
A Appendix

A.1 Proofs

A.1.1 Extended Preliminary (Cont. from Section 3.1)

Before proceeding to the proofs, we first provide additional preliminary material that supplements
Section 3.1. We begin by formally defining multihead self-attention and Transformer. Our definition
is equivalent to Vaswani et al. (2017) [68], except we omit layer normalization for simplicity as in
[81, 23, 34]. Specifically, a multihead self-attention layer MSA : Rn×d → Rn×d is defined as:

αh = softmax
(
XwQ

h (XwK
h)⊤/

√
dH

)
, (7)

MSA(X)i =

H∑
h=1

n∑
j=1

αh
ijXjw

V
h wO

h , (8)

where H is number of heads, dH is head size, and wQ
h , w

K
h ∈ Rd×dH , wV

h ∈ Rd×dv wO
h ∈ Rdv×d.

In our proofs, we use biases for query and key projections as in [81] but omit them here for brevity.
With multihead self-attention, a Transformer layer T : Rn×d → Rn×d is defined as:

H = X+ MSA(X), (9)
T (X) = H+ MLP(H), (10)

where MSA : Rn×d → Rn×d is a multihead self-attention layer with H heads of size dH and
MLP : Rn×d → Rn×d is a tokenwise MLP with hidden dimension dF .

We now provide the complete definition of invariant graph networks (IGNs) [47, 46] and maximally
expressive equivariant linear layers [47] summarized in Section 3.1. We first recall Definition 1 and 2:

Definition 1. An order-k Invariant Graph Network (k-IGN) is a function Fk : Rnk×d0 → R written
as the following:

Fk = MLP ◦ Lk→0 ◦ L(T)
k→k ◦ σ ◦ ... ◦ σ ◦ L(1)

k→k, (1)

where each L
(t)
k→k is equivariant linear layer [47] from Rnk×dt−1 to Rnk×dt , σ is activation function,

and Lk→0 is a invariant linear layer from Rnk×dT to R.

Definition 2. An equivariant linear layer is a function Lk→l : Rnk×d → Rnl×d′
written as follows

for order-k input X ∈ Rnk×d:

Lk→l(X)i =
∑
µ

∑
j

Bµ
i,jXjwµ +

∑
λ

Cλ
i bλ, (2)

where i ∈ [n]l, j ∈ [n]k are multi-indices, wµ ∈ Rd×d′
, bλ ∈ Rd′

are weight and bias parameters,
and Bµ ∈ Rnl+k

and Cλ ∈ Rnl

are binary basis tensors corresponding to order-(l + k) and order-l
equivalence classes µ and λ, respectively. Invariant linear layer is a special case of Lk→l with l = 0.

We now define equivalence classes and basis tensors mentioned briefly in Definition 2. The equiva-
lence classes are defined upon a specific equivalence relation ∼ on the index space of higher-order
tensors as follows:
Definition 3. An order-l equivalence class γ ∈ [n]l/∼ is an equivalence class of [n]l under the
equivalence relation ∼, where the equivalence relation ∼ on multi-index space [n]l relates i ∼ j if
and only if (i1, ..., il) = (π(j1), ..., π(jl)) for some node permutation π ∈ Sn.

We note that a multi-index i has the same permutation-invariant equality pattern to any j that satisfies
i ∼ j, i.e., ia = ib ⇔ ja = jb for all a, b ∈ [k]. Consequently, each equivalence class γ in Definition 3
is a distinct set of all order-l multi-indices having a specific equality pattern.

Now, for each equivalence class, we define the corresponding basis tensor as follows:

Definition 4. An order-l basis tensor Bγ ∈ Rnl

corresponding to an order-l equivalence class γ is a
binary tensor defined as follows:

Bγ
i =

{
1 i ∈ γ
0 otherwise (11)

1

For a given l, it is known that there exist bell(l) order-l equivalence classes {γ1, ..., γbell(l)} = [n]l/∼
regardless of n [47]. This gives bell(l) order-l basis tensors Bγ1 , ...,Bγbell(l) accordingly. Thus, an
equivariant linear layer Lk→l in Definition 2 has bell(l + k) weights and bell(l) biases.

Let us consider the first-order equivariant layer L1→1 as an example. We have bell(2) = 2 second-
order equivalence classes γ1 and γ2 for the weight, with γ1 the set of all (i1, i2) with i1 = i2 and γ2
the set of all (i1, i2) with i1 ̸= i2. From Definition 4, their corresponding basis tensors are Bγ1 = I
and Bγ2 = 11⊤ − I. Given a set of features X ∈ Rn×d,

L1→1(X) = IXw1 + (11⊤ − I)Xw2 + 1b⊤, (12)

with two weights w1, w2 ∈ Rd×d′
, and a single bias b ∈ Rd′

. For graphs (k = l = 2), we have
bell(4) = 15 weights and bell(2) = 2 biases.

A.1.2 Proof of Lemma 1 (Section 3.3)

To prove Lemma 1, we need to show that each basis tensor Bµ (Eq. (11)) in weights of equivariant
linear layers (Eq. (2)) can be approximated by the self-attention coefficient αh (Eq. (7)) to arbitrary
precision up to normalization if its input is augmented by node and type identifiers (Section 3.3).

From Definition 4, each entry of basis tensor Bµ
i,j encodes whether (i, j) ∈ µ or not. Here, our key

idea is to break down the inclusion test (i, j) ∈ µ into equivalent but simpler Boolean tests that can be
implemented in self-attention (Eq. (8)) as dot product of i-th query and j-th key followed by softmax.

To achieve this, we show some supplementary Lemmas. We start with Lemma 2, which comes from
Lemma 1 of Kim et al. (2021) [34] (we repeat their proof here for completeness).
Lemma 2. For any order-(l + k) equivalence class µ, the set of all i ∈ [n]l such that (i, j) ∈ µ for
some j ∈ [n]k forms an order-l equivalence class. Likewise, the set of all j such that (i, j) ∈ µ for
some i forms an order-k equivalence class.

Proof. We only prove for i as proof for j is analogous. For some (i1, j1) ∈ µ, let us denote the
equivalence class of i1 as γl (i.e., i1 ∈ γl). It is sufficient that we prove i ∈ γl ⇔ ∃j : (i, j) ∈ µ.

(⇒) For all i ∈ γl, as i1 ∼ i, there exists some π ∈ Sn such that i = π(i1) by definition. As π acts on
multi-indices entry-wise, we have π(i1, j1) = (i, π(j1)). As π(i1, j1) ∼ (i1, j1) holds by definition,
we have (i, π(j1)) ∼ (i1, j1), and thus (i, π(j1)) ∈ µ. Therefore, for all i ∈ γl, by setting j = π(j1)
we can always obtain (i, j) ∈ µ.

(⇐) For all (i, j) ∈ µ, as (i, j) ∼ (i1, j1), there exists some π ∈ Sn such that (i, j) = π(i1, j1). This
gives i = π(i1) and j = π(j1), leading to i ∼ i1 and therefore i ∈ γl.

Lemma 2 states that the equivalence classes γl of i and γk of j are identical for all (i, j) ∈ µ. Based
on this, we appropriately break down the test (i, j) ∈ µ into a combination of several simpler tests, in
particular including i ∈ γl and j ∈ γk:
Lemma 3. For a given order-(l + k) equivalence class µ, let γl and γk be equivalence classes of
some i1 ∈ [n]l, j1 ∈ [n]k respectively that satisfies (i1, j1) ∈ µ. Then, for any i ∈ [n]l and j ∈ [n]k,
(i, j) ∈ µ holds if and only if the following conditions both hold:

1. i ∈ γl and j ∈ γk

2. ia = jb ⇔ i2a = j2b for all a ∈ [l], b ∈ [k], and (i2, j2) ∈ µ

Proof. (⇒) If (i, j) ∈ µ, from Lemma 2 it follows that i ∈ γl and j ∈ γk. Also, as all (i2, j2) ∈ µ
including (i, j) have the same equality pattern, it follows that for all a ∈ [l], b ∈ [k], and (i2, j2) ∈ µ,
if i2a = j2b then ia = jb and if i2a ̸= j2b then ia ̸= jb.

(⇐) We show that the conditions specify that the equivalence class of (i, j) is µ.

For this, it is convenient to represent an order-l equivalence class γ as an equivalent undirected graph
G = (V, E) defined on vertex set V = {v1, ..., vl} where the vertices va and vb are connected, i.e.,
(va, vb) ∈ E if and only if the equivalence class γ specifies ia = ib∀i ∈ γ. Then, for some multi-index
i′ ∈ [n]l, the inclusion i′ ∈ γ holds if and only if the equivalence class of i′ is represented as G.

2

G μ

v 1

v 2

u 1

u 2

u 3

v 1

v 2

u 1

u 2

u 3

E C

Goal: test (i, j) ∈ μ Condition 1. Condition 2.
i ∈ γ l and j ∈ γ k ia = jb ⟺ i2a = j2b for all

G l

v 1

v 2

u 1

u 2

u 3

E l

E k

G kG of (i, j)

v 1

v 2

u 1

u 2

u 3

? ?

?

?

Conditions 1 and 2 hold

v 1

v 2

u 1

u 2

u 3

E l E C

E k

i.e., test G = G μ ⟺ G = G μ

(k = 2, l = 3)

⟺ (i, j) ∈ μa ∈ [k], b ∈ [l], (i2, j2) ∈ μ

Figure 4: An exemplary illustration of testing (i, j) ∈ µ as a combination of simpler tests, based on
equivalence classes µ, γl, and γk represented as graphs Gµ, Gl, and Gk, respectively.

Given this, let us represent the equivalence classes γl, γk, and µ as graphs Gl, Gk, and Gµ respectively:

Gl = (V l, E l) where V l = {v1, ..., vl}, (13)

Gk = (Vk, Ek) where Vk = {u1, ..., uk}, (14)

Gµ = (Vµ, Eµ) where Vµ = V l ∪ Vk = {v1, ..., vl, u1, ..., uk}. (15)

From the precondition that γl and γk are equivalence classes of i1 ∈ [n]l, j1 ∈ [n]k that satisfies
(i1, j1) ∈ µ, we can see that (va, vb) ∈ E l ⇔ (va, vb) ∈ Eµ and (ua, ub) ∈ Ek ⇔ (ua, ub) ∈ Eµ.
That is, if we consider V l and Vk as a graph cut of Gµ and write the cut-set (edges between V l and
Vk) as EC = {(va, ub)|(va, ub) ∈ Eµ}, we obtain a partition {E l, Ek, EC} of the edge set Eµ.

We now move to the conditions.

Let us assume the first condition that i ∈ γl and j ∈ γk, with the equivalence classes represented as
Gl and Gk, respectively. Now, let us consider the equivalence class of (i, j) represented by (unknown)
graph G = (V, E). Considering Vk and V l as a graph cut of G, we can see that E is partitioned as
{E l, Ek, ED} where ED is the cut-set (edges between V l and Vk).

Let us also assume the second condition ia = jb ⇔ i2a = j2b for all a ∈ [l], b ∈ [k], and (i2, j2) ∈ µ.
This directly implies that e ∈ EC ⇔ e ∈ ED, meaning that EC = ED. As a result, we see that G and
Gµ are identical graphs, and therefore the equivalence class of (i, j) is µ and (i, j) ∈ µ holds.

In Figure 4, we provide an exemplary illustration of testing (i, j) ∈ µ following the above discussion.

With Lemma 3, we have a decomposition of (i, j) ∈ µ into independent conditions on i and j
combined with pairwise conditions between i and j. In the following Definition 5 and Property 1, we
encode these tests into a single scoring function that can be later implemented by self-attention.
Definition 5. A scoring function δ(i, j;µ, ϵ) is a map that, given an order-(l + k) equivalence class
µ and ϵ > 0, takes multi-indices i ∈ [n]l, j ∈ [n]k and gives the following:

δ(i, j;µ, ϵ) = 1i∈γl + (1− ϵ)1i/∈γl + 1j∈γk + (1− ϵ)1j/∈γk +
∑
a∈[l]

∑
b∈[k]

sgn(a, b)1ia=jb , (16)

where 1 is indicator, γl and γk are equivalence classes of i1 ∈ [n]l, j1 ∈ [n]k such that (i1, j1) ∈ µ,
and the sign function sgn(·, ·) is defined as follows:

sgn(a, b) =

{
+1 i2a = j2b∀(i2, j2) ∈ µ

−1 i2a ̸= j2b∀(i2, j2) ∈ µ
. (17)

An important property of the scoring function δ(i, j;µ) is that it gives the maximum possible value if
and only if the input satisfies (i, j) ∈ µ, as shown in the below Property 1.

3

wh
Q wh

K

de de

d

dp
sgn(1, k)

√aI

de

bell(2k)d
√aI

...

...

...

sgn(1, 1)

√aI
dpkdp

k2dp

de

kdp kdp...

sgn(k, 1)

√aI
sgn(k, k)

√aI

2de

de de

d

dp

de

bell(2k)d
√aI

...... ...

√aI
dpkdp

k2dp

de

kdp kdp... 2de

√aI

√aI

√aI

Figure 5: Query and key projection matrices wQ
h , w

K
h (Eq. (18), Eq. (19)). Uncolored cells are zeros.

Property 1. For given order-(l + k) equivalence class µ and positive real number ϵ > 0, for any
i ∈ [n]l and j ∈ [n]k, (i, j) ∈ µ holds if and only if the scoring function δ(i, j;µ, ϵ) (Eq. (16)) outputs
the maximum possible value.

Proof. As shown in Lemma 3, (i, j) ∈ µ holds if and only if the following two conditions are met.

1. i ∈ γl and j ∈ γk

2. ia = jb ⇔ i2a = j2b for all a ∈ [l], b ∈ [k], and (i2, j2) ∈ µ

When both conditions are satisfied, in Eq. (16), we always have 1i∈γl + (1 − ϵ)1i/∈γl = 1 and
1j∈γk + (1 − ϵ)1j/∈γk = 1. We also have 1ia=jb = 1 for sgn(a, b) = 1 and 1ia=jb = 0 for
sgn(a, b) = −1 for all a ∈ [l], b ∈ [k]. As a result, Eq. (16) gives a constant output for all (i, j) ∈ µ.

On the other hand, if given (i, j) violates any of the conditions (thus (i, j) /∈ µ), we either have
1i∈γl + (1− ϵ)1i/∈γl = (1− ϵ), or 1j∈γk +(1− ϵ)1j/∈γk = (1− ϵ), or 1ia=jb = 0 for sgn(a, b) = 1
or 1ia=jb = 1 for sgn(a, b) = −1 for some a ∈ [l], b ∈ [k]. Any of these violations decrements the
output of Eq. (16) by a positive (1 or ϵ), resulting in a non-maximum output.

Thus, the scoring function δ(i, j;µ, ϵ) gives the maximum possible output if and only if (i, j) ∈ µ.

Now, we prove Lemma 1.

Lemma 1. For all X ∈ Rnk×d and their augmentation Xin, self-attention coefficients αh (Eq. (3))
computed with Xinwin can approximate any basis tensor Bµ ∈ Rn2k

of order-k equivariant linear
layer Lk→k (Definition 2) to arbitrary precision up to normalization.

Proof. Let us first recall the node and type identifiers (Section 3.3) for order-k tensors X ∈ Rnk×d.
Node identifier P ∈ Rn×dp is an orthonormal matrix with n rows, and type identifier is a train-
able matrix E ∈ Rbell(k)×de with bell(k) rows Eγ1 , ...,Eγbell(k) , each designated for an order-k
equivalence class γ. For each multi-index i = (i1, ..., ik) ∈ [n]k, we augment the corresponding
input tensor entry as [Xi,Pi1 , ...,Pik ,E

γi

] where i ∈ γi, obtaining the augmented order-k tensor
Xin ∈ Rnk×(d+kdp+de). We use a trainable projection win ∈ R(d+kdp+de)×dT to map them to a
hidden dimension dT .

We now use self-attention on Xinwin to perform an accurate approximation of the equivariant basis.
Specifically, we use each self-attention matrix αh (Eq. (7)) to approximate each basis tensor Bµh of
Lk→k (Eq. (2)) to arbitrary precision up to normalization.

Let us take dT = (d+ kdp + de) + bell(2k)d, putting bell(2k)d extra channels on top of channels
of the augmented input Xin. We now let win = [I,0], where I ∈ R(d+kdp+de)×(d+kdp+de) is
an identity matrix and 0 ∈ R(d+kdp+de)×(dT −(d+kdp+de)) is a matrix filled with zeros. With this,
X′ = Xinwin simply contains Xin in the first (d+ kdp + de) channels and zeros in the rest.

Now we pass X′ to the self-attention layer in Eq. (7), where each self-attention matrix is given as
αh = softmax((X′wQ

h + bQh)(X
′wK

h + bKh)⊤/
√
dH). The key idea is to set query and key projection

4

parameters wQ
h , w

K
h ∈ RdT ×dH and bQh , b

K
h ∈ RdH appropriately so that the self-attention matrix αh

approximates a given basis tensor Bµ corresponding to an order-2k equivalence class µ. Let γQ and
γK be equivalence classes of some i1, j1 ∈ [n]k respectively that satisfy (i1, j1) ∈ µ (see Lemma 3).
We set head dimension dH = k2dp + 2de and set wQ

h , w
K
h , bQh , b

K
h as follows:

(wQ
h)ij =


sgn(s, r)

√
aIi−I,j−J

{
I < i ≤ I + dp for I = d+ (s− 1)dp,
J < j ≤ J + dp for J = (s− 1)kdp + (r − 1)dp,
for all s, r ∈ [k]

√
aIi−I,j−J

{
I < i ≤ I + de for I = d+ kdp,
J < j ≤ J + de for J = k2dp,

0 otherwise

,

(18)

(wK
h)ij =


√
aIi−I,j−J

{
I < i ≤ I + dp for I = d+ (r − 1)dp,
J < j ≤ J + dp for J = (s− 1)kdp + (r − 1)dp,
for all s, r ∈ [k]

√
aIi−I,j−J

{
I < i ≤ I + de for I = d+ kdp,
J < j ≤ J + de for J = k2dp + de,

0 otherwise

,

(19)

(bQh)j =

{ √
aEγK

j−J J < j ≤ J + de for J = k2dp

0 otherwise
, (20)

(bKh)j =

{ √
aEγQ

j−J J < j ≤ J + de for J = k2dp + de

0 otherwise
, (21)

where a > 0 is a positive real, I is an identity matrix, and sgn(·, ·) is the sign function defined in
Eq. (17) (Definition 5). In Figure 5 we provide an illustration of the query and key weights wQ

h , w
K
h .

With the parameters, i-th query and j-th key entries are computed as follows:

X′
iw

Q
h + bQh =

√
a[[sgn(1, 1)Pi1 , ..., sgn(1, k)Pi1], ..., [sgn(k, 1)Pik , ..., sgn(k, k)Pik],E

γi

,EγK

],
(22)

X′
jw

K
h + bKh =

√
a[

k repeats︷ ︸︸ ︷
[Pj1 , ...,Pjk], ..., [Pj1 , ...,Pjk],E

γQ

,Eγj

]. (23)

Then, scaled pairwise dot product of query and key is given as follows:

(X′
iw

Q
h + bQh)

⊤(X′
jw

K
h + bKh)

√
dH

=
a√
dH

(Eγi

)⊤EγQ

+ (Eγj

)⊤EγK

+
∑
a∈[k]

∑
b∈[k]

sgn(a, b)P⊤
iaPjb

 .

(24)

We refer to the scaled dot product in Eq. (24) as the unnormalized attention coefficient α̃h
i,j.

We now let the type identifiers Eγ1 , ...,Eγbell(k) be radially equispaced unit vectors on any two-
dimensional subspace (Figure 6). This guarantees that any pair of type identifiers Eγ1 ,Eγ2 with
γ1 ̸= γ2 have dot product (Eγ1)⊤Eγ2 ≤ cos (2π/bell(k)). By setting ϵ = 1− cos (2π/bell(k)) > 0,
this can be equivalently written as (Eγ1)⊤Eγ2 ≤ 1− ϵ. We additionally note that (Eγi

)⊤EγQ

= 1
if and only if i ∈ γQ because γi = γQ ⇔ i ∈ γQ.

Combining the above, Eq. (24), and Eq. (16), we have the following:

α̃h
i,j =

a√
dH

δ(i, j;µ, ϵ) if (i, j) ∈ µ, (25)

α̃h
i,j ≤

a√
dH

δ(i, j;µ, ϵ) otherwise, (26)

where ϵ = 1− cos (2π/bell(k)) and δ(i, j;µ, ϵ) is the scoring function in Eq. (16) (Definition 5).

5

Eγ1

Eγ2

Eγ3Eγ4

Eγ5

2π/5

de = 3
k = 3 → bell(k) = 5

Figure 6: k = 3 case example of bell(k) = 5 type identifiers embedded in de = 3 dimensional space.

For a given query index i, let us assume there exists at least one key index j such that (i, j) ∈ µ 3.
From Property 1 and Eq. (25), all keys j that give (i, j) ∈ µ hold the same maximum value α̃h

i,j =
a√
dH

δ(i, j;µ, ϵ), and any (i, j) /∈ µ gives a value smaller at least by min (1, ϵ) > 0. Then, in softmax
normalization, we send a → ∞ by scaling up the query and key projection parameters. This pushes
softmax arbitrarily close to the hardmax operator, leaving only the maximal entries leading to the
following:

αh
i,j =

exp(α̃h
i,j)∑

j exp(α̃
h
i,j)

→
1(i,j∈µ)∑
j 1(i,j∈µ)

=
Bµ

i,j∑
j B

µ
i,j

as a → ∞. (27)

Thus, as shown in Eq. (27), the attention coefficient αh can arbitrarily accurately approximate the
normalized basis tensor Bµ for given equivalence class µ.

A.1.3 Proof of Theorem 1 (Section 3.3)

Theorem 1. For all X ∈ Rnk×d and their augmentation Xin, a Transformer layer with bell(2k)
self-attention heads that operates on Xinwin can approximate an order-k equivariant linear layer
Lk→k(X) (Definition 2) to arbitrary precision.

Proof. We continue from the proof of Lemma 1 and assume that each attention matrix α1, ...,αbell(2k)

in Eq. (7) head-wise approximates each normalized basis tensor Bµ1 , ...,Bµbell(2k) respectively, i.e.,
αh

i,j = Bµh

i,j /
∑

j B
µh

i,j .4

Then, in Eq. (8) we use dv = d and set wV
h ∈ RdT ×d to wV

h = [I;0], where I ∈ Rd×d is an identity
matrix and 0 ∈ R(dT −d)×d is a matrix filled with zeros. With this, the value projection of each i-th
entry simply gives the original input features, X′

iw
V
h = Xi.

Then, we set output projections wO
h ∈ Rd×dT as follows:

(wO
h)ij =

{
(wµh

)i,j−J J < j ≤ J + d for J = (d+ kdp + de) + (h− 1)d
0 otherwise , (28)

where wµ1 , ..., wµbell(2k)
∈ Rd×d are weight matrices of the given equivariant linear layer Lk→k in

Eq. (2) (Definition 2), each corresponding to equivalence classes µ1, ..., µbell(2k).

Then, output projection applied after value projection of each i-th input entry gives the following:

X′
iw

V
h wO

h = Xiw
O
h = [0,0L,Xiwµh

,0R], (29)

where 0 ∈ R(d+kdp+de), 0L ∈ R(h−1)d, 0R ∈ RdT −(d+kdp+de)−hd are zero vectors.
3If such key index j does not exist, corresponding basis tensor entries are Bµ

i,j = 0∀j, and approximation
target cannot be defined as normalizing denominator

∑
j B

µ
i,j is 0. Thus we do not approximate for such i, let

attention row αi,· have any finite values, and later silence their attention output by multiplying zero at MLP.
4we handle the case

∑
j B

µh
i,j = 0 later separately as mentioned in footnote 3.

6

Based on the results, we compute the MSA with skip connection H = X′ + MSA(X′) (Eq. (9)):
Hi = X′

i + MSA(X′)i (30)

=
[
Xi,Pi1 , ...,Pik ,E

γi

,01

]
+

02,
∑
j

Bµ1

i,j∑
j B

µ1

i,j

Xjwµ1 , ...,
∑
j

B
µbell(2k)

i,j∑
j B

µbell(2k)

i,j

Xjwµbell(2k)

 (31)

=

Xi,Pi1 , ...,Pik ,E
γi

,
∑
j

Bµ1

i,j∑
j B

µ1

i,j

Xjwµ1 , ...,
∑
j

B
µbell(2k)

i,j∑
j B

µbell(2k)

i,j

Xjwµbell(2k)

 , (32)

where 01 ∈ RdT −(d+kdp+de), 02 ∈ R(d+kdp+de) are zero vectors.

We use feedforward MLP (Eq. (10)) to denormalize and combine the result. Specifically, we make the
elementwise MLP approximate following f : RdT → RdT based on universal approximation [23, 26]:

f(Hi)j =

 −Hi,j +
∑

h∈[bell(2k)] g(Hi)hHi,j+J + b(Hi)j j ≤ d

0 d < j ≤ (d+ kdp + de)
−Hi,j j > (d+ kdp + de)

, (33)

g(Hi)h =
∑
j

Bµh

i,j , (34)

b(Hi)j = (bγi)j = (
∑
γ

Cγ
i bγ)j , (35)

where J = (d+ kdp + de) + (h− 1)d, and bγ1
, ..., bγbell(k)

are biases of the given equivariant linear
layer Lk→k with corresponding basis tensors Cγ1 , ...,Cγbell(k) (Eq. (2)).

Within the function f , the auxiliary function g : RdT → Rbell(2k) computes head-wise attention
denormalization factor5 and b : RdT → Rd computes bias. As n and k are fixed constants, the outputs
g(Hi) and b(Hi) only depend on the equivalence class γi of i. We note that the functions g and b can
deduce the equivalence class from the input Hi, by extracting the type identifier Eγi

= H⊤
i [03, I,04]

with I ∈ Rde×de an identity matrix and 03 ∈ Rd+kdp , 04 ∈ Rbell(2k)d zero matrices.

Based on the results, we compute the feedforward MLP with skip connection T (X′) = H+MLP(H)
(Eq. (10)), which is the output of Transformer layer T :

T (X′)i = Hi + MLP(H)i (36)
= Hi + f(Hi) (37)

=
[
Xi,Pi1 , ...,Pik ,E

γi

,S1
i , ...,S

bell(2k)
i

]
+

−Xi +
∑

h∈[bell(2k)]

∑
j

Bµh

i,j Xjwµh
+
∑
γ

Cγ
i bγ ,05,−S1

i , ...,−S
bell(2k)
i

 , (38)

=

 ∑
h∈[bell(2k)]

∑
j

Bµh

i,j Xjwµh
+
∑
γ

Cγ
i bγ ,Pi1 , ...,Pik ,E

γi

,06

 , (39)

where we write Sh
i =

∑
j

B
µh
i,j∑

j B
µh
i,j

Xjwµh
and 05 ∈ Rkdp+de ,06 ∈ R(dT −(d+kdp+de)) are zeros.

In Eq. (39), note that the Transformer layer T (X′)i only updates the first d channels of X′
i from

Xi to
∑

µ

∑
j B

µ
i,jXjwµ +

∑
γ C

γ
i bγ . Therefore, with a simple projection wout = [I;0] ∈ RdT ×d

where I ∈ Rd×d is an identity matrix and 0 ∈ R(dT −d)×d is a matrix filled with zeros, we can select
the first d channels of the output and finally obtain T (X′)wout = Lk→k(X).

In conclusion, a Transformer layer with bell(2k) self-attention heads that operates on augmented X′

can approximate any given Lk→k(X) to arbitrary precision.
5Note that the g(Hi)h gives 0 for all i that

∑
j B

µh
i,j = 0, which automatically handles the corner case as

discussed at footnote 3 and footnote 4.

7

A.1.4 Proof of Theorem 2 (Section 3.3)

Theorem 2. For all X ∈ Rnk×d and their augmentation Xin, a Transformer composed of T layers
that operates on Xinwin followed by sum-pooling and MLP can approximate an k-IGN Fk(X)
(Definition 1) to arbitrary precision.

Proof. We continue from the proof of Theorem 1, and assume that each Transformer layer T can
approximate a given Lk→k by only updating the first d channels.

Then, based on Theorem 1 we assume the following for each t < T :

T (t)(X′)i =
[
σ(L

(t)
k→k(X))i,Pi1 , ...,Pik ,E

γi

,06

]
(40)

where X′
i = [Xi,Pi1 , ...,Pik ,E

γi

,06]. While Theorem 1 gives L(t)
k→k(X) in the first d channels,

we add elementwise activation σ(·) by absorbing it into the elementwise MLP in Eq. (33). Then,
leveraging the property that each Transformer layer T (t) only updates the first d channels, we stack
T − 1 Transformer layers T (1), ..., T (T−1) and obtain the following:

T (T−1) ◦ ... ◦ T (1)(X′)i =
[
σ ◦ L(T−1)

k→k ◦ σ ◦ ... ◦ σ ◦ L(1)
k→k(X)i,Pi1 , ...,Pik ,E

γi

,06

]
. (41)

For the last layer T (T), we follow the procedure in the proof of Theorem 1 to approximate L
(T)
k→k,

but slightly tweak Eq. (33) so that elementwise MLP copies each output entry Lk→k(X)
(T)
i in

appropriate reserved channels. Specifically, we let the elementwise MLP approximate following f ′:

f ′(Hi)j =

{ −Hi,j j ≤ D
−Hi,j +Cγa

i Fi,j−(D+(a−1)d) D + (a− 1)d < j ≤ D + ad for all a ∈ [bell(k)]
−Hi,j D + bell(k)d < j

,

(42)

where D = (d + kdp + de) and we abbreviate Fi,j =
∑

h∈[bell(2k)] g(Hi)hHi,j+J + b(Hi)j with
J, g, b defined as same as in Eq. (33). Recall that Cγa

i = 1 if and only if i ∈ γa. Therefore, with
Eq. (42), we are simply duplicating each output entry Fi = L

(T)
k→k(X)i to spare channel indices

reserved for the equivalence class of i (γa that i ∈ γa).

With the choice of T (T), the layer output T (T)(X′) = H+ MLP(H) (Eq. (10)) is computed as:

T (T)(X′)i = Hi + MLP(H)i (43)

= Hi + f ′(Hi) (44)

=
[
07,C

γ1

i L
(T)
k→k(X)i, ...,C

γbell(k)
i L

(T)
k→k(X)i,08

]
, (45)

where 07 ∈ R(d+kdp+de),08 ∈ RdT −(d+kdp+de)−bell(k)d are zero vectors.

Then, by applying T (T) (Eq. (45)) on top of T (T−1) ◦ ... ◦ T (1) (Eq. (41)), we obtain the following:

T (T) ◦ ... ◦ T (1)(X′)i =
[
07,C

γ1

i Yi, ...,C
γbell(k)
i Yi,08

]
. (46)

where we abbreviate Y = L
(T)
k→k ◦ σ ◦ ... ◦ σ ◦ L(1)

k→k(X).

The remaining step is to utilize MLP ◦ sumpool to approximate MLPk ◦ Lk→0 that tops Fk. By
sum-pooling over all indices i, we obtain the following:

sumpool ◦ T (T) ◦ ... ◦ T (1)(X′) =

[
07,
∑
i

Cγ1

i Yi, ...,
∑
i

C
γbell(k)
i Yi,08

]
. (47)

Now, we let the final MLP approximate the following function f ′′ : RdT → Rd:

f ′′(X) = MLPk

 ∑
a∈[bell(k)]

Xawµa + bf

 where Xa
j = XD+(a−1)d+j for j ∈ [d], (48)

8

where wµ1 , ..., wµbell(k)
∈ Rd×d and bf ∈ Rd are the weights and bias of the given invariant linear

layer Lk→0, and each Xa ∈ Rd is a chunk that coincides with reserved channels in Eq. (42). By
plugging in the sum-pooled representation in Eq. (47), we finally obtain the following:

MLP ◦ sumpool ◦ T (T) ◦ ... ◦ T (1)(X′) = f ′′ ◦ sumpool ◦ T (T) ◦ ... ◦ T (1)(X′) (49)

= MLPk

 ∑
a∈[bell(k)]

∑
i

Cγa

i Yiwµa
+ bf

 (50)

= MLPk ◦ Lk→0(Y) (51)

= MLPk ◦ Lk→0 ◦ L(T)
k→k ◦ σ ◦ ... ◦ σ ◦ L(1)

k→k(X) (52)
= Fk(X), (53)

where the last equality comes from Definition 1.

Taken together, we arrive at the conclusion that MLP◦sumpool◦T (T)◦...◦T (1)(X′) can approximate
Fk(X) to arbitrary precision.

A.2 Additional Discussion on Linear Attention for Graph Transformers (Section 4)

We provide an additional discussion on related work, specifically on why Graphormer [78], based on
fully-connected self-attention on nodes, is not compatible with many linear attention methods that
reduce the memory complexity from O(n2) to O(n). A range of prior graph Transformers including
EGT [29], GRPE [54], and SAN [38] can be analyzed analogously. Let us first remind self-attention
with query, key, value Q,K,V ∈ Rn×d and self-attention matrix α ∈ Rn×n:

Att(Q,K,V)i =
∑
j

αijVj where αij =
exp(Q⊤

i Kj/
√
d)∑

k exp(Q⊤
i Kk/

√
d)

. (54)

For graphs, as self-attention on nodes alone cannot recognize the edge connectivity, Graphormer
incorporates the structural information of an input graph G into the self-attention matrix αG ∈ Rn×n

via attention bias matrix bG ∈ Rn×n (referred to as the edge and spatial encoding) as the following:

αG
ij =

exp(Q⊤
i Kj/

√
d+ bG

ij)∑
k exp(Q⊤

i Kk/
√
d+ bG

ij)
. (55)

Unfortunately, this modification immediately precludes the adaptation of many efficient attention
techniques developed for pure self-attention. As representative examples, we take Performer [11],
Linear Transformer [32], Efficient Transformer [62], and Random Feature Attention [55]. The
methods are based on kernelization of the Att(·) operator as the following:

Attϕ(Q,K,V)i =
∑
j

ϕ(Qi)
⊤ϕ(Kj)∑

k ϕ(Qi)⊤ϕ(Kk)
Vj =

ϕ(Qi)
⊤
(∑

j ϕ(Kj)V
⊤
j

)
ϕ(Qi)⊤ (

∑
k ϕ(Kk))

. (56)

As the above factorization of exp(·) into a pairwise dot product eliminates the need to explicitly
compute the attention matrix, it reduces both time and memory cost of self-attention to O(n). Yet,
in Eq. (55), since the bias bG

ij is added to the dot product before exp(·), it is required that the full
attention matrix αG ∈ Rn×n is always explicitly computed. Thus, Graphormer and related variations
are unable to utilize the method and are bound to O(n2).

While above discussion regards kernelization, a wide range of other efficient Transformers, including
Set Transformer [39], LUNA [45], Linformer [71], Nyströmformer [76], Perceiver [31], and Perceiver-
IO [30] are not applicable to Graphormer due to similar reasons.

A.3 Experimental Details (Section 5)

We provide detailed information on the datasets and models used in our experiments in Section 5.
Dataset statistics can be found in Table 3.

9

Table 3: Statistics of the datasets.

(a) Statistics of Barabási-Albert random graph dataset.

Dataset Barabási-Albert
Size 1280
Average # node 14.9
Average # edge 47.8

(b) Statistics of PCQM4Mv2 dataset.

Dataset PCQM4Mv2
Size 3.7M
Average # node 14.1
Average # edge 14.6

A.3.1 Implementation Details of Node and Type Identifiers

In most of our experiments on graph data (k = 2), we fix the Transformer encoder configuration and
experiment with choices of node identifiers P ∈ Rn×dp and type identifiers E ∈ R2×de (Section 2).

For type identifiers E, we set de equal to the hidden dimension d of the main encoder de = d and
initialize and train them jointly with the model.

For orthonormal node identifiers P, we use normalized orthogonal random features (ORFs) or
Laplacian eigenvectors obtained as follows:

• For orthogonal random features (ORFs), we use rows of random orthogonal matrix Q ∈
Rn×n obtained with QR decomposition of random Gaussian matrix G ∈ Rn×n [79, 12].

• For Laplacian eigenvectors, we perform eigendecomposition of graph Laplacian matrix, i.e.,
rows of U from ∆ = I−D−1/2AD−1/2 = U⊤ΛU, where A ∈ Rn×n is adjacency matrix,
D is degree matrix, and Λ, U correspond to eigenvalues and eigenvectors respectively [20].

The model expects dp-dimensional node identifiers P ∈ Rn×dp , while ORF and Laplacian eigenvec-
tors are n-dimensional. To resolve this, if n < dp, we zero-pad the channels. If n > dp, for ORF
we randomly sample dp channels and discard the rest, and for Laplacian eigenvectors we use dp
eigenvectors with the smallest eigenvalues following common practice [20, 42, 38].

As the Laplacian eigenvectors are defined up to the factor ±1 after normalized to unit length [20], we
randomly flip their signs during training. For PCQM4Mv2 (Section 5.2), we apply random dropout
on eigenvectors during training, similar to 2D channel dropout in ConvNets [67]. In our experiments
with PCQM4Mv2, we find that both sign flip and eigenvector dropout work as effective regularizers
and improves performance on validation data.

A.3.2 Second-Order Equivariant Basis Approximation (Section 5.1)

Dataset For the equivariant basis approximation experiment, we use a synthetic dataset containing
Barabási-Albert (BA) random graphs [2]. With U denoting discrete uniform distribution, each graph
is generated by first sampling the number of nodes n ∼ U(10, 20) and the number for preferential
attachment k ∼ U(2, 3), then iteratively adding n nodes by linking each new node to k random
previous nodes. We do not utilize node or edge attributes and only use edge connectivity. We generate
1152 graphs for training and 128 for testing. Further dataset statistics is provided in Table 3a.

Architecture Each model tested in Table 1 is a single multihead self-attention layer (Eq. (9)) with
hidden dimension d = 1024, heads H = bell(2 + 2) = 15, and head dimension dH = 128. As for
the node identifier dimension, we use dp = 24 for ORF and dp = 20 for Laplacian eigenvectors.

Experimental Setup We experiment with sparse or dense input graph representations. For sparse
input, we embed each graph with n nodes and m edges into Xin ∈ R(n+m)×(2dp+de). For dense
input, we use all n2 pairwise edges and obtain Xin ∈ Rn2×(2dp+de), so that sparse edge connectivity
is only used for obtaining Laplacian node identifiers.

For both sparse and dense inputs, we follow the standard procedure in Section 2 to use node and type
identifiers to obtain Xin ∈ RN×(2dp+de) where N = (n +m) or n2, and project it to dimension
d with trainable projection win. We also utilize a special token [null] with trainable embedding
X[null] ∈ Rd (we shortly explain its use) to obtain the final input [X[null];X

inwin] ∈ R(1+N)×d.

10

For an input [X[null];X
inwin], the goal is to supervise each of the H = 15 self-attention heads with

attention matrices α1, ...,α15 to explicitly approximate row-normalized version of each equivariant
basis Bµ1 , ...,Bµ15 ∈ RN×N (Eq. (2)) on the N = (n +m) or n2 input tokens (except [null]).
An issue in supervision is that for rows of Bµ that only contains zeros, normalization is not defined.
To sidestep this, for such rows we simply supervise to attend to the special [null] token only. For
all other rows of Bµ that contains nonzero entry, we supervise the model to ignore [null] token.

Training and Evaluation We train and evaluate all models with L2 loss between attention matrix
αh and normalized basis tensor Bµh (involving [null] token) averaged over heads h = 1, ..., 15.
We train all models with AdamW optimizer [44] on 4 RTX 3090 GPUs each with 24GB. For sparse
inputs we use batch size 512, and for dense inputs we use batch size 256 due to increased memory
cost. We train all models for 3k steps (which takes about ∼1.5 hours) and apply linear learning rate
warmup for 1k steps up to 1e-4 followed by linear decay to 0. For all models, we use dropout rate of
0.1 on the input [X[null];X

inwin] to prevent overfitting.

A.3.3 Large-Scale Graph Learning (Section 5.2)

Dataset For large-scale learning, we use the PCQM4Mv2 quantum chemistry regression dataset
from the OGB-LSC benchmark [27] that contains 3.7M molecular graphs. Along with graph structure,
we utilize both node and edge features e.g., atom and bond types following our standard procedure in
Section 2. Dataset statistics is provided in Table 3b.

Architecture All our models in Table 2 (under Pure Transformers) have the same encoder con-
figuration following Graphormer [78], with 12 layers, hidden dimension d = 768, heads H = 32,
and head dimension dH = 24. We adopt PreLN [75] that places layer normalization before MSA
layer (Eq. (9)), MLP layer (Eq. (10)), and the final output projection after the last encoder layer. We
implement MLP (Eq. (10)) as a stack of two linear layers with GeLU nonlinearity [25] in between.
As for node identifier dimension, we use dp = 64 for ORF and dp = 16 for Laplacian eigenvectors.

As an additional GNN baseline, we run Graph Attention Network (GATv2) [69, 5] under several
configurations. For GAT and GAT-VN in Table 2, we use 5-layer GATv2 with hidden dimension 600
and a single attention head, having 6.7M parameters in total. For GAT-VN (large), we use a 10-layer
GATv2 with hidden dimension 1200 and a single attention head, having 55.2M parameters in total.
For GAT-VN and GAT-VN (large), we use virtual node that helps modeling global interaction [27].

Training and Evaluation We mainly report and compare the Mean Absolute Error (MAE) on the
validation data, and report MAE on the hidden test data if possible. We train all models with L1 loss
using AdamW optimizer [44] with gradient clipping at global norm 5.0. We use batch size 1024
and train the models on 8 RTX 3090 GPUs with 24GB for ∼3 days. We train our models for 1M
iterations, and apply linear lr warmup for 60k iterations up to 2e-4 followed by linear decay to 0. For
our models in Table 2 except TokenGT (Lap) + Performer, we use the following regularizers:

• Attention and MLP dropout rate 0.1
• Weight decay 0.1
• Stochastic depth [28, 64] with linearly increasing layer drop rate, reaching 0.1 at last layer
• Eigenvector dropout rate 0.2 for TokenGT (Lap) (see Appendix A.3.1)

For TokenGT (Lap) + Performer in Table 2, we load a trained model checkpoint of TokenGT (Lap),
change its self-attention to FAVOR+ kernelized attention of Performer [11] that can provably accu-
rately approximate softmax attention, and fine-tune it with AdamW optimizer for 0.1M training steps
with 1k warmup iterations and cosine learning rate decay. With batch size 1024 on 8 RTX 3090
GPUs, fine-tuning takes ∼ 12 hours. We do not use stochastic depth and eigenvector dropout for
fine-tuning. For GAT baselines in Table 2, we use batch size 256 and train the models for 100 epochs
with initial learning rate 0.001 decayed with a factor of 0.25 every 30 epochs.

A.4 Additional Experimental Results (Section 5)

We report additional experimental results and discussions that could not be included in the main text
due to space restriction.

11

N
o em

bedding

�����

�����

�����

�����

�����

�����

Self-attention m
atrix α

h
B

asis tensor B
µ

DenseSparse

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

µ
1

µ
2

µ
1

µ
2

N
ode id. (first-order) +

 type id.
N

ode id. only
N

ode id. +
 type id.

Type id. only
R

and
O

R
F

Lap
R

and
O

R
F

E
quivariant basis

Lap
R

and
O

R
F

Figure
7:

Self-attention
m

aps
learned

under
various

node
and

type
identifier

configurations
for

tw
o

targetequivariantbasis
tensors

(outof
15),for

both
dense

and
sparse

inputs.Forbettervisualization,w
e

clam
p

the
entries

by
0.01.Self-attention

learns
acute

pattern
coherentto

equivariantbasis
w

hen
orthonorm

alnode
identifiers

and
type

identifiers
are

provided
both

as
input.

12

TokenGT (Lap), Train

Network depth (layer)
0 105

TokenGT (ORF), Train

Head 1

Head 32
...

M
ea

n
at

te
nt

io
n

di
st

an
ce

 (
ho

ps
)

0

1

2

3

4

Network depth (layer)
0 105

M
ea

n
at

te
nt

io
n

di
st

an
ce

 (
ho

ps
)

0

1

2

3

4

Head 1

Head 32
...

Figure 8: Attention distance by head and network depth, measured for entire PCQM4Mv2 training
set. Each dot shows mean attention distance in hops across graphs of a head at a layer.

Table 4: Statistics of the transductive node classification datasets.
Dataset CS Physics Photo Computers Chameleon Crocodile
nodes 18,333 34,493 7,650 13,752 2,277 11,631
edges 81,894 247,962 119,081 245,861 36,101 180,020
classes 15 5 8 10 6 6

Table 5: Transductive node classification. OOM denotes out-of-memory error on a 24GB RTX 3080
GPU. We report aggregated test accuracy at best validation accuracy over 7 randomized runs.

CS Physics Photo Computers Chameleon Crocodile
GCN 0.895 ± 0.004 0.932 ± 0.004 0.926 ± 0.008 0.873 ± 0.004 0.593 ± 0.01 0.660 ± 0.01
GAT 0.893 ± 0.005 0.937 ± 0.01 0.947 ± 0.006 0.914 ± 0.002 0.632 ± 0.011 0.692 ± 0.017
GIN 0.895 ± 0.005 0.886 ± 0.046 0.886 ± 0.017 0.362 ± 0.051 0.479 ± 0.027 0.515 ± 0.041
Graphormer 0.791 ± 0.015 OOM 0.894 ± 0.004 0.814 ± 0.013 0.457 ± 0.011 0.489 ± 0.014
TokenGT (Near-ORF) + Performer 0.882 ± 0.007 0.931 ± 0.009 0.872 ± 0.011 0.82 ± 0.019 0.568 ± 0.019 0.583 ± 0.024
TokenGT (Lap) + Performer 0.902 ± 0.004 0.941 ± 0.007 0.919 ± 0.009 0.86 ± 0.012 0.637 ± 0.032 0.638 ± 0.025
TokenGT (Lap) + Performer + SEB 0.903 ± 0.004 0.950 ± 0.003 0.949 ± 0.007 0.912 ± 0.006 0.653 ± 0.029 0.718 ± 0.012

A.4.1 Second-Order Equivariant Basis Approximation (Section 5.1)

In addition to the Figure 2 in the main text that shows learned self-attention maps for dense input, in
Figure 7, we provide an extended visualization of self-attention maps for both dense and sparse inputs.
Consistent to Lemma 1 and Table 1, self-attention achieves accurate approximation of equivariant
basis only when both the orthonormal node identifiers (ORF or Lap) and type identifiers are given.

A.4.2 Large-Scale Graph Learning (Section 5.2)

In addition to the Figure 3 in the main text that shows attention distance measured for the PCQM4Mv2
validation data, in Figure 8, we provide an extended figure of attention distance measured for the
entire training set that contains ∼3M graphs. Overall we find similar trends as analyzed in Section 5.2.

A.4.3 Transductive Node Classification on Large Graphs (Section 5)

While our main experiment in Section 5.2 focuses on graph-level predictions, TokenGT can in
principle be applied to a more broad class of node-level or edge-level graph understanding tasks by
putting prediction head on appropriate output tokens. To demonstrate this, we conduct additional
experiments on a variety of transductive node classification datasets. In contrast to PCQM4Mv2, they
involve large graphs with up to tens of thousands of nodes, posing a challenge to O(n2) complexity
methods such as graph Transformers that rely on dense attention bias.

Dataset We use transductive node classification datasets, where each data is represented as a node in
a large-scale graph, including co-authorship (CS, Physics) [61], co-purchase (Photo, Computers) [61],
and Wikipedia page networks (Chameleon, Crocodile) [59]. We randomly split the dataset into train,
validation, and test sets by randomly reserving 30 random nodes per class for validation and test
respectively, and use the rest of the nodes for training. Dataset statistics is provided in Table 4.

13

Approach We utilize simple variants of TokenGT with Performer kernel attention of O(n+m)
complexity. Due to the large number of nodes n, an immediate challenge for TokenGT is dealing
with the orthonormality assumption on the node identifiers (Lemma 1) as the maximal number of
orthonormal node identifiers is bounded by dimension dp. In this case, it is reasonable to introduce
near-orthonormal vectors as node identifiers, as it is theoretically guaranteed that we can draw
an exponential number O(eΩ(dp)) of dp-dimensional near-orthonormal vectors [22]. For TokenGT
(Near-ORF), we use dp = 64-dimensional random node identifiers where each entry is sampled
from {−1/dp,+1/dp} with coin toss [22]. For TokenGT (Lap), we use a subset of the Laplacian
eigenvectors as node identifiers, specifically dp/2 eigenvectors with lowest eigenvalues and dp/2
eigenvectors with highest eigenvalues, and choose dp among 64-100 based on validation performance.

While Near-ORF and Lap can theoretically serve as an efficient low-rank approximation for or-
thonormal node identifiers, their approximation can affect the quality of modeled equivariant basis
(Section 3). In particular, equivariant basis (µ) represented as sparse basis tensor (Bµ; Definition 4)
are expected to be affected more, as they require most entries to be zero. To remedy this, we take a
simple approach of residually adding one of such sparse equivariant operators Xii 7→ Xii+

∑
j ̸=i Xij

explicitly after each Transformer layer. We denote this variant as TokenGT (Lap) + Performer + SEB,
where SEB abbreviates sparse equivariant basis. This fix is minimal, easy to implement, and highly
efficient as it only requires a single torch.coalesce() call, and also empirically effective.

Architecture All our models in Table 5 utilize a linear prediction head on the node tokens obtained
at the final Transformer layer to perform node-level classification. We perform an exploratory
hyperparameter search over the number of layers from 2-4, heads H from 1-4, hidden dimension d
from 128-1024, and dropout rate from {0.1, 0.5}, based on validation performance.

We employ strong message-passing GNN and graph Transformer baselines, including GCN [36],
GAT [69], GIN [77] which has 2-WL expressiveness similar to ours, and Graphormer [78] based
on fully-connected node self-attention. For message-passing GNNs, we use a 4-layer architecture
and search hidden dimension d from {64, 1024} based on validation performance. For Graphormer,
we perform an exploratory search on the number of layers from 1-4, heads H from 1-4, and hidden
dimension d from 128-1024 based on validation performance. We apply 0.5 dropout for all baselines.

Training and Evaluation We report and compare classification accuracy on the test nodes at
best validation accuracy aggregated over 7 randomized runs. We train all models with node-level
categorical cross-entropy loss using Adam optimizer [35] on a single RTX 3090 GPU with 24GB.
We train all models with a learning rate of 1e-3 for 300 epochs.

Results The results are in Table 5. Graphormer [78] suffers out-of-memory in the Physics dataset
mainly due to the spatial encoding that requires O(n2) memory. By constraining the model capacity
appropriately, we were able to run Graphormer on other datasets. However, we observe a low
performance, presumably due to the memory cost that prevents depth and head scaling. As the
spatial encoding is incorporated into the model via attention bias, the model strictly requires O(n2)
memory and cannot be easily made more efficient. On the other hand, TokenGT variants are able to
utilize Performer attention with O(m+ n) cost, which allows using larger models to achieve the best
performance in all but one dataset (Computers, where the performance is on par with the best model).

A.5 Additional Discussion on Performance on PCQM4Mv2 (Section 5.2)

As in the Table 2 in the main text, TokenGT currently shows a slightly lower performance compared
to the Graphormer and its successors in the PCQM4Mv2 benchmark. We conjecture this is partly
because we intentionally keep its components simple to faithfully adhere to the equivariance theory.
We discuss some engineering approaches that may enhance the performance of TokenGT at the
cost of differentiating from the theory. We consider engineering TokenGT to match or outperform
sophisticated graph Transformers as a promising and important next research direction.

Node Identifiers Our best performing TokenGT (Lap) currently uses Laplacian eigenvectors [20]
as the node identifiers, which has been criticized for issues such as loss of structural information [38]
and sign ambiguity [42]. Thus, one could try to relax the theoretical requirement for orthonormality of
node identifiers and incorporate more powerful node positional encodings [38, 42] as node identifiers,
which could potentially yield better performance in practice.

14

(Hyper)Edge Tokens TokenGT currently treats an undirected input edge (u, v) as if both directions
(u, v) and (v, u) are present, leading to a pair of edge tokens [X(u,v),Pu,Pv] and [X(v,u),Pv,Pu].
Similarly, an undirected order-k input hyperedge (v1, ..., vk) of an higher-order hypergraph is parsed
to all possible orderings of node identifiers. While this is a common characteristic of tensor-based per-
mutation equivariant neural networks [47, 48, 33, 60, 46, 34], they can lead to memory overhead and
redundancy since multiple tokens represent an identical undirected edge. To avoid this, one can use a
single token for each undirected (hyper)edge and pool the node identifiers as

∑k
i=1 ρ(Pvi). Combined

with powerful node identifiers, this approach could potentially enhance the model performance.

15

	Introduction
	Tokenized Graph Transformer (TokenGT)
	Theoretical Analysis
	Preliminary: Permutation Symmetry and Invariant Graph Networks
	Can Self-Attention Approximate Equivariant Basis?
	Pure Transformers are Powerful Graph Learners

	Related Work
	Experiments
	Approximating Second-Order Equivariant Basis
	Large-Scale Graph Learning

	Conclusion
	Appendix
	Proofs
	Extended Preliminary (Cont. from Section 3.1)
	Proof of Lemma 1 (Section 3.3)
	Proof of Theorem 1 (Section 3.3)
	Proof of Theorem 2 (Section 3.3)

	Additional Discussion on Linear Attention for Graph Transformers (Section 4)
	Experimental Details (Section 5)
	Implementation Details of Node and Type Identifiers
	Second-Order Equivariant Basis Approximation (Section 5.1)
	Large-Scale Graph Learning (Section 5.2)

	Additional Experimental Results (Section 5)
	Second-Order Equivariant Basis Approximation (Section 5.1)
	Large-Scale Graph Learning (Section 5.2)
	Transductive Node Classification on Large Graphs (Section 5)

	Additional Discussion on Performance on PCQM4Mv2 (Section 5.2)

