
Appendices
Appendix A Further Analysis.

The context length of an autoregressive language model refers to the number of previous tokens
that the model can make use of when predicting the next token. A vanilla transformer operating on
segments of length N has a context length of 0 for the first token, and N − 1 for the last token, and
thus has an average context length of N/2. The prediction quality for a vanilla transformer is not
uniform across the segment; it makes poor predictions for tokens near the beginning of the segment
due to lack of context, and better predictions near the end.

With sliding window attention, each layer attends to the previous layer within a window of W tokens
from the current position. The context length for a single layer is thus W , no matter where in the
segment the token occurs. The simple case where W = N corresponds to Transformer-XL. A
Transformer-XL model achieves a large improvement in average perplexity over a vanilla model,
simply because it can make much better predictions for the tokens at the beginning of each segment.

In a model with multiple layers, the theoretical receptive field (TRF) is defined as the maximum
distance that information could potentially propagate through the model. This definition is similar
to “context length”, but the TRF is “theoretical”, because the model may have a hard time actually
learning to use that much context in practice. For example, the TRF of an LSTM is infinite, but in
practice an LSTM has difficulty transmitting information over more than a few hundred tokens. The
effective context length of an LSTM is much less than the TRF might suggest.

For a sliding-window model (or Transformer-XL), the TRF is W · L, where L is the number of
layers. However, the model can still only attend directly to the previous W tokens. Although the
TRF is much higher, making use of the additional context requires multiple “hops” of attention,
which is more difficult for the model to learn. This problem is especially acute in Transformer-XL
(N =W), because the very first “hop” of attention will be to keys and values in the cache, which is
not differentiable. Our sliding window model (N >> W) has an identical TRF to Transformer-XL,
but it can differentiate across multiple blocks, which gives it a higher effective context length in
practice, and thus better perplexity.

The TRF of the block-recurrent transformer is infinite. We also show that the effective context
length also seems to be quite large in practice, since we observe cases in which the model is able to
accurately predict information across distances of more than 60k tokens.

A.1 Computational Complexity

The computational complexity of attention in a recurrent layer is O((W 2 + S2 + 2SW) ·N/W),
where N is the segment length, W is the window length, and S is the number of states. N/W is
the number of blocks, and each block does self attention W 2, state self-attention S2, and attention
between tokens/states and states/tokens 2SW .

The complexity of sliding-window attention is O(W 2 ·N/W) = O(W ·N).

A.2 Comparison between context, recurrence, and memory

The arXiv data set contains latex code, with lots of complicated syntax that can benefit from long-
range attention (e.g. theorems, jargon, citations). As a result, adding memory, recurrence, or just
increasing the window size of the Transformer-XL baseline yields a larger benefit on arXiv than it
does for PG19.

There also seems to be a qualitative difference in how the models are using attention on these datasets.
We hypothesize that dealing with complicated syntax requires direct (single-“hop”) attention, which
is why the XL:2048 model does well on arXiv. In contrast, natural language novels don’t have
complicated syntax, but may benefit from a better understanding of subtle relationships between
words (e.g. which character the word “her” refers to). These subtle interactions require multi-layer,
multi-“hop” attention, which is easier to train in the more differentiable Slide:13L model. On PG19,
Slide:13L actually does better than XL:2048, despite having a much shorter window size, while on
arXiv, the situation is reversed.

15

There may be a similar relationship between recurrence and kNN memory. The Memorizing Trans-
former does direct, single-“hop” attention, using kNN lookup. Recurrence, in contrast, summarizes
and compresses text into a set of recurrent states.

Both the Memorizing Transformer and the Block-Recurrent Transformer achieve very similar per-
plexity, and based on qualitative studies, they seem to use the additional memory or states primarily
for long-range name lookups. However, recurrence may be better at capturing more subtle long-range
information, like writing style, while memory is better at precision lookups of facts, like citations.
The fact that the Memorizing Transformer does better than the Block-Recurrent transformer on arXiv,
but not PG19, would seem to support this hypothesis, but further experiments on downstream tasks
are necessary to confirm this hypothesis.

A.3 Comparison against Longformer

The idea of sliding window attention was popularized by the Longformer [33], but the full Longformer
is a much more complicated model than the Slide model that we present here.

The full Longformer uses several different attention patterns, and sliding-window attention is only
one of them. Longformer also uses dilated attention and sparse global attention, both of which are
implemented with custom CUDA kernels. Moreover, LongFormer uses different window sizes in
each layer, and it uses a multi-phase training regimen of pre-training and fine-tuning, following a
curriculum that gradually increases window size and sequence length. We do none of these things.

Appendix B Gate Initialization and Training Stability

We observed that training stability is quite sensitive to how the gates are initialized. Recurrence has
a failure mode where the model learns to completely ignore the recurrent state, in which case its
performance reverts to that of the non-recurrent transformer. Moreover, this situation appears to be a
local optimum; once the model has reached this point, it does not recover.

Our hypothesis is that learning the recurrent transition function is a much more difficult task than
learning to attend directly to the input tokens. As a result, the vertical direction trains much faster
than the horizontal direction, especially early in training. This may lead to a situation in which the
recurrent states are much less informative than the input tokens, and the model learns to ignore them.

To avoid this failure mode, gate initialization requires special care. Moreover, proper gate initialization
depends on the optimizer. We use the Adafactor optimizer [51], which normalizes gradients with
respect to their variance, and then multiplies them by the native scale of the underlying parameter.
Thus, if a bias term is initialized to 0, its native scale will be 0, the gradient updates will be very
small, and the bias will tend to remain small over the course of training. If a bias term is initialized
to 1 (which tells the forget gate to “remember”, and is standard practice in LSTMs) then the initial
updates will be large, and the model will learn to ignore the recurrent states before they have the
chance to learn anything useful.

We compromise by initializing the bias terms of the gates to small but non-zero values, using a normal
distribution with mean 0 and a standard deviation of 0.1. The weight matrices of the gates are also
initialized to small values, using a truncated normal distribution with a standard deviation of

√
(0.1fin

)

where fin is the dimension of ht.

We add a constant of -1 and +1 to the input and forget gates (see Eq. 4) to initially bias the gate to
“remember” without affecting the size of the updates that Adafactor will apply. Using this initialization
trick, the recurrent cell reliably learns to make use of the recurrent state.

Appendix C Training Details

For PG19, we do both token-level modeling, and character-level modeling. In our initial experiments,
we use a pre-trained 32k sentencepiece vocabulary from T5 [39] for the token-level modeling. We use
the Adafactor optimizer [51], a learning rate schedule with inverse square root decay, 1000 warmup
steps, and a dropout rate of 0.05. The learning rate is 1.0; when combined with warmup and the
decay schedule, this yields an applied learning rate of 0.03, decaying to 0.0014. This learning rate

16

and schedule were borrowed from other language models; we did not attempt to do a hyperparameter
sweep to identify the optimum learning rate and schedule. We train for 500k steps with 32 replicas
on Google V4 TPUs; training takes approximately 48 hours. Reported results are for the "test" split.

For the later scaling experiment on PG19, we switched the learning rate schedule to cosine decay,
as recommended in [43], with a maximum rate of 0.01, and a minimum of 0.001. We did a brief
experiment with a learning rate of 0.02 and 0.005, before settling on 0.01. The change in learning
rate schedule resulted in a significant improvement. We also switched from the 32k T5 vocabulary
to a 32k custom sentencepiece vocabulary trained on PG19. Our custom vocabulary has higher
bits-per-token, but fewer tokens, and thus has slightly better word-level perplexity.

For arXiv, we use a pre-trained 32k vocabulary from LaMDA [52]. Due to the large number of
mathematical symbols in LaTeX, many tokens are only one character, so the bits-per-token numbers
are lower than for PG19. We dropped the learning rate to 0.5 after observing some instabilities when
training on longer (4096) segment lengths. Reported results are for the "test" split.

The GitHub dataset is much larger than PG19, and has very high variance, due to the fact that it con-
tains code written in many different programming languages and coding styles. Consequently, there
was a lot of noise in the results, which made it difficult to accurately compare models. We reduced the
noise by using a batch size that is 4x larger than for PG19. As with the PG19 scaling study, we use a
cosine decay learning rate schedule, but the maximum LR is 0.005; this is half the LR used for PG19.
Because of the increased batch size, these models ran for only 250k steps. The GitHub experiment
uses a pre-trained 32k vocabulary from LaMDA. Reported results are for the "validation" split.

Due to the large number of experiments, we did not have the computational resources to run all
experiments multiple times, and consequently do not provide error bars for all experiments. However,
for the headline numbers on PG19-tokens, we ran each experiment 3 times, with both different
random seeds and with dataset shuffling. Actual measured error bars on PG19 were very low, between
0.002 and 0.007. The numbers in Table 1 are rounded to the nearest 0.01, which means that the error
bars must be rounded up to match the precision of the reported results. E.g. for Rec:fixed:skip on
PG19-tokens, an average of 3 runs has a mean of 3.525 and a standard deviation of 0.0047; we round
this up to 3.53± 0.01. Note that it is not possible to obtain truly accurate error bars from such a small
number of runs; by rounding the error up, we provide a conservative estimate of the actual error.

C.1 Dataset licensing and other issues.

PG19 consists of works in the public domain, and consequently it is a public dataset that is freely
available to other researchers. Due to the age of the texts, some of the books do contain potentially
offensive material.

The arXiv dataset consists of documents for which the author has given express permission for their
work to be distributed by arxiv.org. However, because the author still retains copyright, these
articles cannot necessarily be redistributed in the form of a public dataset, nor will we publish a
model that has been pre-trained on this data. We obtained access to this dataset via private channels.

The Github dataset consists of code with open-source licenses, which permit the code to be down-
loaded, compiled, or modified. Similar to arXiv, however, because the authors retain copyright, this
code cannot necessarily be redistributed as a public dataset, nor will we publish a model that has been
pre-trained on this data. We obtained access to this dataset via private channels.

C.2 Selection of data sets

Having a standardized data set is import for the purpose of comparing published results, and his-
torically, papers on long-context language modeling have used enwik8 or wiki-103 as benchmarks
[34][33]. However, these datasets are not particularly good benchmarks for our purposes.

The purpose of our experiments is to see whether block recurrence can transmit information over
very long distances: we show retrieval over 60k+ tokens. We chose PG19 specifically because we
believe it to be a good dataset for these sorts of experiments. It consists only of long, book-length
works, it is much larger than enwik8 or wiki-103, it is publicly available, and has been cited in other
published work. Arxiv and github are (sadly) not public, but they similarly have long documents in
the 50k+ token range.

17

Enwik8 is not a corpus of long articles. In fact, it doesn’t even split the text into separate articles at all;
it’s just a single text dump that concatenates a bunch of short unrelated articles together. Attempting
to split it on article boundaries yields a data set in which the majority of “articles” are merely stubs,
with HTML boilerplate and no actual text. Enwik8 is a fine benchmark for data compression, which
was the purpose for which it was originally intended, but it is less than ideal for long-range language
modeling.

Wiki-103 is significantly better, because it does break the text into articles, and it eliminates the
boilerplate, but the average length is still only 3.6k tokens per article, which is less than the segment
length used in our experiments, and much shorter than the 50k-100k tokens of PG19.

C.3 Comparisons with previously published results.

It is well-known that transformer perplexity scales with the number of parameters. However, the
choice of vocabulary, learning rate schedule, batch size, number of training steps, and optimizer also
make a large difference to the final headline perplexity numbers. The Chinchilla scaling study [43]
demonstrates that a change to the learning rate schedule can have a large effect; we also observed
improvements from a change to vocabulary as well. Not all vocabularies are created equal, even for
vocabularies which have the same size, and are trained primarily on English-language text. Published
perplexity numbers between different models cannot be meaningfully compared unless all other
variables are strictly controlled.

Appendix D Window Size and Number of Recurrent States

Ablation results for the window size is is shown in Table 3 (a). Decreasing window size leads to
worse perplexity in both the recurrent model and Transformer-XL, but the penalty is smaller for the
recurrent model.

Ablation results for the number of recurrent states is shown in Table 3 (b). Increasing the number of
recurrent states makes a small but measurable improvement up to 1024 states, but is worse at 2048
states. The window size was 512 for this experiment.

Table 3: Changing the window size (a) and number of recurrent states (b) on PG19.

Window size Rec:fixed:skip Slide:12L

128 3.58 3.69
256 3.54 3.64
512 3.53 3.60

Number of states Rec:fixed:skip

128 3.54
256 3.535
512 3.53
1024 3.51
2048 3.55

Appendix E Block-Feedback

In the block-feedback variation of our model, the entire stack of 12 layers is applied to the first block
of tokens. The recurrent state for that block is then extracted from the recurrent layer, and the state is
broadcast to all other layers when processing the next block. Because the recurrent layer is placed
high in the stack, this means that the lower layers of the transformer can cross-attend to a higher
layer, which is computationally more powerful, much like the feedback transformer [24]. Results are
shown in Table 1.

Recurrence with feedback is significantly more expensive than the non-feedback version, because all
12 layers now have a cross-attention module, instead of just the recurrent layer. In our experiments,
feedback increased the step time by approximately 35-40%, and the additional queries also increase
the number of parameters.

Adding feedback improves perplexity in most cases, but the improvement seems to depend on the
data set. The effect of feedback also depends on the gate configuration. In particular, block feedback
dramatically improves the performance of the LSTM gate. This could be because the recurrent states,
and thus the gate, get a gradient from all all layers of the transformer, instead of just one.

18

Appendix F Scaling Plot Details

Table 4: Bits per token on PG19 at various model scales. The data in this table was used for the
scaling plot in Figure 3.

40.6M 81.2M 162M 325M 650M 1.3B

Rec:fixed:skip 3.96 3.79 3.59 3.44 3.29 3.22
XL:512:13-layer 4.03 3.86 3.67 3.51 3.39 3.31

Performance on large text datasets, such as PG-19, is highly correlated with the number of trainable
parameters; larger models tend to perform better. However, training large models can be expensive,
and not all researchers have access to the necessary amount of compute to beat our new state of the
art, or even to reproduce our results.

Table 4 provides the numeric results from our scaling study, which covers scales from small 40M
parameter models that can be easily trained on a single machine, to our largest 1.3B parameter model.
Configuration files for all scales are provided in the open source release. Our scaling strategy is to
increase the dimensions of the various parts of the transformer: embedding size, MLP hidden layer
size, number of heads, head size, and number of layers. Each factor of 2 increase in the number of
parameters scales either one or two of these dimensions.

Appendix G Qualitative Analysis Results

Figure 4: Difference in per-token cross-entropy loss.

The following are excerpts from our qualitative study. We selected five books at random from PG19
test set, and ran two different models on each book. The first model is a 13-layer Transformer-XL,
and the second is the Rec:fixed:skip configuration of the Block-Recurrent Transformer. For each
token, we compute the difference between the cross-entropy loss (i.e., the negative log likelihood
(NLL)) output by both models, and and then sort the results.

Figure 4 shows an example of the per-token difference in NLL between the two models on the first
book; the x-axis is the index of the token. On average, the recurrent model does slightly better than
Transformer-XL, but it does not necessarily make a better prediction for any individual token.

The following excerpts show the top 4 tokens where the Block-Recurrent Transformer made a better
prediction than Transformer-XL; these tokens correspond to spikes in Figure 4. We show the token
number, the NLL returned by the recurrent model, the NLL returned by Transformer-XL, and an
excerpt of text, with the token itself marked with |token|. Almost all of the top tokens are proper
names of characters and places. In all cases except one, the mispredicted name does not appear within
the attention window of the previous 512 tokens. These names are thus invisible to Transformer-XL,
but visible to the recurrent model.

Note that these are not cherry picked examples; the five books are chosen at random. Moreover, the
same pattern still holds if the search is expanded to the top 40 tokens for each book. In fact, even the
names are often the same; Transformer-XL often seems to mispredict the same names over and over
again; these are likely the names of main characters.

Sorting the other way, to show the top tokens where Transformer-XL does better than the recurrent
model, does not show the same pattern. There are still plenty of proper names, but it is usually cases
where both models fail to predict the name. Moreover, the names are mixed with more common
words as well.

Memoirs of Marie Antoinette Queen Of France Vol. 7.

(30555, 0.3696011, 12.688916)

19

physician’s house to make inquiries as to the cause of so long an absence.
G|omin| and Larne had not yet ventured to follow this advice, when next

(32043, 0.20177796, 10.513703)
with the autopsy arrived at the outer gate of the Temple. These were
Dum|ang|in, head physician of the Hospice de l’Unite; Pelletan,

(34896, 1.3752508, 11.534926)
who had acted as courier to Louis XVI. during the flight to Varennes,
and Tur|gi|, who had waited on the Princesses in the Temple. It was

(34896, 1.3752508, 11.534926)
. In all the evidence there appeared but two serious facts, attested
by Latour-|du|-Pin and Valaze, who deposed to them because they could

Notes: “Gomin” appears multiple times in the top 40 results.

An Unsentimental Journey through Cornwall

(983, 0.80441666, 11.626528)
OUGH CORNWALL [Illustration: FALMOUTH, FROM FLUSHING.]
|DAY| THE FIRST I believe in holidays. Not in a frantic rushing

(23606, 0.655162, 11.265186)
there was not the slightest use in getting up, I turned round and took
another sleep. |DAY| THE FIFTH "Hope for the best, and be

(11297, 0.405902, 10.426135)
ball. "Ma’am, if you go slow and steady, with me before and Cur|gen|ven
behind, you’ll _not_ fall." Nor did I. I record it

(38021, 1.3457009, 11.167879)
our journey; going over the same ground which we had traversed already,
and finding Praden|ack| Down as bleak and beautiful as ever. Our first

Notes: The word “DAY” appears earlier in the table of contents, but not within the previous 512
tokens. “Curgenven” appears multiple times in the top 40.

The Good Hope by Herman Heijermans Jr.

(3975, 0.7425603, 15.8969145)
to us." It matters nothing that this gospel of Life has often been
preached. He|ij|ermans has caught the spirit of it as well as the letter.

(7385, 0.26241615, 15.000762)
must scratch the stones. CLEM. Tomorrow afternoon, then. COB. T|ja|!
I’ll be here, then. Good day, Miss. [To Barend.] Good

(42638, 0.73628587, 15.407666)
hundred guilders. Bejour. [Rings off; at the last words Kne|irt|je has
entered.] KNEIRTJE. [Absently.] I----[

(25798, 0.12310324, 14.402218)
They exeunt, dragging Barend.] KNEIR. Oh, oh---- TRU|US|. [With
anxious curiosity, at side door.] What was the matter, Kneir?

Notes: The word “Tja” is not a proper name, but is a Dutch word that is likely unique to this particular
book. It appears multiple times in the top 40 results. The name “Truus” appears multiple times in the
top 40.

20

Travels in Morocco Volume 2 by James Richardson

Notes: The second example in this list is not a good one, because both models mispredict the name.
We thus include a fifth example as well. The word “Toser” appears frequently in the top 40, and is
also the only case where the proper name appears within the attention window of 512 tokens.

(61049, 2.0328524, 18.696453)
, some of them as black as [Redacted]s. Many people in T|oser| have sore
eyes, and several with the loss of one eye, or nearly so; opthal

(63453, 9.254061, 24.413633)
Tunis;" but the restrictive system established by the Turks during late
years at Ghad|umes|, has greatly damaged the trade between the Jereed and

(66149, 0.8768588, 14.105822)
enterprizing fellow, worthy of imitation. He calculated the distance from
Ghabs to T|oser| at 200 miles. There are a number of towns in the

(64161, 1.0309317, 14.152167)
and ourselves went to Wedyen, a town and date-wood about eight miles
from T|oser|, to the left. The date-grove is extensive, and there are

(27282, 0.04982663, 12.551973)
, is a very ancient city, situate upon the right bank of the river
Boura|gra|g, and near its mouth. This place was captured in 1263, by

India’s Love Lyrics by Laurence Hope

(15694, 0.07477246, 11.22447)
rieving A wasted chance. Fate knows no tears. Verses:
Fa|iz|Ulla Just in the hush before dawn A little wistful wind is

(3135, 0.0126608405, 9.759871)
afloat In the little noontide of love’s delights Between
two Nights. Val|go|vind’s Boat Song Waters glisten and
sunbeams quiver,

(23183, 0.1419289, 9.481476)
sleep, the touch of your lips on my mouth. His Rubies: Told by
Val|go|vind Along the hot and endless road, Calm and erect,
with haggard eyes,’

(26886, 0.13428347, 9.46193)
off sheath, And find there is no Rival like the Past. Verse
by T|aj|Mahomed When first I loved, I gave my very soul Utterly

G.1 Clearing the recurrent state

Figure 5: Difference in per-token cross-entropy loss with state clearing.

Our second qualitative study is structured similarly to the first, except that instead of comparing
two different models, we compare two different runs of the same model: the Rec:fixed:skip
configuration. The first run processes the book normally, while the second run clears the recurrent
states at the beginning of each 4096-token segment. In the second run, the model can use recurrence
within a segment to look beyond the local attention window of 512 tokens, but it cannot use recurrence
to carry information from one segment to the next.

21

This experiment is somewhat cleaner than the first, because both runs are done with the same
pre-trained model, which has the same parameters. Figure 5 shows the difference in per-token
cross-entropy loss for the first book. There is no difference between the two runs for the first segment,
and the biggest differences in subsequent segments are often clustered near the start of each new
segment.

The overall pattern is very similar to the first qualitative experiment: most of the tokens involve
proper names. We verified that in most cases, the mispredicted name not only does not occur within
the 512-token attention window, but does not occur within the 4096-token segment. In addition to
proper names, chapter titles and illustration captions occur frequently within the top 40 results; the
recurrent model seems to be remembering these from a previous occurrence in the table of contents.

Perhaps most interestingly, in two of the books, one of the highest ranked mispredictions was
the title and author of the book itself. The Gutenberg project inserts boilerplate at both the
beginning and end of each book; the title and author are listed multiple times at the beginning, and
once at the end. This experiment thus shows that the model is able to “remember” this information in
the recurrent state, across a distance of 60,000 tokens or more.

Baby Mine, by Margaret Mayo

Note that the 2nd misprediction is the title of the book itself, at token number 71,244.

(60153, 0.00438364, 12.798895)
nerves, but you needn’t worry, I’ve got everything fixed.
Donneg|hey| sent a special officer over with me. He’s outside

(71244, 2.3727102, 12.660636)
sunlight and shadows of his ample, well kept grounds. End of the
Project Gutenberg EBook of| Baby| Mine, by Margaret Mayo ***

(63536, 4.132567, 13.688847)
Alfred, with the air of a connoisseur. "She sure is," admitted
Don|neg|hey, more and more disgruntled as he felt his reputation for

(26947, 3.7521973, 12.516711)
with a sigh of thanksgiving he hurried upstairs to his unanswered mail.
CHAPTER XIII When Alfred| Hardy| found himself on the train bound for

The ’Patriotes’ of ’37 by Alfred D. Decelles

(38759, 0.85374373, 11.140007)
24, 125, 126. Cote, Dr Cyri|le|, 89, 108, 118, 120;

(40181, 0.35475963, 10.291676)
17-26, 129-30. Nelson, Dr Wolf|red|, a follower of Papineau, 37, 60

(28756, 0.0010796335, 9.256147)
on a well-reasoned plan of action. Most of the leaders--Wolf|red| Nelson,
Thomas Storrow Brown, Robert Bouchette, and Amury Girod--were

(28772, 1.7782648, 10.611834)
leaders--Wolfred Nelson, Thomas Storrow Brown, Robert Bouchette, and
Am|ury| Girod--were strangers to the men under their command; and none of

Another Brownie Book, by Palmer Cox

In this case, the top 4 results include the author of the book. This book has a lot of illustrations
which are listed in the table of contents, and make up many of the other results in the top 40.

(16442, 0.087840006, 8.706101)

22

[Illustration] [Illustration] [Illustration] THE BROWNIES
AND THE TUG|BO|AT. [Illustration] While Brownies strayed along a

(24225, 0.04784866, 8.266858)
[Illustration] End of the Project Gutenberg EBook of Another
Brownie Book, by Palmer| Cox| ***

(24224, 5.651471, 11.840027)
Illustration] [Illustration] End of the Project Gutenberg
EBook of Another Brownie Book, by| Palmer| Cox ***

(4460, 1.0682098, 6.6397715)
To secret haunts without delay. [Illustration] [Illustration]
THE BROWNIES AT| AR|CHERY. [Illustration] [Illustration]

The Life Of Thomas Paine Vol. II. (of II) by Moncure Daniel

By the end of the book, the recurrent model is quite sure that "Paine" is a main character, but not if its
memory keeps getting erased.

(170457, 0.98941976, 12.209277)
they could. The scandal branched into variants. Twenty-five years later
pious Grant| Thor|burn promulgated that Paine had run off from Paris

(120592, 0.6974209, 10.396527)
my friends and accept the same to yourself." As the Commissioners did
not leave when they expected,| Paine| added several other letters to

(169152, 0.18432029, 9.516743)
whose composition the farrier no doubt supposed he had paid the editor
with stories borrowed from "Old|ys|," or not actionable. Cheetham

(139870, 0.53406477, 9.646917)
nor was any letter received from him. This was probably the most important
allusion in a letter of| Paine|, dated New York, March 1, 1804, to "C

Appendix H Token level cross-entropy

In addition to qualitative studies comparing a single document, we also compared the average bits-
per-token over all documents in the PG19 test set. It has been observed that in vanilla transformer
architectures, this token-wise cross-entropy often diverges at long segment lengths [53].

In Figure 6 we plot the cumulative cross-entropy, which is the average bits-per-token (i.e. log2

perplexity) averaged up to the given length, and we compare the Block Recurrent Transformer
against the Transformer-XL baseline. Performance of the two architectures is comparable for the first
few thousand tokens, but the recurrent architecture clearly outperforms Transformer-XL at longer
document lengths.

Appendix I Vocabulary Ablation Experiments

The authors of the PG-19 dataset propose word-level perplexity (WLP) as a measure of model
performance [15]. However, it is only possible to compute WLP if there is an accurate count of the
number of words. A published word count is provided for the PG19 data set [15], but a word count
is not available for the other data sets in this paper, such as arXiv and github. There is not even a
clear definition of what constitutes a “word” in source code or LATEX documents, which have a lot of
symbols. Consequently, we do not provide WLP for these data sets.

WLP also glosses over some details of tokenization; in particular, the word count ignores whitespace.
SentencePiece [44] is often advertised as being a subword tokenizer that preserves whitespace, but in

23

103 104 105

Token

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7
Av

er
ag

e
bi

ts
-p

er
-to

ke
n

Transformer-XL
Block Recurrent
Number of documents at length. 0

20

40

60

80

100

Nu
m

be
r o

f d
oc

um
en

ts

PG19 Cross-entropy -- cumulative average

Figure 6: Cumulative cross-entropy on PG19 of a 13-layer Transforemer-XL and Block Recurrent
model. Though comparable at the first few thousand tokens, the recurrent model performs better at
longer sequences. In red we show the number of documents at a given token length.

fact that is only partially true. Depending on how it is configured, SentencePiece may normalize text
by mapping multiple whitespace characters (e.g. tab) to space, merge internal whitespace characters,
or strip all newlines from the text.

Thus, depending on vocabulary, a model trained with a SentencePiece tokenizer may or may not be
predicting whitespace and newlines. If it does predict them, then that whitespace is not captured by
the word count, which can affect the WLP numbers.

Measuring bits-per-character (BPC) rather than WLP is a potentially simpler and fairer comparison
that works with any data set and tokenizer, but it runs into the same problem with whitespace. If the
tokenizer merges or strips whitespace from the input text, as many SentencePiece vocabularies do,
then it is not possible to get a consistent character count across different vocabularies.

I.1 Effect of vocabulary on model perplexity

The vocabulary itself can also make a significant difference. We argue that the tokenizer and
vocabulary should be considered as part of the model, and comparisons using either WLP or BPC are
only valid between models that use the same tokenizer and vocabulary. Using WLP to judge model
innovations without taking into account other differences can lead to incorrect conclusions. We give
an empirical example of how using different vocabularies can lead to significant differences in WLP.

The total cross-entropy loss LS = −
∑NS

t=0 log(pt|p<t) where S is the chosen tokenization scheme
and NS is the number of tokens in the data when tokenized by S. Models using the same tokenization
scheme can be compared by their token-level perplexity PPLS = exp(LS

NS
) where LS

NS
is the average

loss. Lower perplexity is better.

24

WLP is defined to be exp(LS

NW
) where NW is the number of "words" as defined by the authors of the

PG-19 datasets. For the PG-19 test set, NW = 6, 966, 499 [15]. Thus, WLP is simply a rescaling of
the average loss, i.e. WLP = exp(LS

NS

NS

NW
), where we’ll refer to NS

NW
as the scale factor – the number

of tokens per word.

I.1.1 Vocabulary size

The size of the vocabulary has three obvious effects on the model. First, a larger vocabulary has more
parameters, and thus can store more information in the embedding table.

Second, a larger vocabulary will typically have longer and rarer words, so the average length of
each token (characters-per-token) will also be longer, and the scale factor (tokens-per-word) will be
smaller. The context length of the model in tokens is usually fixed, so having longer tokens means
that the model can attend over longer distances in the input text.

Third, having longer tokens also means that the model will process more of the training data on each
training step (again because the number of tokens per step is fixed), and thus complete more epochs
over the data set.

I.1.2 Vocabulary quality

Even if two vocabularies are the same size, there may be a difference in vocabulary quality. For
example, if a multi-lingual vocabulary is used on English-language text, then only a portion of its total
capacity will be used to capture English words, and it will behave much like a smaller vocabulary.

A more subtle issue is that there are many ways in which text can be tokenized. A tokenizer which
does a good job of capturing natural semantic segmentation into subwords can be expected to perform
better than one that doesn’t, e.g. “walk|ed” vs. “wal|ked.”

I.2 Experimental results

We train the Rec:fixed:skip model with a segment length of 4096 for 500k steps employing an
inverse square root decay schedule while only varying the choice of vocabulary (all other hyperpa-
rameters are as in Section 4).

The byte-level vocabulary does not use a tokenizer, and operates on the raw ASCII text. The T5
vocabulary [39] was trained on multi-lingual data from Common Crawl (commoncrawl.org), consists
of 32k tokens, and does not preserve whitespace. We also test on a 32k sized version of the LaMDA
vocabulary [54]. To test the effect of vocabulary size, we also train a number of SentencePiece models
on the PG19 training set with sizes ranging from 512 to 128k.

Results are shown in Table 5 and Figure 7. For SentencePiece vocabularies trained on PG19, we
observe that a larger vocabulary has a significant effect on the scale factor, although the effect starts
to diminish with more than 32k entries (see Figure 7). The average bits per token increases as the
tokens become longer.

25

Table 5: Test perplexity of the Rec:bias:skip model when using different tokenizers. Results are
given in bits-per-token, so WLP is 2(bits-per-token · scale factor). STE stands for Tensorflow’s deprecated
SubwordTextEncoder as used by other baselines; SPM stands for SentencePiece model [44].

vocab size token count scale factor avg bits-per-token WPL

T5 [39] 32k 10,523,460 1.5106 3.525 40.08
LaMDA [52] 32k 12,053,681 1.7302 3.121 42.23
PG19 STE 32k 11,097,364 1.5930 3.352 40.49
PG19 SPM 32k 10,229,476 1.4684 3.647 40.93

PG19 SPM 128k 9,638,472 1.3835 3.830 39.37
PG19 SPM 96k 9,711,259 1.3940 3.801 39.36
PG19 SPM 64k 9,856,687 1.4149 3.766 40.18
PG19 SPM 32k 10,229,476 1.4684 3.647 40.93
PG19 SPM 8k 11,559,455 1.6593 3.289 43.94
PG19 SPM 4k 12,622,101 1.8118 3.021 44.43
PG19 SPM 1k 15,865,499 2.2774 2.477 49.91
PG19 SPM 512 18,124,332 2.6016 2.125 46.16

bytes 256 41,288,269 5.9267 0.960 51.61

Figure 7: Word-perplexity scale factor and average bits per token for sentencepiece vocabularies
trained on PG19 with different sizes.

26

	Further Analysis.
	Computational Complexity
	Comparison between context, recurrence, and memory
	Comparison against Longformer

	Gate Initialization and Training Stability
	Training Details
	Dataset licensing and other issues.
	Selection of data sets
	Comparisons with previously published results.

	Window Size and Number of Recurrent States
	Block-Feedback
	Scaling Plot Details
	Qualitative Analysis Results
	Clearing the recurrent state

	Token level cross-entropy
	Vocabulary Ablation Experiments
	Effect of vocabulary on model perplexity
	Vocabulary size
	Vocabulary quality

	Experimental results

