
Supplementary Material for Paper
“Terra: Imperative-Symbolic Co-Execution of

Imperative Deep Learning Programs”

A Criteria for Node Equality When Merging Traces

1 def function(x, N):

2 for i in range(N):

3 x = opA(x)

4 return x

(a) Original Program

1 def function_jit(x, N):

2 try:

3 terra_runtime_info.push_call_id(call_id)

4 try:

5 terra_runtime_info.push_loop_pair(

6 (loop_id, 0))

7 for i in range(N):

8 terra_runtime_info.inc_loop_counter(

9 loop_id)

10 x = opA(x) # another func call

11 finally:

12 terra_runtime_info.pop_loop_pair()

13 return x

14 finally:

15 terra_runtime_info.pop_call_id()

(b) Transformed Program

Figure 1: Conceptual illustration of how Terra applies JIT compilation to track a call id and a loop id

When the GraphGenerator attempts to match two operations while merging multiple traces into a
TraceGraph, it compares the type, attributes, and the executed location of each operation. A type of
an operation is a kind of the operation, and attributes of operations are information that determines
the behavior of the operation. For example, the MatMul operation of TensorFlow has ‘MatMul’ as
its type, and takes transpose_a and transpose_b as the operation attributes to determine whether the
input matrices should be transposed or not. If the GraphGenerator attempts to match the MatMul
operation whose transpose_a is true with the MatMul operation whose transpose_a is false, the
GraphGenerator fails to match because of the different attributes.

Each executed location of operations stands for the program location in which the operation is
actually executed. Since the executed location of the operation is determined at runtime, Terra utilizes
a just-in-time (JIT) compilation to evaluate the location. As shown in Figure 1, Terra assigns unique
call ids to every function call and unique loop ids to every loop in a given imperative DL program.
For each function call, the call id of the function is pushed to the call id stack, which accumulates
the call ids. Terra manages the call id stack for the entire program execution 1, including the tracing
phase and the co-execution phase. The pushed call id is popped when the function is returned. Thus,
the call id stack contains all information of nested function calls. Similarly, the pair of (loop id, loop
counter=0) of the loop is pushed to the loop id stack for each loop. The loop counter is increased for
every new iteration of the loop, and the pair of (loop id, loop counter) is popped after exiting the loop.
As same as the call id stack, Terra manages the loop id stack for the entire program execution.

1Current implementation of Terra does not consider multi-threading yet.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

1

7

8

9

6

2 4

3 5

start

end

a

b c d

e f

g h

j

k

l

i

(a) TraceGraph

1

a

42

6

53

b c

7 X

8

9

g, h i

i, j

switch-cases

d

(b) The ordered list of switch-cases

Figure 2: The result of the case assignment algorithm for the given TraceGraph.

B Case Assignment Algorithm

In this section, we describe the case assignment algorithm that Terra uses to explicitly insert the
Switch-Case operations in the symbolic graph. The algorithm takes a TraceGraph as an input and
returns an ordered list of switch-cases. A switch-case is a set of (basic block, control edges) where the
basic block is a linear chain of nodes, and the control edges are the edges that point to the basic block.
Every non-overlapping linear chain of nodes in the TraceGraph is uniquely assigned to a basic block
so that the ordered list of switch-cases can cover every trace in the TraceGraph. If there is a loop node
in the TraceGraph, the algorithm treats it as a single node because the loop node is converted to the
While operation in the symbolic graph. For example, from the TraceGraph of Figure 2a, the algorithm
returns the ordered list of switch-cases of Figure 2b.

Algorithm 1 describes how the case assignment algorithm works. The algorithm traverses the given
TraceGraph in topological order and makes each basic block contain a linear chain of nodes as long
as possible. Figure 3 shows an example workflow of the algorithm when the TraceGraph of Figure 2a
is an input. At first, the next_edges is initialized with {edge a} at line 2. Then the algorithm calculates
the in-degree of node 1 from E \ next_edges at line 12. Since node 1 has no more incoming edge
except for edge a, it becomes the first node of basic_block at line 14. Then the algorithm attempts to
expand basic_block as long as possible, but it cannot expand because the out-degree of node 1 is 3 so
that node 1 is the end of the linear chain (line 16). Thus, the first switch-case becomes ({node 1},
{edge a}) at line 25. At the next iteration, the next_edges becomes {edge b, edge c, edge d}, and three
basic blocks are created in the single switch-case. Two of them contain the linear chain with two
nodes–{node 2, node 3} and {node 4, node 5}–and the last basic block contains {node 6}. When the
algorithm processes edge i along with {edge g, edge h}, it does not put node 8 into the basic block
because the in-degree of node 8 is not zero (line 12) due to edge j. Thus, the basic block becomes an
empty set. Finally, the algorithm returns the ordered list of switch-cases after creating the basic block
with node 8 and node 9.

As shown in Figure 3, each switch-case within the result of the case assignment algorithm becomes the
Switch-Case operation in the symbolic graph. If a switch-case contains only a single basic block, the
GraphGenerator does not create a redundant Switch-Case operation. For each Switch-Case operation,
the GraphGenerator creates the Case Select operation. During the co-execution, the PythonRunner
informs the GraphRunner of the control edge taken via the Case Select operation. For example, if the
PythonRunner follows edge c of Figure 3, the GraphRunner executes case 2 of the first Switch-Case
operation.

2

Algorithm 1: Terra’s case assignment algorithm.
Input: TraceGraph G = (V ∪ {start, end}, E) where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}
Output: An ordered list of switch-cases S = [s1, s2, . . . , sp]

1 S ← []
2 next_edges← { (start, y) ∈ E | y ∈ V }
3 // create a switch_case for each iteration
4 while next_edges 6= ∅ do
5 switch_case← ∅
6 new_next_edges← ∅
7 // create a case of switch_case for each v
8 forall v ∈ { y | (x, y) ∈ next_edges} do
9 control_edges← edges that point to v among next_edges

10 basic_block← ∅
11 // no incoming edges to v from E \ next_edges
12 if in-degree(v,E \ next_edges) = 0 then
13 // add v to the basic block
14 basic_block← basic_block ∪ {v}
15 // expand basic block to contain the linear chain as long as possible
16 while out-degree(v) = 1 and in-degree(next(v)) = 1 and next(v) 6= end do
17 v ← next(v)
18 basic_block← basic_block ∪ {v}
19 // collect new edges from v
20 new_next_edges← new_next_edges ∪ { (v, y) ∈ E | y ∈ V }
21 else
22 // keep control_edges for the next iteration of the outer while loop
23 new_next_edges← new_next_edges ∪ control_edges
24 // update switch_case
25 switch_case← switch_case ∪ {(basic_block, control_edges)}
26 S.ListAppend(switch_case)
27 next_edges← new_next_edges
28 return S

Now we describe the formal definitions and the proof of the correctness of the algorithm.

Definition 1. A TraceGraph G = (V ∪ {start, end}, E) is a directed acyclic graph (DAG) where
V is set of nodes (V = {v1, . . . , vn}) and E is set of directed edges (E = {e1, . . . , em}) that connect
the nodes. The TraceGraph has two extra nodes: the start node and the end node. The start node is a
unique source node (i.e., in-degree of the start node is 0) and the end node is a unique sink node (i.e.,
out-degree of the end node is 0) of the TraceGraph.

Definition 2. A linear chain is an ordered set of nodes L = {v1, . . . , vl} ⊆ V such that for all
2 ≤ i ≤ l, (vi−1, vi) ∈ E, the in-degrees of all nodes are 1 except v1, and the out-degrees of all nodes
are 1 except vl. Also, the ordered set of edges in the linear chain, I(L) = { (vi−1, vi) | 2 ≤ i ≤ l },
is called in-chain edges.

Definition 3. A case c is a pair of (basic block, control edges) = (Lc, Ec) where Lc = {v1, . . . , vl}
is a linear chain and Ec is a subset of E with the edges that point to v1 of Lc. In addition, a
switch-case s is a set of cases that satisfies the following condition:

∀ c1, c2 ∈ s such that c1 6= c2, Lc1 ∩ Lc2 = ∅ and Ec1 ∩ Ec2 = ∅.

In other words, different cases are mutually exclusive.

Definition 4. A trace t = (Vt ∪ {start, end}, Et) is a DAG that satisfies the following conditions:

1. Vt = {v1, . . . , vk−1} ⊆ V and Et = {e1, . . . , ek} ⊆ E

2. ∀1 ≤ i ≤ k, ei = (vi−1, vi) where v0 = start, vk = end

Moreover, the operation nodes Op(t) of the trace t is Vt, and the path Path(t) of the trace t is Et.

3

1

7

8

9

6

2 4

3 5

end

a

b c d

e f

g h

j

k

l

i
7

8

9

6

2 4

3 5

end

b c d

e f

g h

j

k

l

i

1

a

7

8

9

end

g, h

j

k

l

i

1

a

42

6

53

b c d

8

9

end

i, j

k

l

1

a

42

6

53

b c d

7 X

end

1

a

42

6

53

b c

7 X

8

9

g, h i g, h i

i, j

switch-cases switch-cases

switch-cases switch-cases

switch-cases

d

7

1

8

9

2

3

4

5

6

Switch-Case

case 1 case 2 case 3

Switch-Case

case 1 case 2

Case

Select

Case

Select

symbolic graph from the switch-cases

Figure 3: Example workflow of how the case assignment algorithm works, and how the symbolic
graph is generated from the ordered list of switch-cases. The dotted arrows from a black circle denote
the next_edges variable of Algorithm 1. All processed nodes and edges are assigned to an appropriate
switch-case, where each rectangle of the switch-cases denotes the basic block. X denotes that no node
exists in the basic block.

Definition 5. An ordered list S = [s1, . . . , sp] of switch-cases covers a trace t if the following
conditions hold.

1. For all si, there exists a unique case ci = (Lci , Eci) ∈ si with a unique edge di such
that {di} = Eci ∩ Path(t). The other cases do not have corresponding control edges for
Path(t).

2. The operations in the trace are represented as the linear chains of the ci’s, and all edges in
the trace are the union of in-chain edges, the di’s, and ek. That is,

Op(t) =

p⋃
i=1

Lci and Path(t) =

[
p⋃

i=1

({di} ∪ I(Lci))

]
∪ {ek}.

Note that ek is the edge that points to the end node.

Definition 6. A graph Gs = (Vs ∪ {start, end}, Es) is a sub-TraceGraph with Vs if

1. Gs is a TraceGraph and Vs ⊆ V .
2. Es = E1 ∪ E2 where

E1 = { (u, v) ∈ E | u ∈ Vs ∪ {start}, v ∈ Vs ∪ {end} }
E2 = { (u, end) | (u, v) ∈ E, u ∈ Vs ∪ {start} , v /∈ Vs ∪ {end} }.

To be specific, E1 denotes all the edges between the nodes within Vs ∪ {start, end}. Furthermore,
for all edges whose source node u is in Vs ∪ {start} and destination node v is not in Vs ∪ {end},

4

the sub-TraceGraph changes the destination node of such edges to the end node because the end node
should be a unique sink node of the TraceGraph. Then, E2 denotes the changed edges. We define the
sub-TraceGraph to use in the proof of the following theorem.

Theorem 1. Algorithm 1 generates an ordered list S of switch-cases that covers every trace in the
TraceGraph G = (V ∪ {start, end}, E).

Proof of Theorem 1. To prove the theorem, we define the following auxiliary variables:

• processed nodes Vp =
⋃

s∈S
⋃

c∈s{ v ∈ Lc | c = (Lc, Ec) }
• connecting edges C = { (u, v) ∈ E | u ∈ Vp ∪ {start} , v /∈ Vp ∪ {end}}
• processed TraceGraph Gp = (Vp ∪ { start, end }, Ep)

First, the processed nodes is a set of all nodes in S, which is the same as a set of the nodes that the
algorithm visited. The connecting edges is a set of edges where the source node of each edge is in
Vp ∪ {start} and the destination node of each edge is not in Vp ∪ {end}. Finally, the processed
TraceGraph represents the TraceGraph with the processed nodes. It has Ep such that

Ep ={ (u, v) ∈ E | u ∈ Vp ∪ {start}, v ∈ Vp ∪ {end} } ∪
{(u, end) | (u, v) ∈ C}.

Then, we use the following loop invariants prior to every iteration of the loop at line 4.

1. The next_edges variable of the algorithm is identical to the connecting edges C.

2. The processed TraceGraph Gp is a sub-TraceGraph with Vp.

3. The variable S is an ordered list of switch-cases, and it covers every trace in Gp.

At the beginning of the loop, the three loop invariants hold with S = [], Vp = ∅, C = { (u, v) ∈
E | u = start, v 6= end }, and Ep = {(start, end)}.
Next, we prove that the loop invariants are maintained after each iteration. For each v at line 8, the
variable basic_block is a linear chain collected throughout the while loop of line 16 or an empty set.
If the basic_block contains a linear chain, Vp adds all the nodes within the linear chain. Then the
next_edges becomes the new edges that point to the nodes which are not in Vp ∪ {end} (line 20). If
the basic_block is an empty set, it denotes that v is not added to Vp. Then, the next_edges becomes
the control_edges, where all the edges are pointing to v (line 23). Thus, the first loop invariant holds.
Moreover, the second loop invariant holds because the linear chains of each iteration extend Vp with
corresponding nodes while including in-chain edges and updating the connecting edges. Subsequently,
the third loop invariant holds because each control edges is assigned to the specific case with the
corresponding linear chain (line 25).

Finally, we prove the theorem by showing the following propositions are true.

1. For each iteration, |Vp| strictly increases.

2. After the termination of the outermost while loop, Vp = V and Gp = G.

The first proposition shows that the outermost loop eventually finishes, and the second proposi-
tion shows that the variable S covers every trace in G. First of all, for an iteration, let N =
{v1, v2, . . . , v|N |} from { y | (x, y) ∈ next_edges} at line 8. Then, suppose that |Vp| is not increased,
which denotes

∀vi ∈ N, in-degree(vi, E \ next_edges) 6= 0

at line 12. In other words, it implies that

∀ vi,∃ vj ∈ N such that vj 6= vi, vj ∼ vi

where x ∼ y indicates that for x ∈ V and y ∈ V , there exists a path from x to y in G. Without loss
of generality, assume that v2 ∼ v1. Then, there should exist j such that 3 ≤ j ≤ |N | and vj ∼ v2.
However, this requires a cycle in G in the end, which contradicts to the assumption: G is a DAG.
Thus, |Vp| strictly increases throughout the iterations.

5

1 import tensorflow as tf

2

3 for inputs, labels in train_data_loader:

4 with tf.TerraGradientTape() as tape:

5 logits = model(inputs)

6 loss = loss_fn(logits, labels)

7 grads = tape.gradient(

8 loss, model.trainable_variables)

9 optimizer.apply_gradients(

10 zip(grads, model.trainable_variables))

Figure 4: Programming interface of Terra

Now suppose that Vp * V after the termination of the outermost loop. Then, there exists v ∈ V \ Vp.
However, this contradicts to the termination condition of the loop because there exists a path from
start to v by the definition of the TraceGraph. Thus, Vp = V and Gp = G after the termination of the
outermost while loop.

C Implementation Details

C.1 Modification to TensorFlow’s Internal System

We modified the imperative execution model of TensorFlow for both GraphGenerator and Python-
Runner. When the Python interpreter executes DL operations imperatively in the tracing phase, the
interpreter makes the GraphGenerator record each operation as a symbolic representation, which is a
NodeDef of TensorFlow. During the co-execution phase, functions that trigger an actual computation
of a DL operation (TFE_Py_Execute function and TFE_Py_FastPathExecute_C function) are
modified to perform validating the symbolic graph and creating an empty tensor object. To anno-
tate feed points, we modified FuncGraph.capture to capture all external tensors. Similarly, we
modified EagerTensor.numpy to annotate fetch points.

C.2 Programming Interface

Figure 4 shows an example code of using Terra to speed up the training process. All the program-
mers have to do is just to modify a single line of code in their imperative DL program: changing
from tf.GradientTape to tf.TerraGradientTape at line 4. Since all imperative TensorFlow
programs must use GradientTape to train DNNs, Terra is applicable to all imperative programs
transparently without programmers’ extra burden. Terra generates the symbolic graph from the DL op-
erations within the TerraGradientTape context and the gradient computations (tape.gradient).

C.3 Communication Between the PythonRunner and the GraphRunner

Although the PythonRunner executes the skeleton imperative program sequentially, the graph ex-
ecutor of the GraphRunner allows out-of-order execution. Thus, a deadlock could occur if the two
Runners conduct the co-execution naively. Suppose that Terra executes the imperative program shown
in Figure 5a. Terra generates the symbolic graph from the imperative program as shown in Figure 5b.
Since the two operations do not have data and control dependency in the symbolic graph (i.e., opB
does not consume opA’s output), the GraphRunner can freely select the execution order between
the operations. If the GraphRunner executes opB then opA, the deadlock would occur because the
PythonRunner should receive the output of opA to print its value before it feeds the value k to opB
in the GraphRunner. To prevent the deadlock, the GraphGenerator adds the control dependencies
(defined in TensorFlow) between Output Fetching operations that should be executed prior to and an
Input Feeding operation after generating a symbolic graph. Since the TraceGraph of Terra captures
the execution orders between the collected operations, the GraphGenerator can figure out the control
dependencies.

6

1 x = opA()

2 print(x)

3 k = tf.constant(random.random())

4 # k becomes InputFeeding in the sym. graph

5 y = opB(k)

(a) Imperative Program

Output

Fetching
opA

opB
Input

Feeding

(b) Symbolic Graph

Figure 5: Possible case of deadlock if Terra does not add control dependency between the Output
Fetching and the Input Feeding operations. Note that there is no data dependency between opA and
opB in the symbolic graph.

C.4 Fallback Handling

When the PythonRunner detects a new trace in the co-execution phase, Terra cancels the execution of
the GraphRunner. Then, the PythonRunner executes all the DL operations that have been matched
within the current iteration to make the program state as if it were being performed imperatively from
the beginning. While executing the matched operations, some of them could be executed twice if the
GraphRunner already executed the operations. This can be a problem for stateful operations, which
hold and change the program state such as I/O operations and communication operations. To prevent
this problem, stateful operations are not recorded by the GraphGenerator so that those operations are
not included in the symbolic graph. Any inputs and outputs of the stateful operations are connected
with the symbolic graph through the Input Feeding and the Output Fetching operations.

We exceptionally allow the GraphGenerator to record and generate stateful operations that are related
to variables (both trainable and non-trainable) of a DNN such as the ReadVariableOp operation
and the AssignVariableOp operation of TensorFlow to optimize performance. To ensure correct
execution, the GraphGenerator inserts control dependencies between those operations (e.g., ensuring
read after write) automatically while generating the symbolic graph. Furthermore, for the variables
whose update operations are generated in the symbolic graph (e.g., updating moving averages of
batch normalization), the PythonRunner makes a checkpoint of those variables at the beginning of
each iteration. Whenever the GraphRunner’s execution is canceled, the PythonRunner restores such
variables from the checkpoint and executes the operations that the PythonRunner has succeeded to
match.

D Details on the AutoGraph Failure Cases

Figure 6 shows the codes that AutoGraph fails to convert. First, DropBlock [4] keeps keep_prob
in the class object and alters it during training. However, AutoGraph cannot detect the mutation
throughout the training. Similarly, AutoGraph cannot capture the object mutations of both Music-
Transformer [8] and SDPoint [9]. For MusicTransformer, the object mutation is not related to the
algorithmic characteristic of the model but the programming style of the user. It wraps the entire
training process in a single trainer class, which is a common design pattern for implementing a
program that trains a DNN [5]. The _train_step method calculates the loss value of the model for
each training step, and it writes the value to the loss_value attribute (line 6 of Figure 6b). However,
AutoGraph cannot write the new loss value to the attribute because it does not access the Python
heap while carrying out the symbolic execution. Thus, when the Python interpreter attempts to read
loss_value (line 12), it fails to read the updated loss. Terra correctly captures those mutations
because the PythonRunner accesses the Python heap and updates the objects in the co-execution
phase. BERT-CLS [10] and FasterRCNN [19] show the example cases of tensor materialization
during conversion. For both cases, AutoGraph fails to generate a graph because they cannot evaluate
the exact value of the tensors while generating the symbolic graph. Moreover, BERT-CLS should
evaluate the tensor values to calculate the target metric via a third-party library [3], which Auto-
Graph does not support. However, Terra is not affected by such cases because the GraphGenerator
collects traces while Terra carrying out the imperative execution in the tracing phase. Then in the
co-execution phase, the PythonRunner materializes those tensors via the Output Fetching operations
of the symbolic graph.

7

1 class DropBlock2D(tf.keras.layers.Layer):

2 def set_keep_prob(self, keep_prob=None):

3 if keep_prob is not None:

4 self.keep_prob = keep_prob

5 w, h = tf.cast(self.w, tf.float32), \

6 tf.cast(self.h, tf.float32)

7 self.gamma = (1. - self.keep_prob) * (w * h) \

8 ...

9 def call(self, x, training=False):

10 ...

11 mask = _bernoulli(sampling_mask_shape, self.gamma)

12 ...

(a) DropBlock

1 class MusicTransformerDecoder(tf.keras.models.Model):

2 def _train_step(self, inp_tar, out_tar,

3 lookup_mask, training):

4 predictions = self.call(inp_tar, lookup_mask,

5 training)

6 self.loss_value = self.loss(out_tar, predictions)

7 ...

8

9 def train_on_batch(self, ...):

10 # not a conversion scope

11 ...

12 loss = tf.reduce_mean(self.loss_value)

(b) MusicTransformer

1 class SDResNet(tf.keras.models.Model):

2 def stochastic_downsampling(self, blockID, ratio):

3 downsampling_ratio = ratio is None and 0.5 or ratio

4 for l in self.layers:

5 if isinstance(l, _ConvBlock):

6 if l.blockID == blockID:

7 l.downsampling_ratio = downsampling_ratio

8 else:

9 l.downsampling_ratio = 1.

(c) SDPoint

1 from sklearn.metrics import f1_score

2 class SparseF1Score(object):

3 def __call__(self, y_true, y_predict):

4 y_true = tf.reshape(

5 tf.constant(y_true), [-1]).numpy()

6 y_predict = tf.reshape(

7 tf.argmax(y_predict, -1), [-1]).numpy()

8 f1 = f1_score(y_true, y_predict,

9 average=self.average)

10 return f1

(d) BERT-CLS

1 def calc_batch_padded_shape(meta):

2 return tf.cast(tf.reduce_max(

3 meta[:, 6:8], axis=0), tf.int32).numpy()

(e) FasterRCNN

Figure 6: Code snippets that AutoGraph fails to convert correctly.

8

Table 1: Details on training throughput evaluation.
Program Dataset Batch Size Throughput (per second)

ResNet50 [17] ImageNet [14] 64 188.02 (± 1.08) images
BERT-Q&A [7] SQuAD1.1 [13] 4×384 6184.49 (± 20.24) tokens
YOLOv3 [20] VOC2012 [6] 8 30.00 (± 0.37) images
DCGAN [16] MNIST [12] 500 10727.19 (± 22.25) images
GPT2 [15] OpenWebText [2] 8×515 8764.26 (± 94.20) tokens
BERT-CLS [10] NLPGNNDATA [11] 512×4 9443.13 (± 34.03) tokens
DropBlock [4] ImageNet 64 185.23 (± 0.28) images
SDPoint [9] ImageNet 32 94.33 (± 1.59) images
FasterRCNN [19] COCO2017 [18] 1 2.56 (± 0.03) images
MusicTransformer [8] e-Piano MIDI [1] 2×2048 20031.08 (± 48.49) samples

Table 2: Results of the number of collected traces and the number of fallbacks for each program.
Program # Collected Traces # Fallbacks

ResNet50 [17] 2 0
BERT-Q&A [7] 2 0
YOLOv3 [20] 2 0
DCGAN [16] 2 0
GPT2 [15] 2 0
BERT-CLS [10] 2 0
DropBlock [4] 3 0
SDPoint [9] 4 1
FasterRCNN [19] 2 0
MusicTransformer [8] 2 0

E Details on Training Throughput Evaluation

Table 1 shows the absolute throughput values of Terra for the evaluated programs. Batch sizes
of BERT-Q&A, GPT2, BERT-CLS, and MusicTransformer denote batch_size × sequence_length,
which is the number of tokens in a batch of transformer-based models. DropBlock and SDPoint use
ImageNet because they utilize ResNet50 as their backbone network.

F Tracing Phase Analysis

Table 2 shows the number of collected traces and the number of fallbacks from the co-execution of
Terra. The results show that the symbolic graphs of all the programs can be generated with at most four
traces. This indicates that our approach–collecting multiple traces and incrementally generating the
symbolic graph–is a plausible strategy. Furthermore, the number of collected traces for BERT-CLS,
FasterRCNN, and MusicTransformer shows that Terra correctly executes the programs with only two
traces, while AutoGraph cannot execute them at all.

References
[1] e-Piano Junior Competition. https://www.piano-e-competition.com/

midiinstructions.asp.

[2] Gokaslan Aaron and Cohen Vanya. OpenWebText Corpus, 2019. http://Skylion007.github.
io/OpenWebTextCorpus.

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages
108–122, 2013.

9

https://www.piano-e-competition.com/midiinstructions.asp
https://www.piano-e-competition.com/midiinstructions.asp
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[4] DHZS. tf-dropblock. https://github.com/DHZS/tf-dropblock.

[5] Falcon WA et al. Pytorch lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning,
3, 2019.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Vi-
sual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/
challenges/VOC/voc2012/workshop/index.html.

[7] Hugging Face. Transformers. https://github.com/huggingface/transformers.

[8] Kevin-Yang. MusicTransformer-tensorflow2.0. https://github.com/jason9693/
MusicTransformer-tensorflow2.0.

[9] Jason Kuen. Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in
Convolutional Networks (SDPoint). https://github.com/xternalz/SDPoint.

[10] kyzhouhzau. NLPGNN. https://github.com/kyzhouhzau/NLPGNN.

[11] kyzhouhzau. NLPGNNDATA. https://github.com/kyzhouhzau/NLPGNNDATA.

[12] Yann LeCun and Corinna Cortes. The MNIST Database of handwritten digits. http://yann.lecun.
com/exdb/mnist/.

[13] Rajpurkar Pranav, Zhang Jian, Lopyrev Konstantin, and Liang Percy. SQuAD: 100, 000+ Questions for
Machine Comprehension of Text. In Proceedings of Empirical Methods in Natural Language Processing
(EMNLP), 2016.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 2015.

[15] Abhay Singh. gpt-2-tensorflow2.0. https://github.com/akanyaani/gpt-2-tensorflow2.
0.

[16] TensorFlow. Deep Convolutional Generative Adversarial Network Tutorial. https://www.
tensorflow.org/tutorials/generative/dcgan.

[17] TensorFlow. TensorFlow Model Garden. https://github.com/tensorflow/models.

[18] Lin Tsung-Yi, Maire Michael, Belongie Serge J., Hays James, Perona Pietro, Ramanan Deva, Dollár Piotr,
and Zitnick C. Lawrence. Microsoft COCO: Common Objects in Context. In Proceedings of European
Conference on Computer Vision (ECCV), 2014.

[19] Viredery. tf-eager-fasterrcnn. https://github.com/Viredery/tf-eager-fasterrcnn.

[20] Zihao Zhang. yolov3-tf2. https://github.com/zzh8829/yolov3-tf2.

10

https://github.com/DHZS/tf-dropblock
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
https://github.com/huggingface/transformers
https://github.com/jason9693/MusicTransformer-tensorflow2.0
https://github.com/jason9693/MusicTransformer-tensorflow2.0
https://github.com/xternalz/SDPoint
https://github.com/kyzhouhzau/NLPGNN
https://github.com/kyzhouhzau/NLPGNNDATA
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/akanyaani/gpt-2-tensorflow2.0
https://github.com/akanyaani/gpt-2-tensorflow2.0
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://github.com/tensorflow/models
https://github.com/Viredery/tf-eager-fasterrcnn
https://github.com/zzh8829/yolov3-tf2

	Criteria for Node Equality When Merging Traces
	Case Assignment Algorithm
	Implementation Detail
	Modification to TensorFlow's Internal System
	Programming Interface
	Communication Between the PythonRunner and the GraphRunner
	Fallback Handling

	Details on the AutoGraph Failure Cases
	Details on Training Throughput Evaluation
	Tracing Phase Analysis

