼q(z|s1:T )

[
log p(st+1:T , z|s1:t)− log q(z|s1:T )

]
, (6)

= Ez∼q(z|s1:T )

[
log p(st+1:T |s1:t, z) + log p(z|s1:t)− log q(z|s1:T )

]
, (7)

= Ez∼q(z|s1:T )

[
log p(st+1:T |s1:t, z)

]
+ Ez∼q(z|s1:T )

[
log

p(z|s1:t)
q(z|s1:T )

]
, (8)

= Ez∼q(z|s1:T )

[
log p(st+1:T |s1:t, z)

]
−DKL

(
q(z|s1:T ) ∥ p(z|s1:t)

)
. (9)

We break down p(st+1:T |s1:t, z) into components: goal-conditioned policy π(aτ |s1:τ+1) and the
transition dynamics p(st+1|s1:t, at), we have

p(st+1:T |s1:t, z) =
T−1∏
τ=t

(∑
aτ

π(aτ |s0:τ , z) · p(sτ+1|s1:τ , aτ )
)
. (10)

Furthermore, using Jensen’s inequality, log p(st+1:T |s0:t, z) can be written as

log p(st+1:T |s1:t, z) =
T−1∑
τ=t

log
∑
aτ

π(aτ |s1:τ , z) · p(sτ+1|s1:τ , aτ ), (11)

=

T−1∑
τ=t

log
∑
aτ

π(aτ |s1:τ , z) ·
p(aτ |s1:τ , sτ+1) · p(sτ+1|s1:τ )

p(aτ |s1:τ )
, (12)

≥
T−1∑
τ=t

Eaτ∼p(aτ |s1:τ ,sτ+1)

[
log π(aτ |s1:τ , z) + C

]
, (13)

where the constant C = log p(sτ+1|s1:τ )− log p(aτ |s1:τ ) describes the dataset distribution and is
irrelevant to what we want to learn (i.e., the goal space and the goal-conditioned policy), we have:

Ez∼q(z|s1:T )

[
log p(st+1:T |s1:t, z)

]
≥ Ez∼q(z|s1:T )

[ T−1∑
τ=t

Eaτ∼p(aτ |s1:τ ,sτ+1)

[
log π(aτ |s1:τ , z)

]]
, (14)

=

T−1∑
τ=t

Ez∼q(z|s1:T ),aτ∼p(aτ |s1:τ ,sτ+1)

[
log π(aτ |s1:τ , z)

]
. (15)

Thus, we derived the evidence lower-bound of log p(st+1:T |s1:t) as follows

log p(st+1:T |s1:t) ≥
T−1∑
τ=t

Ez∼q(z|s1:T ),aτ∼p(aτ |s1:τ+1)

[
log π(aτ |s1:τ , z)

]
−DKL

(
q(z|s1:T ) ∥ p(z|s1:t)

)
.

(16)

B MINECRAFT ENVIRONMENT

Minecraft is an extremely popular sandbox game that allows players to freely create and explore their
world. This game has infinite freedom, allowing players to change the world and ecosystems through
building, mining, planting, combating, and other methods (shown in Figure 8). It is precisely because
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Figure 8: Examples of Minecraft environment. Tasks from top to bottom, from left to right are building houses,
planting wheat, fishing, brewing a potion, mining diamond ores, and combating the ender dragon, respectively.

of this freedom that Minecraft becomes an excellent AI testing benchmark (Johnson et al., 2016;
Baker et al., 2022; Fan et al., 2022; Cai et al., 2023; Lifshitz et al., 2023; Wang et al., 2023b;a). In this
game, AI agents need to face situations that are highly similar to the real world, making judgments
and decisions to deal with various environments and problems. Therefore, Minecraft is a very suitable
environment to be used as an AI testing benchmark. By using Minecraft, AI researchers can more
conveniently simulate various complex and diverse environments and tasks, thereby improving the
practical value and application of AI technology.

We use the combination of 1.16.5 version MineRL (Guss et al., 2019) and MCP-Reborn1 as our
testing platform, which is consistent with the environment used by VPT (Baker et al., 2022) and
STEVE-1 (Lifshitz et al., 2023). Mainly because this platform preserves observation and action
space that is consistent with human players to the fullest extent. On the one hand, this design brings
about high challenges, as agents can only interact with the environment using low-level mouse and
keyboard actions, and can only observe visual information like human players without any in-game
privileged information. Therefore, the AI algorithms developed on this platform can have higher
generalization ability. On the other hand, this also presents opportunities for us to conduct large-scale
pre-training on internet-scale gameplay videos.

B.1 OBSERVATION SPACE

The visual elements included in our observation space are completely consistent with those seen
by human players, including the Hotbar, health indicators, player hands, and equipped items. The
player’s perspective is in the first person with a field of view of 70 degrees. The simulator first
generates an RGB image with dimensions of 640 × 360 during the rendering process. Before
inputting to the agent, we resize the image to 224 × 224 to enable the agent to clearly see item
icons in the inventory and important details in the environment. When the agent opens the GUI, the
simulator also renders the mouse cursor normally. The RGB image is the only observation that the
agent can obtain from the environment during inference. It is worth noting that to help the agent
see more clearly in extremely dark environments, we have added a night vision effect for the agent,
which increases the brightness of the environment during nighttime.

B.2 ACTION SPACE

Our action space is almost identical to that of humans, except for actions that involve inputting
strings. It consists of two parts: the mouse and the keyboard. The mouse movement is responsible
for changing the player’s camera perspective and moving the cursor when the GUI is opened.
The left and right buttons are responsible for attacking and using items. The keyboard is mainly
responsible for controlling the agent’s movement. We list the meaning of each action in the Table
1. To avoid predicting null action, we used the same joint hierarchical action space as Baker et al.
(2022), which consists of button space and camera space. Button space encodes all combinations
of keyboard operations and a flag indicating whether the mouse is used, resulting in a total of 8461

1https://github.com/Hexeption/MCP-Reborn
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Table 1: Action space descriptions from Minecraft wiki (https://minecraft.fandom.com/wiki/Controls).

Index Action Human Action Description
1 Forward key W Move forward.
2 Back key S Move backward.
3 Left key A Strafe left.
4 Right key D Strafe right.
5 Jump key Space Jump. When swimming, keeps the player afloat.
6 Sneak key left Shift Slowly move in the current direction of movement.

When used in conjunction with the attack function
in the GUI, it can swap items between inventory and
Hotbar. When used with the craft function, it crafts
the maximum possible number of items instead of just
one.

7 Sprint key left Ctrl Move quickly in the direction of current motion.
8 Attack left Button Destroy blocks (hold down); Attack entity (click once).
9 Use right Button Put down the item being held or interact with the block

that the player is currently looking at. Within the GUI,
pick up a stack of items or place a single item from the
stack that is being held by the mouse.

10 hotbar.[1-9] keys 1 - 9 Selects the appropriate hotbar item. When in the inven-
tory GUI, swap the contents of the inventory slot under
the mouse pointer and the corresponding hotbar slot.

11 Yaw move Mouse X Turning; aiming; camera movement.Ranging from -
180 to +180.

12 Pitch move Mouse Y Turning; aiming; camera movement.Ranging from -
180 to +180.

candidate actions. The camera space discretizes the range of one mouse movement into 121 actions.
Therefore, the action head of the agent is a multi-classification network with 8461 dimensions and a
multi-classification network with 121 dimensions.

C INVERSE DYNAMIC MODEL

According to the theory in Section 3, we know that our training paradigm relies on the inverse
dynamic model (IDM) which generates pseudo action labels for raw gameplay videos to calculate the
behavior cloning loss. Therefore, in this section, we introduced the background knowledge of IDM.

IDM is a non-causal model that aims to uncover the underlying action that caused changes in
the current step by observing historical and future states, and it can be formally represented as
p(at|ot, ot+1). Compared with traditional policies learned via behavior cloning, IDM is more
accurate in predicting actions because it can observe the changes between past and future frames.
OpenAI (Baker et al., 2022) developed the first inverse dynamic model in the Minecraft domain.
By extending the length of the observable sequence to 128 and modeling p(at|ot−64:t+64) with a
non-causal transformer, the IDM achieved the accuracy of action prediction to over 95% with only 2k
hours of game trajectories. This makes it possible for our training paradigm to utilize the large-scale
Minecraft data available on the Internet. Moreover, Zhang et al. (2022) has also trained an accurate
IDM model with a small amount of data in a real autonomous driving environment, which further
provides a basic guarantee for our training method to generalize to other complex environments.

D IMPLEMENTATION DETAILS

D.1 MODEL ARCHITECTURE

The video encoder consists of a convolutional neural network backbone and a non-causal transformer.
Inspired by Brohan et al. (2022), we adopted the EfficientNet (Tan & Le, 2019) as the backbone.
Specifically, we use its variant EfficientNet-B0 for efficiency, which takes in images of size 224×224
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and extracts a feature vector of shape 7 × 7 × 1280, where 7 × 7 denotes the spatial dimensions.
In order to adaptively enhance the important visual information, we use a shallow transformer to
pool the feature map along spatial channels. To fuse global visual features, we construct another
learnable embedding [sp], concatenate it with the 49 features in space, and obtain a token sequence
of length 50. After being processed by the transformer, the output for the [sp] token corresponds
to the pooled visual feature, whose dimension is dhid = 1024. To capture the temporal features of
the video, we remove the code related to the casual mask in the minGPT2 and obtain a non-causal
transformer. The policy decoder consists of 4 identical blocks, where each block contains a Flamingo
gated-attention dense layer (Alayrac et al., 2022) and a Transformer-XL block(Dai et al., 2019).
The Transformer-XL block maintains a recurrence memory of past 128 key-value pairs to memory
long-horizon history states. We directly use the Transformer-XL implementation in Baker et al.
(2022) with a simple modification, i.e., before passing states into the policy decoder, we add the
previous action to the state embedding at each timestep. Notably, We find this modification very
useful especially when we need to train the policy from scratch. As it not only accelerates the training
process but makes the predicted action more consistent and smooth. Additional hyperparameters
can be found in Table 2.

Table 2: Hyperparameters for training GROOT.

Hyperparameter Value
Optimizer AdamW

Weight Decay 0.001
Learning Rate 0.0000181
Warmup Steps 2000

Number of Workers 4
Parallel Strategy ddp
Type of GPUs NVIDIA RTX 4090Ti, A40
Parallel GPUs 8

Accumulate Gradient Batches 8
Batch Size/GPU (Total) 2 (128)

Training Precision bf16
Input Image Size 224× 224
CNN Backbone EfficientNet-B0

Encoder Transformer minGPT (w/o causal mask)
Decoder Transformer TransformerXL

Number of Encoder Blocks 8
Number of Decoder Blocks 4

Hidden Dimension 1024
Number of Condition Slots 1

Trajectory Chunk size 128
Attention Memory Size 256

Weight of KL Loss 0.01

D.2 INFERENCE

To generate reference videos, we invited three human players to play each task according to the task
description. Each person was asked to produce two videos, so we could prepare six videos for each
task in total. Then, we selected the most relevant video to the task description from the six videos
and cropped the first 128 frames into a new video, which was used to instruct GROOT to complete
this task. In addition, we selected a 16-frame segment that best expressed the task information as the
visual prompt for STEVE-1 (visual) from these six videos. This ensures fairness in comparison.

During inference, we found that in some tasks, such as build obsidian ( ), GROOT’s
behavior mixed with the intention of traveling around. We believe this is a bias introduced during
training. We draw the inspiration from STEVE-1 (Lifshitz et al., 2023) and subtract this bias in the
action logits space before sampling the action. Specifically, we infer two models at the same time,
where one model’s condition is a specific task video and the other model’s condition is a 128-frame

2https://github.com/karpathy/minGPT
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Figure 9: Ablation on the condition scale λ.

video of traveling freely in the environment. The input observations for the two models are exactly
the same. At each time step, we use the action logits of the previous model to subtract a certain
proportion of the action logits predicted by the latter model before using the Gumbel-Softmax trick
to sample the action. The logits calculation equation is directly borrowed from Lifshitz et al. (2023)

logitst = (1 + λ)fθ(o1:t, ggoal)− λfθ(o1:t, gbias) (17)

where fθ(o1:t, ggoal) and fθ(o1:t, gbias) are two kinds of action logits generated by feeding forward
two reference videos goal and bias to GROOT, λ is a trade-off parameter. As illustrated in Figure
9, we find that this trick can improve the success rate of tasks such as build obsidian ( ),
build snow golem ( ), enchant sword ( ), and dig three down and fill one
up ( ) with the λ = 1.5. Interestingly, we observe that the effective λ scale (approximately 1.5) in
our model is much smaller than the scale (approximately 6.5) used in STEVE-1. We speculate that
this may be because STEVE-1 fine-tunes the foundation VPT to gain steerability, but VPT does not
receive goal conditions for demonstrations during behavior cloning. This may cause VPT to learn
overly smooth behavior distributions, requiring the use of larger lambda scales to activate goal-specific
behaviors. Although this technique is effective at inference time, it still requires hyperparameter
tuning in practice. In the future, it will be meaningful to directly remove biased behaviors from the
training process.

D.3 ABLATION ON NUMBER OF CONDITION SLOTS

In this section, we explore the impact of the number of condition slots (number of learnable tokens)
on the final performance. We compared the performance of the model on 6 programmatic tasks
with N = 1 and N = 3 condition slots and computed quantitative metrics for each task. As shown
in Table 3, we find that increasing the number of condition slots leads to a significant decrease
in the model’s performance on most tasks, except for the “explore run” task. We speculate that
having more condition slots may result in a higher number of dimensions in the goal space, which in
turn reduces the generalization ability of the learned goal space. Therefore, we suggest that when
applying GROOT to other environments, the hyperparameters should be carefully chosen based on
the characteristics of the environment or using other parameter selection methods.

Table 3: Ablation on the number of condition slots.

Task Name
(Metric)

explore run ↑
(distance)

build pillar ↓
(height of pillar)

collect grass ↓
(num of grass)

collect seagrass ↓
(num of seagrass)

collect dirt ↓
(num of dirt)

mine stone ↓
(num of stones)

N = 1 54.0 37.6 23.8 3.3 6.2 12.2
N = 3 59.0 13.3 5.6 0.9 5.4 11.2

E DATASET DETAILS

E.1 CONTRACTOR DATA

The contractor data is a Minecraft offline trajectory dataset provided by Baker et al. (2022) 3, which
is annotated by professional human players and used for training the inverse dynamic model. In this

3https://github.com/openai/Video-Pre-Training
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dataset, human players play the game while the system records the image sequence {s1:T }M , action
sequence {a1:T }M , and metadata {e1:T }M generated by the players. Excluding frames containing
empty actions, the dataset contains 1.6 billion frames with a duration of approximately 2000 hours.
The metadata records the events triggered by the agent in the game at each time step, including
three types: craft item, pickup, and mine block, which represent the agent’s activities of
crafting items using the GUI, picking up dropped items and destroying blocks at the current time step,
respectively. In the process of training GROOT, we use all trajectories provided by the contractor
data, but without including any metadata. We only use the metadata to retrieve relevant trajectory
segments during the visualization of the goal space.

F EXPERIMENTAL SETUP DETAILS

F.1 BASELINE DETAILS

VPT is the first foundation model in the Minecraft domain developed by Baker et al. (2022). Its
architecture consists of ImpalaCNN and TransformerXL. Using behavior cloning algorithms to pre-
train on large-scale YouTube demonstrations, they obtained the first checkpoint of VPT(fd) which can
freely explore the environment. To further enhance the agent’s abilities in early-game environments,
they constructed an “earlygame” dataset and fine-tuned the pre-trained foundation model on that
dataset, resulting in the VPT(bc) checkpoint. This model significantly improved performance on
basic tasks such as “crafting table” and “collecting wood”. Based on VPT(bc), they used online
reinforcement learning with a carefully designed reward shaping to obtain the checkpoint VPT(rl)
capable of obtaining diamonds entirely from scratch. It is noteworthy that the models’ architectures
of all three checkpoints are consistent and do not support instruction input. That’s why their rankings
on the Minecraft SkillForge benchmark are low. We also observed that the performance of VPT(bc)
surpasses that of VPT(rl) due to the “earlygame” dataset’s exploratory nature, making it perform
better on explore tasks. VPT(rl) is tailored specifically for diamond mining tasks and has thus lost
the capability of most tasks outside diamond mining path. No matter where you place it, the first
thing VPT(rl) does is to look for trees and prepare to mine diamonds.

STEVE-1 is a Minecraft agent that can follow open-ended text and visual instructions built on
MineCLIP (Fan et al., 2022) and VPT. It can perform a wide range of short-horizon tasks that can be
expressed by a 16-frame future video clip. The training of STEVE-1 can be described in two steps.
The first step is to train a future-video conditioned policy with packed hindsight relabeling trick. With
the frozen MineCLIP visual encoder to embed the visual instruction, they finetune the VPT(bc) on the
contractor data to obtain STEVE-1(visual). The second step is to learn a model that translates textual
instruction into visual instruction. By training a conditional variational autoencoder (CVAE) on the
collected video-text pairs, they created a variant STEVE-1(text) that understands text instructions.
This baseline performs well on many simple tasks in the Minecraft SkillForge benchmark, such as
"explore run," "collect grass," and "collect wood." However, it struggles with multi-step and less
common tasks, like "build snow golems" and "dig three down and fill one up."

Please note that all baselines, including GROOT, were not fine-tuned for tasks in Minecraft SkillForge.

F.2 T-SNE VISUALIZATION DETAILS

This section details how the videos are sampled to do visualization. The selected videos are
categorized into seven groups: craft items, combat enemies, harvest crops, hunt
animals, chop trees, trade with villagers, and mine ores. Generally, each group
contains two types of videos, each with 1000 data points sampled. The sampling method retrieves
the time when a certain event occurs in the metadata and goes back 128 frames from that time to
obtain a video segment that is 128 frames long. We illustrate video configurations in Table 4. For
example, in the combat enemies task, taking "combat zombies" as an example, we retrieve all
the moments when the event "pickup:rotten_flesh" occurs, because after killing zombies, they will
drop rotten flesh, which can then be picked up by players. Through sampling observations, we found
that this method can sample videos that are consistent with the descriptions.
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Table 4: Sample videos from the contractor data (Baker et al., 2022) for the goal space visualization.

Group Video Description Event in Metadata
craft items craft wodden_pickaxe with crafting_table craft_item:wooden_pickaxe
craft items craft iron_pickaxe with crafting_table craft_item:iron_pickaxe
combat enemies combat zombies pickup:rotten_flesh
combat enemies combat spiders pickup:spider_eye
harvest crops harvest wheat mine_block:wheat
harvest crops harvest melon mine_block:melon
hunt animals hunt sheep pickup:mutton
hunt animals hunt cow pickup:beef
chop trees chop oak trees mine_block:oak_log
chop trees chop birch trees mine_block:birch_log
trade with villagers trade with villagers for emerald craft_item:emerald
trade with villagers trade with villagers for enchanted_book craft_item:enchanted_book
mine ores mine coal ores with pickaxe mine_block:coal_ore
mine ores mine iron ores with pickaxe mine_block:iron_ore

F.3 PROGRAMMATIC EVALUATION DETAILS

In this section, we elaborated on how each episode is regarded as successful. For the dye and
shear sheep ( ) task, dyeing the sheep and shearing its wool must be successfully performed
to be considered a success. For the use bow ( ) task, firing the arrow after charging it to the
maximum degree is required to be successful. For the sleep ( ) task, placing the bed and
spending the night on it are required to be successful. For the smelt ( ) task, placing the furnace
and dragging coal and mutton into the designated slots are required to be successful. For the
lead ( ) task, successfully tethering at least one animal is considered a success. For the build
obsidian ( ) task, pouring a water bucket and a lava bucket to fuse them is required to be
successful. For the enchant ( ) task, placing the enchantment table, putting a diamond sword
and lapis lazuli into the slots, and clicking the enchanting option are required to be successful. For
the dig down three fill one up ( ) task, the agent must first vertically break three dirt
blocks below and then use one dirt block to seal the area above. For the build snow golems
( ) task, placing 2 snow blocks and 1 carved pumpkin head in order and triggering the creation of a
snow golem are required to be successful.

F.4 COMBINING SKILLS EXPERIMENTAL DETAILS

First, we introduce the experimental environment selected for our study. The agent is summoned on
the plains biome, holding a diamond pickaxe, and granted the night vision status to enable the agent
to see the various ores underground. At the beginning of each episode, we set the agent’s condition
to dig down. When the agent descends to a depth below 12 layers, the condition automatically
switches to horizontal mining. Each round of episodes lasts for 12,000 frames, which is
equivalent to 10 minutes in the real world. For GROOT, both the reference videos of dig down
and horizontal mining were recorded by a human player. For STEVE-1, we invited the same
player to carefully record the prompt videos. It is worth noting that while we could easily prompt it
to dig down, it was difficult to keep it in the horizontal mining condition. This made STEVE-1 prone
to falling into the bedrock layer and getting stuck. Finally, we did not observe STEVE-1 finding any
diamonds in the 25 experiments, which can be attributed to the inability of its goal space to encode
details such as horizontal mining.

G RATING SYSTEM

G.1 ELO RATING

The ELO rating system is widely adopted for evaluating the skill levels of multiple players in two-
player games, such as Chess and Go (Silver et al., 2016). In this section, we elaborate on how we
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Figure 10: Example of the annotating system for human evaluation.

introduce human evaluation and use the ELO Rating system to measure the relative performance of
agents on the Minecraft SkillForge benchmark.

In the ELO rating system, each agent’s skill level is represented by a numerical rating. We repeatedly
let agents play against each other in pairs. Specifically, in each game, we sample a task and two
agents, denoted as Agent A and Agent B. Then, we randomly sample a trajectory for each agent
corresponding to the designated task. The two trajectories are assigned to a human annotator,
who selects the most task-relevant one. We implement the annotating system with Label Studio
(Tkachenko et al., 2020-2022), as shown in Figure 10. We consider the agent that produced this
trajectory to be the winner, let’s assume it is Agent A. After each round, we update the scores of
Agent A and Agent B as follows

RA ← RA +K · 1

1 + 10(RA−RB)/400
,

RB ← RB −K · 1

1 + 10(RA−RB)/400
,

(18)

where K is the update factor and we set it to 8. After calculating the score of the agent, we use VPT
(bc) as 1500 points and shift the scores of other agents accordingly. Based on the ELO ratings, we can
easily measure the relative winning rate for each paired agent. The win rate of Agent A over Agent B
can be represented as 1

1+10(RB−RA)/400 . For example, the win rate ratio between two agents with a
score difference of 100 scores is 64% : 36%. A score difference of 200 scores implicit 76% : 24%.

G.2 TRUESKILL RATING

We also report the comparison results using TrueSkill 4 rating system, which is used by gamers to
evaluate their skill level. It was developed by Microsoft Research and is currently used on Xbox
LIVE for matchmaking and ranking services. Different from ELO, it can also track the uncertainty
of the rankings. This system utilizes the Bayesian inference algorithm to quantify a player’s true
skill points. In TrueSkill, rating is modeled as a Gaussian distribution which starts from N (25, 25

3

2
),

where µ is an average skill of player, and σ is a confidence of the guessed rating. A real skill of
player is between µ± 2σ with 95% confidence. After conducting 1500 updates, the TrueSkill scores
converged as in Table 5. We found that the ranking order of the baseline methods is consistent
with that obtained using ELO rating: HUMAN ≻ GROOT ≻ STEVE-1(visual) ≻ STEVE-1(text) ≻
VPT(bc) ≻ VPT(fd) ≻ VPT(rl).

Table 5: TrueSkill rating comparison on the Minecraft SkillForge benchmark.

Baseline HUMAN GROOT STEVE-1(visual) STEVE-1(text) VPT(bc) VPT(fd) VPT(rl)

µ± σ 34.2± 1.0 29.1± 0.9 25.8± 0.8 24.6± 0.8 22.2± 0.8 20.7± 0.8 19.2± 0.9

4https://trueskill.org/
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G.3 HUMAN PARTICIPATION

We recruited 15 students with varying degrees of Minecraft game experience, ranging from a few
hours to several years, from the Minecraft project group to conduct the evaluation. They are all
familiar with the basic operations of Minecraft. Each employee was asked to label 100 matches for
ELO Rating or TrueSkill Rating, for a total of 1500 matches. For each employee who is required
to collect or assess gameplay videos, we ask them to first read the description of each task in the
Minecraft SkillForge Benchmark completely, as well as the evaluation criteria for task completion
quality, see Appendix H. Taking the task of building a snow golem as an example, the evaluation
criteria are as follows: Build a snow golem. ≻ Place both kinds of blocks. ≻ Place at least one kind
of block. ≻ Place no block. This enables employees to quantify video quality and ensures that all
employees evaluate task completion consistently. All these employees were explicitly informed that
the collected data would be used for AI research.

H MINECRAFT SKILLFORGE BENCHMARK

In this section, we detail the benchmark titled "Minecraft SkillForge" which meticulously incorporates
a wide spectrum of tasks prevalent within Minecraft. Our aim is to ensure that every task provides a
meaningful evaluation of a specific skill that an AI agent might possess. We categorize these tasks
into six groups: collect, explore, craft, tool, survive, and build. In the following
subsections, we will provide a detailed introduction to each of them. The “Description” field provides
a brief description of the task, the “Precondition” field outlines the initial settings of the testing
environment for the task, the “SkillAssessed” field indicates which aspect(s) of the agent’s ability are
being assessed by the task, and the “Evaluation” field describes the quality evaluation metrics for task
completion (based on which human players judge the quality of two rollout videos).

H.1 COLLECT

The tasks categorized under the collect section of our benchmark are specifically designed to
evaluate an AI agent’s capability in resource acquisition proficiency and spatial awareness. This
means the agent should not only be adept at identifying and gathering specific resources but also
possess the acumen to navigate through varied environments while being aware of its surroundings
and the available tools at its disposal.

Task: collect dirt
Description: Collect dirt from the surface.
Precondition: Spawn the player in the plains biome.
SkillAssessed: Basic terrain understanding and the ability to differentiate

between surface-level blocks.
Evaluation: Run away. < Look down. < Dig down. < Break the dirt on the surface.

Task: collect grass
Description: Remove weeds on the surface.
Precondition: Spawn the player in the plains biome.
SkillAssessed: Surface navigation and comprehension of vegetation blocks.
Evaluation: Run away. < Break the grass block. < Break a large field of grass

blocks.

Task: collect wood
Description: Cut down trees to collect wood.
Precondition: Spawn the player in the forest biome with an iron_axe in its hand.
SkillAssessed: Recognition of tree structures, efficient utilization of tools, and

block harvesting capability.
Evaluation: Run away. < Approach trees. < Chop the tree and collect logs.

Task: collect seagrass
Description: Dive into the water and collect seagrass.
Precondition: Spawn the player near the sea.
SkillAssessed: Water navigation, diving mechanics understanding, and underwater

block interaction.
Evaluation: Walk on the land. < Swim on the water < Dive into the water. < Break

seagrass blocks.

Task: collect wool
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collect dirt from the surface

remove weeds on the surface

chop trees to collect wood

dive into the water and collect seagrass

dye the sheep then shear the sheep

Figure 11: Examples of tasks in collect category.

Description: Dye and shear the sheep for wool.
Precondition: Spawn the player in the plains biome with a shear (mainhand) and a

stack of blue_dye (offhand), 5 sheep near the player.
SkillAssessed: Interaction with entities, tool and item application, and

sequential action execution.
Evaluation: Ignore the sheep. < Dye the sheep. < Shear the sheep. < First dye then

shear the sheep.

Listing 1: The environment configuration and evaluation metric for collect series tasks.

H.2 EXPLORE

The tasks encompassed within the explore category of our benchmark are intricately devised to
evaluate an AI agent’s navigation proficiency, understanding of diverse environments, and intrinsic
motivation for exploration. Through these tasks, we gauge an agent’s ability to actively traverse,
understand, and interact with varied elements of the Minecraft world, and its propensity to unravel
mysteries and challenges posed by the environment.
Task: run and explore
Description: Run and explore.
Precondition: Spawn the player in the plains biome.
SkillAssessed: Stamina utilization and distance-based exploration.
Evaluation: Exploring as far as possible.

Task: climb the mountain
Description: Climb the mountain.
Precondition: Spawn the player in the stone shore biome and near the mountain.
SkillAssessed: Vertical navigation, terrain adaptation, and goal-oriented movement.

Evaluation: Run away and ignore the mountain. < Approach the mountain. < Climbing
the mountain. < Climb to the top of the mountain.

Task: mine horizontally
Description: Mine horizontally underground.
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run and explore 

travel on a wooden boat through water

climb the mountain

open a chest and acquire the treasure

mine horizontally underground

Figure 12: Examples of tasks in explore category.

Precondition: Spawn the player in a deep cave with an iron_pickaxe in the hand.
SkillAssessed: Underground navigation, tool utilization, and spatial reasoning in

confined spaces.
Evaluation: Run away. < Break the stone. < Dig down. < Mine horizontally.

Task: travel by boat
Description: Travel on a wooden boat through water.
Precondition: Spawn the player near the sea with a wooden boat in the hand.
SkillAssessed: Aquatic travel, tool placement, and boat maneuverability.
Evaluation: Did not place the boat. < Place the boat on the water. < Board the

boat. < Row in the water.

Task: explore the treasure
Description: Rush into a villager’s home and open a chest and acquire the treasure.

Precondition: Spawn the player in front of a villager’s house.
SkillAssessed: Interaction with structures, curiosity-driven exploration, and

object acquisition.
Evaluation: Ignore the house and run away. < Open the door. < Enter the house. <

Open the chest. < Acquire the treasure.

Listing 2: The environment configuration and evaluation metric for explore series tasks.

H.3 CRAFT

The tasks under the craft category in our benchmark have been designed to shed light on an AI
agent’s prowess in item utilization, the intricacies of Minecraft crafting mechanics, and the nuances
of various game mechanic interactions. These tasks provide a detailed examination of an agent’s
capability to convert materials into functional items and harness the game’s various crafting and
enhancement mechanics.

Task: craft the crafting_table
Description: Open inventory and craft a crafting table.
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open inventory and craft a crafting table

place the crafting table and open it to craft ladders

place a furnace and use it to smelt food

place an enchanting table and enchant a diamond sword

place a stonecutter and use it to cut the stone

Figure 13: Examples of tasks in craft category.

Precondition: Spawn the player in the plains biome with a stack of oak_planks in
the inventory.

SkillAssessed: Inventory management and basic crafting.
Evaluation: Open the inventory. < Click on the recipe button. < Click on the

crafting_table. < Drag the crafting_table into the inventory.

Task: craft ladders
Description: Place the crafting table and open it to craft ladders.
Precondition: Spawn the player in the plains biome with a crafting_table in its

main hand and a stack of oak_planks in the inventory.
SkillAssessed: Advanced crafting using crafting stations and recipe navigation.
Evaluation: Place the crafting_table on the surface. < Open the crafting_tabe. <

Click on the recipe book. < Click on the ladder. < Drag the ladder into the
inventory.

Task: enchant sword
Description: Place an enchanting table and use it to enchant a diamond sword.
Precondition: Spawn the player in the plains biome with an enchanting table in its

main hand, 3 diamond swords, and 3 stacks of lapis_lazuli in the inventory.
SkillAssessed: Tool enhancement using enchantment stations and decision-making in

choosing enchantments.
Evaluation: Place the enchanting_table on the surface. < Open the enchanting_table.

< Place the lapis_lazuli or diamond sword. < Place the lapis_lazuli and
diamond sword. < Choose any enchantment.

Task: smelt food
Description: Place a furnace and use it to smelt food.
Precondition: Spawn the player in the plains biome with a furnace table in its

main hand, 3 stacks of mutton, and 3 stacks of coal in the inventory.
SkillAssessed: Food processing using a smelting furnace, raw material to product

conversion, and patience in awaiting outcomes.
Evaluation: Place the furnace on the surface. < Open the furnace. < Place raw meat

or coal. < Place both raw meat and coal. < Wait for the raw meat to be cooked.
< Take out cooked meat.

Task: cut stone
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Description: Place a stonecutter and use it to cut stones.
Precondition: Spawn the player in the plains biome with a stonecutter in its main

hand, 6 stacks of stones in the inventory.
SkillAssessed: Tool enhancement using enchantment stations and decision-making in

choosing enchantments.
Evaluation: Place the stonecutter on the surface. < Open the stonecutter. < Place

the stones. < Select a target type of stone. < Drag stones to the inventory.

Listing 3: The environment configuration and evaluation metric for craft series tasks.

H.4 TOOL

The tasks within the Tool category of our benchmark are designed to deeply investigate an AI
agent’s capabilities in tool utilization, precision in tool handling, and contextual application of various
tools to carry out specific tasks. This category provides insights into the agent’s skill in wielding,
using, and exploiting tools optimally within different Minecraft scenarios.

draw a bow and shoot

set fires on the forest

use rein to tie up the animals

place the pumpkins and carve pumpkins with shears

fly the trident on a rainy day

Figure 14: Examples of tasks in tool category.

Task: use bow
Description: Draw a bow and shoot.
Precondition: Spawn the player in the plains biome with a bow in the mainhand and

a stack of arrows in the inventory.
SkillAssessed: Precision, tool handling, and projectile mastery.
Evaluation: Just run. < Draw the bow and shoot the arrow. < Hold the bow steady

and charge up the shot before releasing the arrow.

Task: set fires
Description: Set fires on the trees.
Precondition: Spawn the player in the forest biome with a flint_and_steel in its

main hand.
SkillAssessed: Environment manipulation and controlled chaos creation.
Evaluation: Attack the tree. < Start a fire with the flint_and_steel. < Go wild

with the fire.

Task: lead animals
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Description: Use rein to tie up the animals.
Precondition: Spawn the player in the plains biome with a stack of leads in its

main hand. Spawn 5 sheep and 5 cows near the player’s position.
SkillAssessed: Entity interaction, tool application on moving entities, and

livestock
Evaluation: Ignore the animals and run away. < Use the rein to tie up animals.

Task: carve pumpkins
Description: Place the pumpkins and carve pumpkins with shears.
Precondition: Spawn the player in the plains biome with a shear in its main hand

and a stack of pumpkins in the inventory.
SkillAssessed: Block placement, block modification, and crafting interaction.
Evaluation: Just run. < Place the pumpkin on the surface. < Use the shear to carve

it. < Get a carved pumpkin.

Task: use trident
Description: Fly the trident on a rainy day.
Precondition: Spawn the player in the plains biome with a trident in the main hand,

which is enchanted with riptide. The weather is rain.
SkillAssessed: Weather-adaptive tool utilization, motion dynamics, and advanced

weapon handling.
Evaluation: Just run. < Use the trident to break the block. < Use the trident for

quick movement. < Charge to throw the trident farther.

Listing 4: The environment configuration and evaluation metric for tool series tasks.

H.5 SURVIVE

The tasks embedded within the survive category of our benchmark aim to analyze an AI agent’s
ability to ensure its own survival, adeptness in combat scenarios, and its capability to interact with
the environment in order to meet basic needs. Survival, being a core aspect of Minecraft gameplay,
necessitates an intricate balance of offensive, defensive, and sustenance-related actions. This category
is structured to ensure a thorough evaluation of these skills.

hunt animals on the plains

fight the enemy spider

use a shield to ward off zombies

use the hoe to till the land and plant wheat seeds

place the bed on the surface and sleep

Figure 15: Examples of tasks in survive category.
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Task: hunt animals
Description: Hunt animals on the plains.
Precondition: Spawn the player in the plains biome with an iron sword in the main

hand. Spawn 5 sheep and 5 cows near the player’s position.
SkillAssessed: Predator instincts, combat efficiency, and sustenance acquisition.
Evaluation: Ignore animals and run away. < Hurt animals. < Kill animals.

Task: combat enemies
Description: Fight the enemy spider.
Precondition: Spawn the player in the plains biome with a diamond sword in its

main hand and a suite of diamond equipment. Spawn 3 spiders in front of the
player.

SkillAssessed: Self-defense, offensive combat strategy, and equipment utilization.
Evaluation: Ignore spiders and run away. < Hurt spiders. < Kill spiders.

Task: use shield
Description: Use a shield to ward off zombies.
Precondition: Spawn the player in the plains biome with a shield in its main hand

and a suite of diamond equipment. Spawn 3 zombies in front of the player.
SkillAssessed: Defensive tactics, tool application in combat, and strategic

protection.
Evaluation: Ignore zombies and run away. < Use the shield to protect itself.

Task: plant wheats
Description: Use an iron_hoe to till the land and then plant wheat seeds.
Precondition: Spawn the player in the plains biome with an iron hoe in its main

hand, and a stack of wheat seeds in the off hand.
SkillAssessed: Land cultivation, planting proficiency, and sustainable resource

creation.
Evaluation: Just run away. < Till the land. < Plant the wheats.

Task: sleep on the bed
Description: Place the bed on the surface and sleep.
Precondition: Spawn the player in the plains biome with a white bed in its main

hand.
SkillAssessed: Self-preservation, understanding of day-night cycle implications,

and use of utilities for rest.
Evaluation: Just run away. < Place the bed on the surface. < Sleep on the bed.

Listing 5: The environment configuration and evaluation metric for survive series tasks.

H.6 BUILD

The tasks within the build category of our benchmark are devised to evaluate an AI agent’s
aptitude in structural reasoning, spatial organization, and its capability to interact with and manipulate
the environment to create specific structures or outcomes. Building is an integral component of
Minecraft gameplay, requiring an intricate interplay of planning, creativity, and understanding of
block properties.

Task: build pillar
Description: Build a pillar with dirt.
Precondition: Spawn the player in the plains biome with a stack of dirt in the

main hand.
SkillAssessed: Vertical construction and basic structure formation.
Evaluation: Just run away. < Look down. < Jump and place the dirt. < Pile the dirt

into a few pillars. < Make a really high pillar.

Task: dig three down and fill one up
Description: Dig three dirt blocks and fill the hole above.
Precondition: Spawn the player in the plains biome.
SkillAssessed: Ground manipulation and depth perception.
Evaluation: Just run away. < Look down. < Dig down three dirt blocks. < Raise the

head. < Raise the head and use dirt to fill the hole.

Task: build gate
Description: Build an archway gate.
Precondition: Spawn the player in the plains biome with a stack of oak_planks in

the main hand.
SkillAssessed: Symmetry, planning, and aesthetic construction.
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build a pillar with dirt

build an archway gate

make obsidian by pouring water and lava buckets

build snow golems by placing snow blocks and pumpkin

dig three and fill one

Figure 16: Examples of tasks in build category.

Evaluation: Place no plank. < Build 1 pillar. < Build 2 pillars. < Build an
archway gate.

Task: build obsidian
Description: Make obsidian by pouring a water bucket and a lava bucket.
Precondition: Spawn the player in the plains biome with two water buckets and two

lava buckets in the Hotbar.
SkillAssessed: Material transformation, understanding of in-game chemistry, and

precise pouring.
Evaluation: Just run away. < Pour water or lava. < Pour both liquids. < Pour into

a mold to make obsidian.

Task: build snow golems
Description: Build snow golems by placing two snow blocks and one carved pumpkin.
Precondition: Spawn the player in the plains biome with two stacks of snow blocks

and two stacks of carved pumpkins in the Hotbar.
SkillAssessed: Entity creation, sequential block placement, and combination of

multiple materials.
Evaluation: Place no block. < Place at least one kind of block. < Place both kinds

of blocks. < Build a snow golem.

Listing 6: The environment configuration and evaluation metric for build series tasks.
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I TEXT CONDITIONING
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Figure 17: Fine-tuning GROOT to understand text instructions. We replace the original video encoder with
a text encoder to embed text instructions. The text encoder is fine-tuned to align with the learned goal space.
Left: During the fine-tuning, we freeze the learned decoder to provide the supervisory signal to train the text
encoder through behavior cloning. Right: During the inference, we can feed forward the text instructions to
drive the policy to interact with the environment.

Although video instruction has strong expressiveness, it still requires preparing at least one gameplay
video for a new task. For most common tasks, such as collecting wood or stones, using natural
language to specify a goal is a more natural approach. In this section, we explore the possibility of
aligning the pre-trained goal space with other modal instructions, such as text instructions.

Aligning text instructions with visual instructions in goal space has been validated as feasible by
Lifshitz et al. (2023). They train a conditional variational autoencoder to project text into video space
after collecting 10,000 diversified text-video pairs, similar to what unCLIP did. However, the success
of this alignment method depends on the pre-alignment of visual and text spaces through large-scale
contrastive pre-training (Fan et al., 2022). During the training process of GROOT, we did not leverage
the MineCLIP visual encoder to encode videos, instead trained goal space from scratch. On the one
hand, this is because MineCLIP can only handle short videos (only 16 frames); on the other hand, it
is to free our goal space from the expressiveness bounded by pre-trained VLM.

According to the above discussion, we choose to replace the video encoder in the GROOT architecture
with a text encoder, BERT, and directly optimize it through behavior cloning, as shown in Figure
17. In order to keep the original goal space, we freeze the decoder and regard it as a gradient
generator that extracts high-level behavioral semantics from the demonstrations. We utilize the meta
information in the contractor data to generate text-demonstration pairs. For example, in the task of
“collect wood”, we identify the moment t when event “mine_block:oak_log” is triggered in the video,
and we capture the frames within the range of [t− 127, t] to form a video clip, with “mine block oak
log” assigned as its text, thus constructing a sample. Having been fine-tuned on these data, our model
demonstrated some steerabilities in the text instruction space, as shown in Table 6. We find that the
agent fine-tuned on the text-demonstration dataset shows a basic understanding of text instructions.
Our method exhibits progress in tasks such as “mine grass”, “mine wood”, “mine stone”, “mine
seagrass”, “pickup beef” and “mine dirt”. However, it falls short in successfully completing tasks
such as “mine seagrass”. We speculate that this may be related to the distribution of the data, as there
is much less data available for “mine seagrass” compared to the other tasks (about 300 trajectories).

We emphasize that this experiment is very preliminary. In this experiment, the steerability of the
agent fine-tuned on text instructions is still weak and it is hard to solve practical tasks. Given
the limited diversity of text instructions in the provided contractor data, we don’t anticipate the
model to possess any significant level of generalization with regard to language instructions. To
further verify this point, one needs to collect more diverse and higher-quality text-demonstration
pairs data. Anyway, this experimental result still indicates the possibility of optimizing the upstream
instruction generator by leveraging the pre-trained decoder. This creates possibilities for developing
more interesting applications on GROOT. Additional discussions on text-conditioning are beyond the
scope of this paper, and we will leave them for future work.
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Table 6: Text conditioning results on resource collection tasks. Each episode lasts 30 seconds (600 frames).
Statistics are measured over 10 episodes. The term "baseline" refers to the model before being fine-tuned, while
"fine-tuned" refers to the final model after fine-tuning.

Variant mine grass ↑ mine wood ↑ mine stone ↑ mine seagrass ↓ pickup beef ↑ mine dirt ↑

baseline 3.9 0.4 1.8 1.3 0.0 0.0
fine-tuned 17.3 (4.4×) 3.7 (9.3×) 11.5 (6.4×) 1.2 (92%) 0.1 1.3

J POTENTIAL APPLICATIONS AND INTEGRATION WITH PLANNER

GROOT is specialized in short-horizon instruction-following tasks with its goal being a video clip
while LLM has demonstrated the ability to plan for long-horizon tasks in an open-world environment.
For example, DEPS Wang et al. (2023b) utilizes a text-conditioned policy from Cai et al. (2023) to
accomplish tasks such as mining diamonds from scratch. By integrating GROOT into the DEPS
framework, it can act as a controller and assist with long-sequence tasks. However, while LLM can
output language as the current goal, GROOT requires a specified video clip as its goal. Therefore,
when combining GROOT with DEPS, it is necessary to use the visual language model CLIP to select
the most suitable video clip based on the language goal produced by LLM.

The proposed approach involves preparing a pre-existing library of video clips V = {vi} that contains
various actions performed by the agent in Minecraft (e.g., “chopping trees” or “mine iron ore”). When
given a long-horizon instruction by LLM’s Planner, it is decomposed into a series of short-horizon
language tasks {gi}. During task execution, the CLIP model is utilized to calculate the similarity
between each short-horizon clip vi in the library V and task gi, selecting the most similar video
clip as GROOT’s interaction goal with the environment. Additionally, accessing a video library of
Minecraft content is effortless due to the abundance of available video data on the internet.

While GROOT mainly relies on videos for input goals, LLM uses both input and output language
modalities. These modalities can be aligned using a visual language model, allowing us to combine
GROOT as a short-horizon control policy with an LLM-based Planner to complete long-sequence
tasks.
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