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ABSTRACT
The title gives users a quick description of the product, which
may help improve various downstream tasks of recommendations.
Existing work utilizes language models with limited generation
capabilities, which may lead to issues such as excessively brief
and inefficient titles being produced. To this end, we proposed
an efficient method to generate the next product title, consisting
of the co-visitation recommendation module and the token align-
ment module. The co-visitation module gets the recommended
title through a product co-visitation graph, while the token align-
ment module generates the final title by aligning the recommended
title with the last interacted title to eliminate redundant tokens.
Finally, we achieved high-quality titles and demonstrated compet-
itive performance in the KDD CUP 2023 Tack3 competition (2nd
place). Moreover, our method is very efficient and scalable, making
it highly practical for large-scale systems.
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1 INTRODUCTION
In the digital era, recommendation technology plays a crucial role
in e-commerce platforms [2]. It accurately understands user prefer-
ences by modeling their historical behavior. Product titles, which
provide quick descriptions of product features and characteristics to
users, can enhance various downstream tasks of recommendations,
including cold-start recommendations [12] and navigation. Exist-
ing work [9, 15] utilizes language models with limited generation
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capabilities, which may lead to issues such as excessively brief and
inefficient titles being produced.

The title, as a concise representation of a product, usually fulfills
three requirements experientially: (1) captivating, (2) accurately de-
picts user preferences, and (3) accurately conveys key information.
To address this, we design a simple yet efficient solution called "co-
visitation meets token alignment" for generating the next product
in recommendations. Specifically, it comprises two components:
the co-visitation recommendation module and the token alignment
module. First, the co-visitation module constructs a straightfor-
ward co-visitation graph, which intuitively captures correlations
between products. Second, we align the recommended title based
on the co-visitation module with recently interacted titles. This
alignment operation eliminates redundancy in titles and conveys
key information better. The generated title is derived from titles
that the user has previously interacted with or a subset thereof,
ensuring its appeal to users. Despite its simplicity, our approach
yields high-quality titles, earning us the second-place position in
the competition among 1990+ participants in KDD CUP 2023 Task
3. Additionally, we emphasize that our proposed solution is highly
efficient and can be seamlessly scaled up to large-scale systems,
making it highly practical.

2 RELATEDWORK
Session-based recommendation (SBR) aims to model users’ short-
term preference within anonymous sessions to predict the next
item, which can be viewed as a sub-field of sequential recommen-
dation [14]. In recent years, SBR has played an important role in
e-commerce systems and attracted increasing attention [16]. Recur-
rent neural network (RNN) [5, 6] and attention mechanism [4, 8, 13]
are widely applied to SBR due to their expressive power in sequence
data. For example, Hidasi et al. [6] first introduced RNN into rec-
ommender systems to achieve item-to-item recommendations and
used a new ranking loss function to train the RNNs. Furthermore,
Wang et al. [13] proposed an attention-based model to identify the
most relevant item in a session to the next item. Since there ex-
ist some obvious graph structures in recommender systems, some
works used Graph neural network (GNN) [3, 10, 11] to capture the
dependencies between items.

Product titles provide users with quick descriptions of product
functionalities and features, which may help improve downstream
tasks. While some previous work [9, 15] has focused on it, the
generated titles often fall short in terms of length and diversity
due to the limitations in their generation capabilities. Recently, the
development of large language models (LLMs) [1] has shown great
potential for title generation. With LLMs having been trained on
a wide range of topics and styles, their contextual understanding

1
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and abilities in creativity and few-shot learning could provide a
continuous source of technical support for product title generation.

3 METHEDOLOGY
Titles serve as the first point of interaction between products and
potential users, significantly influencing their decision to click on
a product or continue browsing. Therefore, titles must fulfill the
following requirements: (1) be engaging, (2) effectively capture user
preferences, and (3) accurately convey key information.

To meet these requirements, we design two modules as follows:

• Co-visitation Module: Firstly, generating new titles directly
may not guarantee that they will be captivating. To address this,
we carefully select the generated titles from existing titles or
their subsets. Secondly, in line with the requirement of depicting
user preferences, we aim to develop a high-performing recom-
mendation system. Taking these considerations into account, we
propose a co-visitation module that recommends a suitable title
as the candidate title for the final title generation.

• Token Alignment Module: The recommended titles may con-
tain redundant information which does not fulfill the third con-
dition. Furthermore, the evaluation metric BLEU has limitations
in considering higher-level translation accuracy, such as context,
grammar, and semantics. Even similar titles can potentially re-
ceive low scores. Therefore, we align the recommended titles
with the last interacted title by taking the intersection of tokens.
This allows us to retain more crucial information.

3.1 Co-visitation Module
A well-performing recommender system is a crucial prerequisite
for generating high-quality product titles. This can aid the system
in gaining a deeper understanding of user preferences, enabling the
formulation of various personalized titles. In our work, we choose
a straightforward and intuitive recommendation strategy known
as covisitation recommendation based on the BLEU metric.

BLEU solely evaluates the consistency with reference titles and
fails to capture human subjective judgment. This means that even
if the recommended product is highly similar to the ground truth,
factors such as different token order or synonyms can lower the
BLEU score. For example, the BLEU score for "apple" and "apples" is
0. We cannot tolerate such risks. Therefore, we aim for the recom-
mendation model to distinguish different products’ recommended
confidence effectively. If the confidence of a product is significantly
higher than others, we consider it highly likely to be correct and use
its title as a candidate for the final title generation. Otherwise, even
if it is correct, we discard it due to the difficulty in bearing such
risks. Regarding classical session-based recommender systems like
SASRec [8] and GRU4Rec [6], although they achieve satisfactory
performance, we found that they tend to be overly confident. That
is, the confidence of the recommended product (often exceeding
0.99) is consistently much higher than other values, regardless of
the recommendation accuracy. In addition, these models often act
as black boxes that are difficult for humans to understand, further
reducing our trust in the recommendation results.

Therefore, we aim to utilize a simple, transparent model with
well-distinguishable recommendation scores, making co-visitation

recommendation our choice. Co-visitation is defined as the occur-
rence of two events being clicked by the same user within a certain
time interval, and its idea is intuitive. For example, if a user tends
to click on iPhone 14, they would likely be interested in iPhone
14 Pro Max. This would result in significantly higher connection
weights for iPhone 14 and iPhone 14 Pro Max than other products.
In this scenario, when a new user clicks on iPhone 14, it becomes
natural to recommend iPhone 14 Pro Max to him.

Constructing co-visitation is very critical. As we aim to predict
the final product, the earlier clicked products within the sessionmay
not provide positive assistance due to timeliness issues. Therefore,
when constructing the co-visitation graph, we only extract each
session’s most recent interacted records. Formally, for each session
𝑠 ∈ D, we only consider the co-visitation graphA based on its last𝑘
interaction records 𝑙𝑎𝑠𝑡 (𝑠, 𝑘), we set𝑘 to 5 in our work. Additionally,
co-visitation weights should be higher for products that are closer
in relative position. Taking these considerations into account, we
formalize the co-visitation graph A’s construction rules for the
weight between product 𝑝 and 𝑞 are as follows:

A𝑝,𝑞 =
∑︁
𝑠∈D

𝑚𝑖𝑛 (5, |𝑠 | )∑︁
𝑖=1

𝑚𝑖𝑛 (5, |𝑠 | )∑︁
𝑗=1

∑︁
𝑠𝑖=𝑝,𝑠 𝑗=𝑞

1.1 − |𝑖 − 𝑗 | · 0.2. (1)

During the inference stage, for a test session 𝑠 , we select the last
item 𝑠−1 in it and obtain all products 𝐴𝑠−1 co-visiting to it. As we
discussed earlier, we only consider the recommended product if its
recommendation score is exceptionally high. We use the 6-sigma
rule to determine the threshold ℎ𝑠 :

ℎ𝑠 =𝑚𝑒𝑎𝑛(A𝑠−1 ) + 6 · 𝑠𝑡𝑑 (A𝑠−1 ) . (2)
If the highest weight 𝑚𝑎𝑥 (A𝑠−1 ) > ℎ𝑠 , we consider the title

corresponding to that product as a recommended title T𝑟𝑒𝑐 , that
is, T𝑟𝑒𝑐 (𝑠) = T (argmax(A𝑠−1 ), to generate the final title T𝑝𝑟𝑒𝑑 (𝑠)
(will be introduced in Section 3.2), where T (𝑖) denotes the title
of product 𝑖 . However, if𝑚𝑎𝑥 (A𝑠−1 ) ≤ ℎ𝑠 , to mitigate the risk of
prediction errors, we directly select the last interacted title as the
final prediction T𝑝𝑟𝑒𝑑 (𝑠) = T (𝑠−1).

3.2 Token Alignment
Although we prioritize titles with high confidence to mitigate risks,
they often contain redundant tokens (such as size, color, etc.), mak-
ing it challenging to convey key information accurately. Therefore,
we aim to extract the key information from the titles obtained from
the co-visitation module. We find that using the title of the last
interacted product as the predicted title can also yield satisfactory
results, and the last interacted titles and the recommended title by
the co-visitation module are often highly similar. For example, if
the last interacted title is "Men’s 3/4 Length Jersey Training Active
3/4 Woven Pants, Blue," the recommended title might be "Men’s 3/4
Length Jersey Training Active 3/4 Woven Pants, Black." Hence, by
taking the intersection of the last interacted title and the recom-
mended title, we can remove non-essential tokens, that is, color in
this case. To achieve this, we propose the token alignment module,
which involves taking the intersection of the last interacted title
T (𝑠−1) and the recommended title T𝑟𝑒𝑐 (𝑠), denoted as

𝑇𝑎𝑙𝑖𝑔𝑛 (𝑠) = 𝑗𝑜𝑖𝑛(𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (T (𝑠−1)) ∩ 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (T𝑟𝑒𝑐 (𝑠))), (3)
2
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Case 1

Case 2

Test session

Training sessions

Query

Figure 1: The framework of our method.

where 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (·) is tokenized function, and 𝑗𝑜𝑖𝑛(·) aims to com-
bine all tokens into one sentence.

Indeed, there may be cases where the extracted tokens after
alignment are too few, resulting in shorter titles that are penalized
with lower BLEU scores. To address this, we introduce a threshold.
If the number of tokens in the aligned title T𝑎𝑙𝑖𝑔𝑛 (𝑠) exceeds this
threshold, we consider the aligned title as the final predicted title
T𝑝𝑟𝑒𝑑 (𝑠). Otherwise, we still select the last interacted title as the
final prediction. Here, we set the threshold as 50% of the tokens in
the recommended title. That is,

{T𝑝𝑟𝑒𝑑 (𝑠) = T𝑎𝑙𝑖𝑔𝑛 (𝑠), 𝑖 𝑓 |T𝑎𝑙𝑖𝑔𝑛 (𝑠) | > 0.5 · |T𝑟𝑒𝑐 (𝑠) |;
T𝑝𝑟𝑒𝑑 (𝑠) = T (𝑠−1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4)

By introducing this threshold, we ensure that predicted titles con-
taining an adequate number of tokens are not penalized, preventing
a significantly low BLEU score. It also enables the titles to convey
sufficient critical information. The framework and specific algo-
rithm process can be seen in Fig. 1 and Alg. 1.

4 EXPERIMENTS
4.1 Datasets
We use the Multilingual Shopping Session Dataset [7], which col-
lected customer sessions from six different language environments,
including English, German, Japanese, French, Italian, and Spanish.
It consists of two primary components: user sessions and product
attributes. The user sessions are sequences of products with which
users interacted, organized chronologically. The statistics informa-
tion is shown in Table 1. The product attributes encompass various
details such as product titles, local currency prices, brands, colors,
and descriptions.

Algorithm 1: The complete process of our algorithm.
1 Construct the co-visitation graph based on Eq. 1;
2 for each test session 𝑠 do
3 Calculate the confident threshold ℎ𝑠 based on Eq. 2;
4 if𝑚𝑎𝑥 (A𝑠−1 ) > ℎ𝑠 then
5 Get the aligned title T𝑎𝑙𝑖𝑔𝑛 (𝑠 ) based on Eq. 3;
6 if | T𝑎𝑙𝑖𝑔𝑛 (𝑠 ) | > 0.5 · | T𝑟𝑒𝑐 (𝑠 ) | then
7 T𝑝𝑟𝑒𝑑 (𝑠 ) = T𝑎𝑙𝑖𝑔𝑛 (𝑠 ) ;
8 end
9 else
10 T𝑝𝑟𝑒𝑑 (𝑠 ) = T(𝑠−1 ) ;
11 end
12 end
13 else
14 T𝑝𝑟𝑒𝑑 (𝑠 ) = T(𝑠−1 ) ;
15 end
16 end
17 return T𝑝𝑟𝑒𝑑

Table 1: Statistics for the datasets

Language (Locale) # Sessions # Products (ASINs)
German (DE) 1111416 513811
Japanese (JP) 979119 389888
English (UK) 1182181 494409
Spanish (ES) 89047 41341
French (FR) 117561 43033
Italian (IT) 126925 48788

4.2 Case Study
Due to the unavailability of ground truth, we cannot provide a
detailed experimental analysis. Therefore, we only present a few
examples of the generated titles, as shown in Table 2. As mentioned

3
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Table 2: Examples of generated titles.

Locale Last Interacted Title Recommended Title Predicted Title

DE
Dampflion Aromakonzentrat Checkmate

- Black Bishop, zum Mischen mit Basisliquid für
e-Liquid, 0.0 mg Nikotin, 10 ml

Dampflion Aromakonzentrat Checkmate
- White Bishop, zum Mischen mit Basisliquid für

e-Liquid, 0.0 mg Nikotin, 10 ml

Dampflion Aromakonzentrat Checkmate - Bishop,
zum Mischen mit Basisliquid für
e-Liquid, 0.0 mg Nikotin, 10 ml

JP Amazonベーシックノートクラシック
ノートブック Lサイズ無地

Amazonベーシックノートクラシック
ノートブック Lサイズ横罫

Amazonベーシックノートクラシック
ノートブック Lサイズ

UK
Bosch Home and Garden Cordless Combi

Drill UniversalImpact 18 (1 battery,
18 Volt System, in carrying case)

Bosch Home and Garden Cordless Combi
Drill UniversalImpact 18 (2 batteries,
18 Volt System, in carrying case)

Bosch Home and Garden Cordless Combi
Drill UniversalImpact 18 ( ,

18 Volt System, in carrying case)

ES
Amazon Basics - Pizarra blanca magnética

con bandeja para rotuladores y marco de aluminio,
60 cm x 45 cm

Amazon Basics - Pizarra blanca magnética
con bandeja para rotuladores y marco de aluminio,

120 cm x 90 cm

Amazon Basics - Pizarra blanca magnética
con bandeja para rotuladores y marco de

aluminio, cm x cm

FR
JETech Coque pour iPhone 12/12 Pro 6,1 Pouces,
Anti-Jaunissement étui de Protection Transparente

Antichoc, Housse Case Cover Anti-Rayures (HD Clair)

JETech Coque Compatible avec iPhone 12/12 Pro 6,1
Pouces, étui de Protection Transparente

Antichoc, Housse Case Cover Anti-Rayures (Bleu)

JETech Coque iPhone 12/12 Pro 6,1
Pouces, étui de Protection Transparente

Antichoc, Housse Case Cover Anti-Rayures ()

IT Sony Mdr-Ex15Ap - Cuffie In-Ear con Microfono,
Auricolari in Silicone, Nero

Sony Mdr-Ex15Ap - Cuffie In-Ear con Microfono,
Auricolari in Silicone, Blu

Sony Mdr-Ex15Ap - Cuffie In-Ear con Microfono,
Auricolari in Silicone,

Table 3: Running Times (s)

Locale DE JP UK ES FR IT
Train 136.9
Test 0.00007 0.00006 0.00008 0.00009 0.0001 0.00011

in Section 3.2, the recommended and last interacted titles are highly
similar, which confirms the good performance of using the last inter-
acted title as the predicted title to some extent (online BLEU score:
0.26553). Furthermore, we can intuitively feel that the predicted
titles obtained through token alignment effectively preserve crucial
information and minimize the decrease in BLEU scores caused by ir-
relevant information. Despite the seemingly simple combination of
co-visitation recommendation and token alignment, this approach
was carefully designed. The online evaluation performance is satis-
factory, achieving the second-best score (BLEU: 0.27131) among all
participating teams.

4.3 Efficiency Evaluation
In addition, we have provided the runtime of our model to evaluate
its efficiency, as shown in Table 3. The "Train" column represents
the time taken to construct the co-visitation graph, while the "Test"
column indicates the average time of title generation per session.
Clearly, our algorithm is highly efficient, highlighting its flexibility
to scale up to large-scale systems and its practicality.

5 CONCLUSION
In this paper, we present an efficient solution called "co-visitation
meets token alignment" for generating the next product title in
recommender systems. The co-visitation module constructs a co-
visitation graph to capture user preferences, while the token align-
ment module aligns the recommended title with recently interacted
titles to further extract the key information. The evaluation results
demonstrate its effectiveness, which resulted in high-quality titles
and secured the second-place position in KDD CUP 2023 Task 3.
Furthermore, the proposed solution is highly efficient and can be

seamlessly scaled up to large-scale systems, making it practical for
implementation in real-world e-commerce platforms.
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