SAIL-Recon: Large SfM by Augmenting Scene Regression with Localization

Supplementary Material

In this supplementary material, we provide additional
implementation details and experimental setups in Sec.6.
We also present further experiments and discussions in
Sec.7. More visualization result will be posted in Sec. 8.
We also provide a video in the attached files.

6. More Implementation Details

Training Details. As described, we follow the training set
of VGGT [86], which we use a cosine learning rate sched-
uler with a maximum learning rate of 2 x 10~* and a warm-
up of 2K iterations. The input images are resized to a max-
imum of 518 pixels while preserving the aspect ratios be-
tween [0.33, 1.0]. Data augmentation includes random color
jittering, Gaussian blur, and grayscale conversion. Training
is performed with bfloat16 precision, gradient checkpoint-
ing, and a mixed anchor—query frame strategy.

Implementation of attn9"®Y. We apply an attention mask

to realize a cross-attention—like operation between tokens

from the query image 79 and the scene representation R ; =

@(t;z ) from layer j. Specifically, during training, the mask

enforces two types of interaction:

e Anchor interaction: tokens from anchor frames are al-
lowed to attend to each other, enabling mutual informa-
tion exchange across different anchor views

* Query restriction: tokens from query frames cannot at-
tend to tokens from other query frames; they can only
attend to tokens within the same frame and to the scene
representation R ;.

This design ensures that query tokens extract information

primarily from the global scene representation and their

own local context, while anchor tokens remain fully con-
nected to maximize cross-view aggregation. The same at-
tention mask is also applied to the attention layer in the pose
head.We also develop an alternative version that employs
two distinct blocks for the anchor and query, respectively.

The query block is initialized from the anchor block and

fine-tuned during training. We observe that both versions

perform similarly.

Inference Details. As stated in Sec.3.1, we first extract the

scene representation R from the anchor frames and then

process query images sequentially. Specifically, we employ

a KV-cache[50] to store R as the keys and values in each

global attention layer, which effectively accelerates com-

putation and reduces memory usage. For each subsequent
query image, its tokens serve as the queries in the atten-
tion mechanism, while the keys/values are formed by con-
catenating the query tokens with the cached scene tokens.
Through the attention operation, the query image tokens are

updated by aggregating information from the global scene

representation. After passing through all attention layers,

we obtain tokens enriched with localization information.

These tokens are then fed into the camera head and depth

head to predict the corresponding camera parameters, depth

and scene coordinate maps, yielding the reconstructed scene
from the query viewpoint.

Post Refinement Details We adopt Nerfacto [70] within

NeRF Studio, applying its camera pose optimizer for post

refinement. For scenes with < 2,000 images, models un-

dergo 10,000 training iterations with a regularization weight

A = 0.001 on both camera translation and rotation. The op-

timizer uses an initial learning rate of 10~2, which decays to

10~ after 1,000 iterations via cosine annealing. All other
parameters follow the defaults of NeRF Studio. For scenes
with > 2,000 images, we perform two separate optimiza-
tions with 10000 and 30000 iterations, respectively. The
second round uses the poses from the end of the first round
as initialization, and the camera optimizer’s learning rate
begins at 0.0005 and reduces to 0.00001. Other parameters
remain constant. Optimizations typically take 2.5 minutes
for every 10k iterations, regardless of the number of images.

More experimental setup.

* We denote DROID-SLAM* as the variant that first cali-
brates intrinsics using GeoCalib [81] on the first image of
each sequence and then uses the calibrated parameters in
DROID-SLAM.

* All experiments are conducted on an NVIDIA RTX 4090
GPU; To align with V100-based results, runtimes are
scaled by a factor of 1.5, reflecting the measured FP16
inference speed gap. For anchor frame selection, we use
50 frames per scene in 7 scenes, with PSNR reported in
the combined training and test sets, and the relocaliza-
tion accuracy evaluated on the test set after ACEO [9].
For mip-NeRF 360, 50 anchors are selected per sequence.
For Tanks and Temples, we select an average of 100
keyframes per sequence to relocalize all remaining im-
ages and video frames. For TUM RGB-D, we use 50-100
anchors depending on sequence length: floor, plant, and
teddy use 100 frames, and others use 50.

* In cases where the first frame contains limited seman-
tic information, it is replaced with a semantically richer
frame as the first anchor.

* For visualization in Fig. 1, we remove points in the low-
est 50% confidence on the depth confidence map, corre-
sponding to sky, glass, and other ambiguous surfaces, and
apply moderate point cloud downsampling to enhance vi-
sual clarity.

¢ We cite the results in Tabs. 3, 4, 5 from ACEO [9]. De-



tails on default parameters and configurations for base-
lines such as COLMAP (default), COLMAP (Sparse +
Reloc + BA) and Nope-NeRF are available in the supple-
mentary material of ACEO [9].

7. Additional Results
7.1. Pose Estimation

TUM RGBD. We report the root mean square error
(RMSE) of the absolute trajectory error (ATE), compar-
ing our method with a broader set of state-of-the-art ap-
proaches [11, 14, 41, 45, 75, 76, 100] under calibrated
settings, as summarized in Tab. 8. Our method achieves
accuracy on par with the most advanced SLAM systems
while remaining robust across diverse sequences without
requiring camera calibration. Compared with geometry-
based pipelines, such as ORB-SLAM3, our approach ex-
hibits stronger robustness and achieves comparable or supe-
rior accuracy to learning-based baselines. The main weak-
ness appears in the floor sequence, where images contain
limited visual cues dominated by textureless floor regions.
In this case, reference view selection becomes critical: large
viewpoint gaps between the query and reference views sig-
nificantly degrade localization. We further visualize these
effects in the trajectory results (Sec. 8).

7.2. Novel View Synthesis

Tanks & Temples. To further evaluate our scalability
for large-scale reconstruction, we apply our method to the
Tanks & Temples [32] video sequences. For each sequence,
we uniformly sample 100 images as anchors and perform
localization on all frames.

For clarity, Table ?? reports the results on both the im-
age set and the full video sequences, with the latter shown
on the right. As a reference, we include Sparse COLMAP +
Reloc + BA (CMP (SRB)), which initializes from a sparse
COLMAP reconstruction using 150-500 images, registers
the remaining frames and performs global bundle adjust-
ment. Our approach consistently outperforms RealityCap-
ture, DROID-SLAM [76], and ACEQ [9] across all splits,
with only ACEQ initialized from sparse COLMAP poses
(CMP + ACEOQ) achieving comparable performance. In
particular, on the most challenging ’advanced’ split, our
method achieves the highest PSNR of all methods. Despite
each sequence containing more than 10k images on average,
our feedforward approach maintains competitive efficiency
- only slightly slower than SLAM-based pipelines - while
delivering strong reconstruction quality.

7 Scenes. We quote the table from ACEO [9] and report
our results in Tab. 10. For each 7-Scenes sequence, we uni-
formly sample 50 frames from the train/test splits and esti-
mate poses for all images in the scene. We compare against
COLMAP since bundle-adjusted COLMAP poses provide

a more accurate reference. Our method attains PSNR com-
parable to the COLMAP reference and exceeds ACEQ. In
terms of runtime, even under “fast” settings COLMAP still
requires around 13 h per scene; DROID-SLAM returns re-
sults quickly but performs poorly on 7-Scenes; ACEO takes
1 h. In contrast, our approach finishes in 25 min without any
pose initialization, achieves higher PSNR than ACEQ, and
matches the PSNR of ACEO when initialized from Kinect-
Fusion (KF-Init., 7 min).

To further compare against learning-based approaches
under constrained memory budgets, we follows [9] to down-
sample each sequence to 200 frames. Sequential-dependent
scene regression models (e.g., Cut3R [87], SLAM3R [42])
require dense temporal input, and VGGT [86] still exceeds
memory limits on 200 images. We therefore compare to
BARF [37] and NoPe-NeRF [5]: Both BARF [37] and
Nope-NeRF [5] fail to recover the scene after a long fitting
time. Using our localization of all frames, we consistently
obtain the highest PSNR in this 200-frame setting. while
remaining faster than these baselines.

8. Visualization

As shown in Fig. 4, 5 and 6, we show the render images
of test view in the three different splits of Tank & Temple
dataset. We illustrate the test view of 7-Scenes and Mip-
NeRF 360 dataset in Fig. 7 and 8, respectively. We aslo
suppliment in Fig. 9 our regressed camera poses and point
clouds.



| Method Sequence

Avg
‘ 360 desk desk2 floor plant room rpy teddy XyzZ

ORB-SLAM3 [11] X 0.017 0.210 X 0.034 X X X 0.009 N/A
DeepV2D [75] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064  0.375
DeepFactors [14] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

g DPV-SLAM [41] 0.112 0.018 0.029 0.057 0.021 0.330 0.030 0.084 0.010  0.076
S | DPV-SLAM++ [41] 0.132 0.018 0.029 0.050 0.022 0.096 0.032 0.098 0.010  0.054
GO-SLAM [100] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010  0.035
DROID-SLAM [76] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012  0.038
MASt3R-SLAM [45] 0.049 0.016 0.024 0.025 0.020 0.061 0.027 0.041 0.009  0.030

= DROID-SLAM* [76] 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012  0.158
= | MASGR-SLAM* [45] 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020  0.060
2 | VGGT-SLAM (Sim(3)) [43] 0.123 0.040 0.055 0.254 0.022 0.088 0.041 0.032 0.016  0.074
= | VGGT-SLAM (SL(4)) [43] 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014  0.053
SAIL-Recon (Offline) 0.070 0.024 0.042 0.107 0.031 0.113 0.020 0.037 0.012  0.051

Table 8. Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D [66] (unit: m). Gray rows denote
results obtained with calibrated camera intrinsics, while entries marked with * indicate evaluation in the uncalibrated setting. We color
result in: Best, Second, and Third. Note that our method is actually a offline StM method.

DROID- DROID-
CMP |Reality SLAMT ACE0  Ours CMP CMP+ |Reality SLAMT ACE0  Ours

(D) |Capture [76] (SRB) ACEQ |Capture [76]

Barn 410 24.0 21.2 19.0 16.5 23.5 19.3k 26.3 25.1 16.9 13.5 17.7 25.1
Catpr. 383 17.1 159 16.6 16.9 16.8 11.4k 18.7 18.8 17.9 18.9 18.6 17.5
Church 507 18.3 17.6 14.3 17.2 17.0 19.3k 18.5 17.3 - 11.5 16.5 15.8
Ignatius 264  20.1 17.7 17.8 19.8 19.5 7.8k 20.9 20.7 18.6 19.1 20.7 20.7
MtgRm. 371 18.6 18.1 15.6 18.0 19.5 11.1k 20.8 20.3 18.2 17.1 16.6 20.4
Truck 251 21.1 19.0 18.3 20.1 20.9 7.5k 234 23.1 19.1 20.6 23.0 23.5
Average 364 19.9 18.2 16.9 18.1 — 195 14.6k 21.4 20.9 18.2 16.8 189  20.5
Time 1h 3min  Smin 1.1h  3.5min 8h 1.8h 14h 18min  2.2h  58min

Frames
Frames

Training

Family 152 19.5 188 17.6 19.0 1206 [[44k 213 (213 [ 198 198 180 [213
Francis 302 21.6 | 20.7 207 20.1 218 |78k 225 227 | 204 218 217 228

£ Horse 151 19.2 19.0 163 195 20.1 6.0k 226 223 | 207 192 217 219
S LightH. 309 16.6 16.5 13.6 175 18.2 83k 195 1205 | 16.6 18.9 18.6 19.7
E PlayGd. 307 19.1 19.2 114 187 20.3 77k 212 210 | 16.5 113 204 217
2 Train 301 168 154 138 162 162 |[12.6k 19.8 185 | 144 15.6 185 185
= Average 254 18.8 18.3 156 185 19.5 78k 2I.1 |21.0 | 18.1 178 19.8 210
Time 32min | 2min 3min 1.3h 3min 5h 1h 11h 14min  2.2h  30min
Audtrm. 302 19.6 122 167 187 1203 [[13.6k 21.4 198 - 166 200 [21.0
BallRm. 324 16.3 18.3 131 179 148 ||10.8k 18.0 15.6 - 10.4 18.9 16.9
@ CortRm. 301  18.2 17.2 123 17.1 174 ||12.6k 18.7 [17.8 - 10.2 16.3 17.4
S Palace 509 142 11.7 108  10.7 143 ||21.9k 153 123 - 18.6 11.0 133
5 Temple 302 18.1 15.7 11.8 9.7 17.8 |[[17.5k 19.6  16.1 - 11.9 14.8 18.3
< Average 348 173 150 129 148 1169 [[156k 18.6 163 - 11.5 162 174
Time 1h 2min 4min 1h 3.5min 10h 2.1h 27min 2.8h 59min

Table 9. Tanks & Temples. We show the pose accuracy via view synthesis with Nerfacto [70] as PSNR in dB, and the reconstruction time.
We color code in: Best, Second, and Third. TMethod needs sequential inputs.



2 Pseudo GT All Frames 200 Frames
E Kinect = COLMAP COLMAP || DROID- ACEQ ACEQ Ours BARF  NoPE- ACEO Ours
3 Fusion (default) (fast) SLAMT  (defaulty (KFInit.) (50F) [37] NeRF  (default) (50F)
Chess 6k 19.6 23.6 23.5 19.3 23.3 23.0 234 12.8 12.6 22.7 21.8
Fire 4k 19.2 22.6 22.6 13.0 22.3 22.3 22.8 12.7 11.8 22.1 24.4
Heads 2k 17.0 18.8 18.9 17.6 18.8 19.1 18.5 10.7 11.8 19.9 20.2
Office 10k 18.9 21.4 21.6 failed 21.1 21.5 20.9 11.9 10.9 19.8 19.4
Pumkin 6k 19.9 24.1 23.8 18.3 24.1 23.8 24.5 19.6 14.2 24.7 25.0
RedKitchen 12k 17.6 21.4 214 10.9 20.8 20.9 19.9 11.6 11.2 18.9 20.0
Stairs 3k 19.0 16.7 21.0 13 17.7 19.9 20.6 15.8 15.9 18.8 20.8
Average 6.5k 18.7 21.2 21.8 N/A 21.2 21.5 21.5 13.6 12.6 21.0 21.8
Avg. Time realtime 38h 13h 18min 1h 7min 25min 8.5h 47h 27min  3min

Table 10. 7-Scenes. We show the pose accuracy via view synthesis with Nerfacto [70] as PSNR in dB, and the reconstruction time. We
color code in: Best, Second, and Third. Our method takes 50 frames as anchor images only, achieves SOTA performance. For some
competitors, we had to sub-sample the images due to their computational complexity (right side). TMethod needs sequential inputs.
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Figure 4. Visualization on Tank & Temple training split.



Figure 5. Visualization on Tank & Temple intermediate split.
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Figure 6. Visualization on Tank & Temple advanced split.



Figure 7. Visualization on Mip-NeRF 360 dataset.
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Figure 8. Visualization on 7-Scenes dataset.
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Figure 9. Regressed Camera Poses and Point Clouds. We visualize the camera poses and point clouds predicted by SAIL-Recon across
various datasets. COLMAP or ground-truth camera poses are shown as blue frustums, while regressed camera poses are shown in yellow,
with red indicating anchor images.
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